1
|
Gierlicka I, Kasprzyk I, Wnuk M. Imaging Flow Cytometry as a Quick and Effective Identification Technique of Pollen Grains from Betulaceae, Oleaceae, Urticaceae and Asteraceae. Cells 2022; 11:cells11040598. [PMID: 35203248 PMCID: PMC8870286 DOI: 10.3390/cells11040598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the continuous and intensive development of laboratory techniques, a light microscope is still the most common tool used in pollen grains differentiation. However, microscopy is time-consuming and needs well-educated and experienced researchers. Other currently used techniques can be categorised as images and non-images analysis, but each has certain limitations. We propose a new approach to differentiate pollen grains using the Imaging Flow Cytometry (IFC) technique. It allows for high-throughput fluorescence data recording, which, in contrast to the standard FC, also enables real-time control of the results thanks to the possibility of digital image recording of cells flowing through the measuring capillary. The developed method allows us to determine the characteristics of the pollen grains population based on the obtained fluorescence data, using various combinations of parameters available in the IDEAS software, which can be analysed on different fluorescence channels. On this basis, we distinguished pollen grains both between and within different genera belonging to the Betulaceae, Oleaceae, Urticaceae and Asteraceae families. Thereby, we prove that the proposed methodology is sufficient for accurate, fast, and cost-effective identification and potentially can be used in the routine analysis of allergenic pollen grains.
Collapse
Affiliation(s)
- Iwona Gierlicka
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (I.G.); (I.K.)
| | - Idalia Kasprzyk
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (I.G.); (I.K.)
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
- Correspondence: ; Tel.: +48-17-851-86-09
| |
Collapse
|
2
|
Çetinbaş-Genç A, Vardar F. Effect of methyl jasmonate on in-vitro pollen germination and tube elongation of Pinus nigra. PROTOPLASMA 2020; 257:1655-1665. [PMID: 32734410 DOI: 10.1007/s00709-020-01539-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The purpose of the main research was to investigate the effects of methyl jasmonate (MeJA) (0.05, 0.25, 0.5, and 2.5 mM) on the pollen germination and tube elongation of Pinus nigra. Total pollen germination rate increased after MeJA treatments while the most enhancement was observed at 0.05-mM MeJA. No germination was observed at 2.5-mM MeJA. Although the unipolar and bipolar germination were observed in all groups, no significant changes were observed in unipolar and bipolar pollen germination rates after MeJA treatments. Tube length increased only at 0.05-mM MeJA. Although branched tubes were observed in all groups, branched tube rate increased only at 0.05-mM MeJA. Although two branched, three branched, and consecutive branched tubes were observed in all groups, the most common branching type was two branched type in all groups. Although anisotropy of actin filaments in the shank and apex of unbranched tubes decreased after MeJA treatments, the most decrease was observed at 0.05-mM MeJA. Also, anisotropy of actin filaments in the shank and in pre-branching region of branched tubes decreased only at 0.25-mM MeJA. Anisotropy of both two apexes of a branched tube changed only at 0.25- and 0.5-mM MeJA. Callose accumulation in the apex of unbranched and branched tubes increased in parallel with the increase in MeJA concentration. However, more callose is accumulated in one apex than the other apex of a branched tube. In conclusion, MeJA affected the actin organization, changed the callose distribution, and altered the pollen tube growth of Pinus nigra.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Marmara University, Göztepe Campus, Kadıköy, 34722, Istanbul, Turkey.
| | - Filiz Vardar
- Department of Biology, Marmara University, Göztepe Campus, Kadıköy, 34722, Istanbul, Turkey
| |
Collapse
|
3
|
Breygina M, Maksimov N, Polevova S, Evmenyeva A. Bipolar pollen germination in blue spruce (Picea pungens). PROTOPLASMA 2019; 256:941-949. [PMID: 30788602 DOI: 10.1007/s00709-018-01333-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Direct growth of a pollen tube is an effective mechanism of sperm delivery characteristic for the majority of seed plants. In most cases, only one tube grows from one grain to perform the delivery function; meanwhile in Picea the appearance of two tubes from a single pollen grain is quite common during in vitro germination. Here, we describe the phenomenon of bipolar germination and test two hypotheses on its nature and possible role in gametophyte functioning. The hypothesis on "trophic" function of multiple tubes provoked by poor nutrition discussed in literature was not confirmed by in vitro growth tests; bipolar germination strongly decreased with lowering sucrose availability. The highest proportion of bipolar germination occurred in optimal conditions. We then assumed that bipolar germination occurs because turgor pressure is a non-directional force and effective systems of cell wall mechanical regulation are lacking. In hypertonic medium, bipolar germination was sufficiently lower than in isotonic medium, which was consistent with prediction of the «mechanical» hypothesis. Scanning electron microscopy and fluorescence microscopy analysis of pollen morphology and cell wall dynamics during both types of germination showed that the appearance of a single tube or bipolar germination depends on the extension of exine rupture. Cell wall softening by short-term ·OH treatment sufficiently decreased the percent of bipolar germination without affecting total germination efficiency. We concluded that mechanical properties of the cell wall and turgor pressure could shift the balance towards one of the germination patterns.
Collapse
Affiliation(s)
- M Breygina
- Lomonosov Moscow State University, Russian Federation, Moscow, 119991, Russia.
| | - N Maksimov
- Lomonosov Moscow State University, Russian Federation, Moscow, 119991, Russia
| | - S Polevova
- Lomonosov Moscow State University, Russian Federation, Moscow, 119991, Russia
| | - A Evmenyeva
- Lomonosov Moscow State University, Russian Federation, Moscow, 119991, Russia
| |
Collapse
|
4
|
Kim G, Lee S, Shin S, Park Y. Three-dimensional label-free imaging and analysis of Pinus pollen grains using optical diffraction tomography. Sci Rep 2018; 8:1782. [PMID: 29379106 PMCID: PMC5788986 DOI: 10.1038/s41598-018-20113-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/11/2018] [Indexed: 01/05/2023] Open
Abstract
The structure of pollen grains is related to the reproductive function of the plants. Here, three-dimensional (3D) refractive index maps were obtained for individual conifer pollen grains using optical diffraction tomography (ODT). The 3D morphological features of pollen grains from pine trees were investigated using measured refractive index maps, in which distinct substructures were clearly distinguished and analyzed. Morphological and physiochemical parameters of the pollen grains were quantified from the obtained refractive index (RI) maps and used to quantitatively study the interspecific differences of pollen grains from different strains. Our results demonstrate that ODT can assess the structure of pollen grains. This label-free and rapid 3D imaging approach may provide a new platform for understanding the physiology of pollen grains.
Collapse
Affiliation(s)
- Geon Kim
- Korea Advanced Institute of Science and Technology (KAIST), Department of Physics, 291 Daehak-ro, 34141, Daejeon, Republic of Korea
- KAIST, KI for Health Science and Technology, 291 Daehak-ro, 34141, Daejeon, Republic of Korea
| | - SangYun Lee
- Korea Advanced Institute of Science and Technology (KAIST), Department of Physics, 291 Daehak-ro, 34141, Daejeon, Republic of Korea
- KAIST, KI for Health Science and Technology, 291 Daehak-ro, 34141, Daejeon, Republic of Korea
| | - Seungwoo Shin
- Korea Advanced Institute of Science and Technology (KAIST), Department of Physics, 291 Daehak-ro, 34141, Daejeon, Republic of Korea
- KAIST, KI for Health Science and Technology, 291 Daehak-ro, 34141, Daejeon, Republic of Korea
| | - YongKeun Park
- Korea Advanced Institute of Science and Technology (KAIST), Department of Physics, 291 Daehak-ro, 34141, Daejeon, Republic of Korea.
- KAIST, KI for Health Science and Technology, 291 Daehak-ro, 34141, Daejeon, Republic of Korea.
- Tomocube, Inc., 48 Yuseong-daero 1184 Beon-gil, 34109, Daejoen, Republic of Korea.
| |
Collapse
|
5
|
Abstract
The eukaryotic actin cytoskeleton is a highly dynamic framework that is involved in many biological processes, such as cell growth, division, morphology, and motility. G-actin polymerizes into microfilaments that associate into bundles, patches, and networks, which, in turn, organize into higher order structures that are fundamental for the course of important physiological events. Actin rings are an example for such higher order actin entities, but this term represents an actually diverse set of subcellular structures that are involved in various processes. This review especially sheds light on a crucial type of non-constricting ring-like actin networks, and categorizes them under the term 'actin fringe'. These 'actin fringes' are visualized as highly dynamic and yet steady structures in the tip of various polarized growing cells. The present comprehensive overview compares the actin fringe characteristics of rapidly elongating pollen tubes with several related actin arrays in other cell types of diverse species. The current state of knowledge about various actin fringe functions is summarized, and the key role of this structure in the polar growth process is discussed.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria 91058, Germany
| |
Collapse
|
6
|
Lazzaro MD, Marom EY, Reddy ASN. Polarized cell growth, organelle motility, and cytoskeletal organization in conifer pollen tube tips are regulated by KCBP, the calmodulin-binding kinesin. PLANTA 2013; 238:587-97. [PMID: 23784715 DOI: 10.1007/s00425-013-1919-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/11/2013] [Indexed: 05/07/2023]
Abstract
Kinesin-like calmodulin-binding protein (KCBP), a member of the Kinesin 14 family, is a minus end directed C-terminal motor unique to plants and green algae. Its motor activity is negatively regulated by calcium/calmodulin binding, and its tail region contains a secondary microtubule-binding site. It has been identified but not functionally characterized in the conifer Picea abies. Conifer pollen tubes exhibit polarized growth as organelles move into the tip in an unusual fountain pattern directed by microfilaments but uniquely organized by microtubules. We demonstrate here that PaKCBP and calmodulin regulate elongation and motility. PaKCBP is a 140 kDa protein immunolocalized to the elongating tip, coincident with microtubules. This localization is lost when microtubules are disrupted with oryzalin, which also reorganizes microfilaments into bundles. Colocalization of PaKCBP along microtubules is enhanced when microfilaments are disrupted with latrunculin B, which also disrupts the fine network of microtubules throughout the tip while preserving thicker microtubule bundles. Calmodulin inhibition by W-12 perfusion reversibly slows pollen tube elongation, alters organelle motility, promotes microfilament bundling, and microtubule bundling coincident with increased PaKCBP localization. The constitutive activation of PaKCBP by microinjection of an antibody that displaces calcium/calmodulin and activates microtubule bundling repositions vacuoles in the tip before rapidly stopping organelle streaming and pollen tube elongation. We propose that PaKCBP is one of the target proteins in conifer pollen modulated by calmodulin inhibition leading to microtubule bundling, which alters microtubule and microfilament organization, repositions vacuoles and slows organelle motility and pollen tube elongation.
Collapse
Affiliation(s)
- Mark D Lazzaro
- Department of Biology, College of Charleston, Charleston, SC, USA.
| | | | | |
Collapse
|
7
|
Abstract
Tip growth is employed throughout the plant kingdom. Our understanding of tip growth has benefited from modern tools in molecular genetics, which have enabled the functional characterization of proteins mediating tip growth. Here we first discuss the evolutionary role of tip growth in land plants and then describe the prominent model tip-growth systems, elaborating on some advantages and disadvantages of each. Next we review the organization of tip-growing cells, the role of the cytoskeleton, and recent developments concerning the physiological basis of tip growth. Finally, we review advances in the understanding of the extracellular signals that are known to guide tip-growing cells.
Collapse
Affiliation(s)
- Caleb M Rounds
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | | |
Collapse
|
8
|
Yu Y, Li Y, Huang G, Meng Z, Zhang D, Wei J, Yan K, Zheng C, Zhang L. PwHAP5, a CCAAT-binding transcription factor, interacts with PwFKBP12 and plays a role in pollen tube growth orientation in Picea wilsonii. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4805-17. [PMID: 21784992 PMCID: PMC3192995 DOI: 10.1093/jxb/err120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/16/2011] [Accepted: 03/24/2011] [Indexed: 05/21/2023]
Abstract
The HAP complex occurs in many eukaryotic organisms and is involved in multiple physiological processes. Here it was found that in Picea wilsonii, HAP5 (PwHAP5), a putative CCAAT-binding transcription factor gene, is involved in pollen tube development and control of tube orientation. Quantitative real-time reverse transcription-PCR showed that PwHAP5 transcripts were expressed strongly in germinating pollen and could be induced by Ca(2+). Overexpression of PwHAP5 in pollen altered pollen tube orientation, whereas the tube with PwHAP5RNAi showed normal growth without diminishing pollen tube growth. Furthermore, PwFKBP12, which encodes an FK506-binding protein (FKBP) was screened and a bimolecular fluorescence complementation assay performed to confirm the interaction of PwHAP5 and PwFKBP12 in vivo. Transient expression of PwFKBP12 in pollen showed normal pollen tube growth, whereas the tube with PwFKBP12RNAi bent. The phenotype of overexpression of HAP5 on pollen tube was restored by FKBP12. Altogether, our study supported the role of HAP5 in pollen tube development and orientation regulation and identified FKBP12 as a novel partner to interact with HAP5 involved in the process.
Collapse
Affiliation(s)
- Yanli Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, P.R. China
- Maize Institute, Shandong Academy of Agricultural Sciences/National Maize Improvement Sub-Center, Jinan 250100, P.R.China
| | - Yanze Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, P.R. China
| | - Guixue Huang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
| | - Zhaodong Meng
- Maize Institute, Shandong Academy of Agricultural Sciences/National Maize Improvement Sub-Center, Jinan 250100, P.R.China
| | - Dun Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
| | - Jing Wei
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
| | - Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, P.R. China
| | - Chengchao Zheng
- Maize Institute, Shandong Academy of Agricultural Sciences/National Maize Improvement Sub-Center, Jinan 250100, P.R.China
| | - Lingyun Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Kroeger JH, Daher FB, Grant M, Geitmann A. Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes. Biophys J 2009; 97:1822-31. [PMID: 19804712 DOI: 10.1016/j.bpj.2009.07.038] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 07/17/2009] [Accepted: 07/21/2009] [Indexed: 12/29/2022] Open
Abstract
The dynamics of cellular organelles reveals important information about their functioning. The spatio-temporal movement patterns of vesicles in growing pollen tubes are controlled by the actin cytoskeleton. Vesicle flow is crucial for morphogenesis in these cells as it ensures targeted delivery of cell wall polysaccharides. Remarkably, the target region does not contain much filamentous actin. We model the vesicular trafficking in this area using as boundary conditions the expanding cell wall and the actin array forming the apical actin fringe. The shape of the fringe was obtained by imposing a steady state and constant polymerization rate of the actin filaments. Letting vesicle flux into and out of the apical region be determined by the orientation of the actin microfilaments and by exocytosis was sufficient to generate a flux that corresponds in magnitude and orientation to that observed experimentally. This model explains how the cytoplasmic streaming pattern in the apical region of the pollen tube can be generated without the presence of actin microfilaments.
Collapse
|
10
|
Williams JH. Amborella trichopoda (Amborellaceae) and the evolutionary developmental origins of the angiosperm progamic phase. AMERICAN JOURNAL OF BOTANY 2009; 96:144-65. [PMID: 21628181 DOI: 10.3732/ajb.0800070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A remarkable number of the defining features of flowering plants are expressed during the life history stage between pollination and fertilization. Hand pollinations of Amborella trichopoda (Amborellaceae) in New Caledonia show that when the stigma is first receptive, the female gametophyte is near maturity. Pollen germinates within 2 h, and pollen tubes with callose walls and plugs grow entirely within secretions from stigma to stylar canal and ovarian cavity. Pollen tubes enter the micropyle within 14 h, and double fertilization occurs within 24 h. Hundreds of pollen tubes grow to the base of the stigma, but few enter the open stylar canal. New data from Amborella, combined with a review of fertilization biology of other early-divergent angiosperms, show that an evolutionary transition from slow reproduction to rapid reproduction occurred early in angiosperm history. I identify increased pollen tube growth rates within novel secretory carpel tissues as the primary mechanism for such a shift. The opportunity for prezygotic selection through interactions with the stigma is also an important innovation. Pollen tube wall construction and substantial modifications of the ovule and its associated structures greatly facilitated a new kind of reproductive biology.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996 USA
| |
Collapse
|
11
|
Yu Y, Li Y, Li L, Lin J, Zheng C, Zhang L. Overexpression of PwTUA1, a pollen-specific tubulin gene, increases pollen tube elongation by altering the distribution of alpha-tubulin and promoting vesicle transport. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2737-49. [PMID: 19454597 PMCID: PMC2692020 DOI: 10.1093/jxb/erp143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/31/2009] [Accepted: 04/01/2009] [Indexed: 05/19/2023]
Abstract
Tubulin genes are intimately associated with cell division and cell elongation, which are central to plant secondary cell wall development. However, their roles in pollen tube polar growth remain elusive. Here, a TUA1 gene from Picea wilsonii, which is specifically expressed in pollen, was isolated. Semi-quantitative RT-PCR analysis showed that the amount of PwTUA1 transcript varied at each stage of growth of the pollen tube and was induced by calcium ions and boron. Transient expression analysis in P. wilsonii pollen indicated that PwTUA1 improved pollen germination and pollen tube growth. The pollen of transgenic Arabidopsis overexpressing PwTUA1 also showed a higher percentage of germination and faster growth than wild-type plants not only in optimal germination medium, but also in medium supplemented with elevated levels of exogenous calcium ions or boron. Immunofluorescence and electron microscopy showed alpha-tubulin to be enriched and more vesicles accumulated in the apex region in germinating transgenic Arabidopsis pollen compared with wild-type plants. These results demonstrate that PwTUA1 up-regulated by calcium ions and boron contributes to pollen tube elongation by altering the distribution of alpha-tubulin and regulating the deposition of pollen cell wall components during the process of tube growth. The possible role of PwTUA1 in microtubule dynamics and organization was discussed.
Collapse
Affiliation(s)
- YanLi Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - YanZe Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - LingLi Li
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
| | - JinXing Lin
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
- To whom correspondence should be addressed. E-mail: or
| | - LingYun Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
12
|
Chen KM, Wu GL, Wang YH, Tian CT, Samaj J, Baluska F, Lin JX. The block of intracellular calcium release affects the pollen tube development of Picea wilsonii by changing the deposition of cell wall components. PROTOPLASMA 2008; 233:39-49. [PMID: 18726547 DOI: 10.1007/s00709-008-0310-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 02/23/2008] [Indexed: 05/07/2023]
Abstract
Two potent drugs, neomycin and TMB-8, which can block intracellular calcium release, were used to investigate their influence on pollen tube growth and cell wall deposition in Picea wilsonii. Apart from inhibiting pollen germination and pollen tube growth, the two drugs largely influenced tube morphology. The drugs not only obviously disturbed the generation and maintenance of the tip-localized Ca(2+) gradient but also led to a heavy accumulation of callose at the tip region of P. wilsonii pollen tubes. Fourier transform infrared (FTIR) spectroscopy analysis showed that the deposition of cell wall components, such as carboxylic acid, pectins, and other polysaccharides, in pollen tubes was changed by the two drugs. The results obtained from immunolabeling with different pectin and arabinogalactan protein antibodies agreed well with the FTIR results and further demonstrated that the generation and maintenance of the gradient of cross-linked pectins, as well as the proportional distribution of arabinogalactan proteins in tube cell walls, are essential for pollen tube growth. These results strongly suggest that intracellular calcium release mediates the processes of pollen germination and pollen tube growth in P. wilsonii and its inhibition can lead to abnormal growth by disturbing the deposition of cell wall components in pollen tube tips.
Collapse
Affiliation(s)
- Kun-Ming Chen
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Lazzaro MD, Cardenas L, Bhatt AP, Justus CD, Phillips MS, Holdaway-Clarke TL, Hepler PK. Calcium gradients in conifer pollen tubes; dynamic properties differ from those seen in angiosperms. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2619-28. [PMID: 16118258 DOI: 10.1093/jxb/eri256] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pollen tubes are an established model system for examining polarized cell growth. The focus here is on pollen tubes of the conifer Norway spruce (Picea abies, Pinaceae); examining the relationship between cytosolic free Ca2+, tip elongation, and intracellular motility. Conifer pollen tubes show important differences from their angiosperm counterparts; they grow more slowly and their organelles move in an unusual fountain pattern, as opposed to reverse fountain, in the tip. Ratiometric ion imaging of growing pollen tubes, microinjected with fura-2-dextran, reveals a tip-focused [Ca2+]i gradient extending from 450 nM at the extreme apex to 225 nM at the base of the tip clear zone. Injection of 5,5' dibromo-BAPTA does not dissipate the apical gradient, but stops cell elongation and uniquely causes rapid, transient increases of apical free Ca2+. The [Ca2+]i gradient is, however, dissipated by reversible perfusion of extracellular caffeine. When the basal cytosolic free Ca2+ concentration falls below 150 nM, again a large increase in apical [Ca2+]i occurs. An external source of calcium is not required for germination but significantly enhances elongation. However, both germination and elongation are significantly inhibited by the inclusion of calcium channels blockers, including lanthanum, gadolinium, or verapamil. Modulation of intracellular calcium also affects organelle position and motility. Extracellular perfusion of lanthanides reversibly depletes the apical [Ca2+]i gradient, altering organelle positioning in the tip. Later, during recovery from lanthanide perfusion, organelle motility switches direction to a reverse fountain. When taken together these data show a unique interplay in Picea abies pollen tubes between intracellular calcium and the motile processes controlling cellular organization.
Collapse
Affiliation(s)
- Mark D Lazzaro
- Department of Biology, College of Charleston, Charleston, SC 29424, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Hao H, Li Y, Hu Y, Lin J. Inhibition of RNA and protein synthesis in pollen tube development of Pinus bungeana by actinomycin D and cycloheximide. THE NEW PHYTOLOGIST 2005; 165:721-9. [PMID: 15720683 DOI: 10.1111/j.1469-8137.2004.01290.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
* The effects of actinomycin D and cycloheximide on RNA and protein synthesis were investigated during pollen tube development of Pinus bungeana. * RNA and protein contents, protein expression patterns, cell wall components and ultrastructural changes of pollen tubes were studied using spectrophotometry, SDS-PAGE electrophoresis, Fourier transformed infrared (FTIR) microspectroscopy and transmission electron microscopy (TEM). * Pollen grains germinated in the presence of actinomycin D, but tube elongation and RNA synthesis were inhibited. By contrast, cycloheximide inhibited pollen germination and protein synthesis, induced abnormal tube morphology, and retarded the tube growth rate. SDS-PAGE analysis showed that protein expression patterns changed distinctly, with some proteins being specific for each phase. FTIR microspectroscopy established significant changes in the chemical composition of pollen tube walls. TEM analysis revealed the inhibitors caused disintegration of organelles involved in the secretory system. * These results suggested RNA necessary for pollen germination and early tube growth were present already in the pollen grains before germination, while the initiation of germination and the maintenance of pollen tube elongation depended on continuous protein synthesis.
Collapse
Affiliation(s)
- Huaiqing Hao
- Key Laboratory of Photosynthesis and Molecular Environment Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
16
|
Abstract
Actin microfilaments (MFs) are essential for the growth of the pollen tube. Although it is well known that MFs, together with myosin, deliver the vesicles required for cell elongation, it is becoming evident that the polymerization of new actin MFs, in a process that is independent of actomyosin-dependent vesicle translocation, is also necessary for cell elongation. Herein we review the recent literature that focuses on this subject, including brief discussions of the actin-binding proteins in pollen, and their possible role in regulating actin MF activity. We promote the view that polymerization of new actin MFs polarizes the cytoplasm at the apex of the tube. This process is regulated in part by the apical calcium gradient and by different actin-binding proteins. For example, profilin binds actin monomers and gives the cell control over the initiation of polymerization. A more recently discovered actin-binding protein, villin, stimulates the formation of unipolar bundles of MFs. Villin may also respond to the apical calcium gradient, fragmenting MFs, and thus locally facilitating actin remodeling. While much remains to be discovered, it is nevertheless apparent that actin MFs play a fundamental role in controlling apical cell growth in pollen tubes.
Collapse
Affiliation(s)
- L Vidali
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
17
|
Lazzaro MD. Microtubule organization in germinated pollen of the conifer Picea abies (Norway spruce, Pinaceae). AMERICAN JOURNAL OF BOTANY 1999; 86:759-766. [PMID: 10371717 DOI: 10.2307/2656696] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The organization of microtubules in germinated pollen of the conifer Picea abies (Norway spruce, Pinaceae) was examined using primarily confocal microscopy. Pollination in conifers differs from angiosperms in the number of mitotic divisions between the microspore and the sperm and in the growth rate of the pollen tube. These differences may be orchestrated by the cytoskeleton, and this study finds that there are important functional differences in microtubule organization within conifer pollen compared to the angiosperm model systems. Pollen from P. abies contains two degenerated prothallial cells, a body cell, a stalk cell, and a vegetative cell. The body cell produces the sperm. In the vegetative cell, microtubules form a continuous network from within the pollen grain, out through the aperture, and down the length of the tube to the elongating tip. Within the grain, this network extends from the pollen grain wall to the body and stalk cell complex. Microtubules within the body and stalk cells form a densely packed array that enmeshes amyloplasts and the nucleus. Microtubule bundles can be traced between the body and stalk cells from the cytoplasm of the body cell to the adjoining cell wall and into the cytoplasm of the stalk cell. Body and stalk cells are connected by plasmodesmata. The organization of microtubules and the presence of plasmodesmata suggest that microtubules form a path for intercellular communication by projecting from the cytoplasm to interconnecting plasmodesmata. Microtubules in the elongating tube form a net axial array that ensheathes the vegetative nucleus. Microtubules are enriched at the elongating tip, where they form an array beneath the plasma membrane that is perpendicular to the direction of tube growth. This enriched region extends back 20 μm from the tip. There is an abrupt transition from a net perpendicular to a net axial organization at the edge of the enriched region. In medial sections, microtubules are present in the core of the elongating tip. The organization of microtubules in the tip differs from that seen in angiosperm pollen tubes.
Collapse
Affiliation(s)
- M D Lazzaro
- Department of Botany, Stockholm University, S 106 91 Stockholm, Sweden
| |
Collapse
|
18
|
de Win AH, Pierson ES, Derksen J. Rational analyses of organelle trajectories in tobacco pollen tubes reveal characteristics of the actomyosin cytoskeleton. Biophys J 1999; 76:1648-58. [PMID: 10049345 PMCID: PMC1300141 DOI: 10.1016/s0006-3495(99)77324-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To gain insight into the characteristics of organelle movement and the underlying actomyosin motility system in tobacco pollen tubes, we collected data points representing sequential organelle positions in control and cytochalasin-treated cells, and in a sample of extruded cytoplasm. These data were utilized to reconstruct approximately 900 tracks, representing individual organelle movements, and to produce a quantitative analysis of the movement properties, supported by statistical tests. Each reconstructed track appeared to be unique and to show irregularities in velocity and direction of movement. The regularity quotient was near 2 at the tip and above 3 elsewhere in the cell, indicating that movement is more vectorial in the tube area. Similarly, the progressiveness ratio showed that there were relatively more straight trajectories in the tube region than at the tip. Consistent with these data, arithmetical dissection revealed a high degree of randomlike movement in the apex, lanes with tip-directed movement along the flanks, and grain-directed movement in the center of the tube. Intercalated lanes with bidirectional movement had lower organelle velocity, suggesting that steric hindrance plays a role. The results from the movement analysis indicate that the axial arrangement of the actin filaments and performance of the actomyosin system increases from tip to base, and that the opposite polarity of the actin filaments in the peripheral (+-ends of acting filaments toward the tip) versus the central cytoplasm (+-ends of actin filaments toward to the grain) is installed within a few minutes in these tip-growing cells.
Collapse
Affiliation(s)
- A H de Win
- Laboratory of Plant Cell Biology, Department of Experimental Botany, Graduate School of Plant Science, Catholic University of Nijmegen, Nijmegen, The Netherlands
| | | | | |
Collapse
|
19
|
Li YQ, Moscatelli A, Cai G, Cresti M. Functional interactions among cytoskeleton, membranes, and cell wall in the pollen tube of flowering plants. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 176:133-99. [PMID: 9394919 DOI: 10.1016/s0074-7696(08)61610-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pollen tube is a cellular system that plays a fundamental role during the process of fertilization in higher plants. Because it is so important, the pollen tube has been subjected to intensive studies with the aim of understanding its biology. The pollen tube represents a fascinating model for studying interactions between the internal cytoskeletal machinery, the membrane system, and the cell wall. These compartments, often studied as independent units, show several molecular interactions and can influence the structure and organization of each other. The way the cell wall is constructed, the dynamics of the endomembrane system, and functions of the cytoskeleton suggest that these compartments are a molecular "continuum," which represents a link between the extracellular environment and the pollen tube cytoplasm. Several experimental approaches have been used to understand how these interactions may translate the pollen-pistil interactions into differential processes of pollen tube growth.
Collapse
Affiliation(s)
- Y Q Li
- Dipartimento Biologia Ambientale, Università di Siena, Italy
| | | | | | | |
Collapse
|