1
|
Padavannil A, Ayala-Hernandez MG, Castellanos-Silva EA, Letts JA. The Mysterious Multitude: Structural Perspective on the Accessory Subunits of Respiratory Complex I. Front Mol Biosci 2022; 8:798353. [PMID: 35047558 PMCID: PMC8762328 DOI: 10.3389/fmolb.2021.798353] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023] Open
Abstract
Complex I (CI) is the largest protein complex in the mitochondrial oxidative phosphorylation electron transport chain of the inner mitochondrial membrane and plays a key role in the transport of electrons from reduced substrates to molecular oxygen. CI is composed of 14 core subunits that are conserved across species and an increasing number of accessory subunits from bacteria to mammals. The fact that adding accessory subunits incurs costs of protein production and import suggests that these subunits play important physiological roles. Accordingly, knockout studies have demonstrated that accessory subunits are essential for CI assembly and function. Furthermore, clinical studies have shown that amino acid substitutions in accessory subunits lead to several debilitating and fatal CI deficiencies. Nevertheless, the specific roles of CI’s accessory subunits have remained mysterious. In this review, we explore the possible roles of each of mammalian CI’s 31 accessory subunits by integrating recent high-resolution CI structures with knockout, assembly, and clinical studies. Thus, we develop a framework of experimentally testable hypotheses for the function of the accessory subunits. We believe that this framework will provide inroads towards the complete understanding of mitochondrial CI physiology and help to develop strategies for the treatment of CI deficiencies.
Collapse
Affiliation(s)
- Abhilash Padavannil
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Maria G Ayala-Hernandez
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Eimy A Castellanos-Silva
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - James A Letts
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
2
|
Novel insights into the role of Neurospora crassa NDUFAF2, an evolutionarily conserved mitochondrial complex I assembly factor. Mol Cell Biol 2013; 33:2623-34. [PMID: 23648483 DOI: 10.1128/mcb.01476-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Complex I deficiency is commonly associated with mitochondrial oxidative phosphorylation diseases. Mutations in nuclear genes encoding structural subunits or assembly factors of complex I have been increasingly identified as the cause of the diseases. One such factor, NDUFAF2, is a paralog of the NDUFA12 structural subunit of the enzyme, but the mechanism by which it exerts its function remains unknown. Herein, we demonstrate that the Neurospora crassa NDUFAF2 homologue, the 13.4 L protein, is a late assembly factor that associates with complex I assembly intermediates containing the membrane arm and the connecting part but lacking the N module of the enzyme. Furthermore, we provide evidence that dissociation of the assembly factor is dependent on the incorporation of the putative regulatory module composed of the subunits of 13.4 (NDUFA12), 18.4 (NDUFS6), and 21 (NDUFS4) kDa. Our results demonstrate that the 13.4 L protein is a complex I assembly factor functionally conserved from fungi to mammals.
Collapse
|
3
|
Kensche PR, Duarte I, Huynen MA. A three-dimensional topology of complex I inferred from evolutionary correlations. BMC STRUCTURAL BIOLOGY 2012; 12:19. [PMID: 22857522 PMCID: PMC3436739 DOI: 10.1186/1472-6807-12-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/28/2012] [Indexed: 11/22/2022]
Abstract
Background The quaternary structure of eukaryotic NADH:ubiquinone oxidoreductase (complex I), the largest complex of the oxidative phosphorylation, is still mostly unresolved. Furthermore, it is unknown where transiently bound assembly factors interact with complex I. We therefore asked whether the evolution of complex I contains information about its 3D topology and the binding positions of its assembly factors. We approached these questions by correlating the evolutionary rates of eukaryotic complex I subunits using the mirror-tree method and mapping the results into a 3D representation by multidimensional scaling. Results More than 60% of the evolutionary correlation among the conserved seven subunits of the complex I matrix arm can be explained by the physical distance between the subunits. The three-dimensional evolutionary model of the eukaryotic conserved matrix arm has a striking similarity to the matrix arm quaternary structure in the bacterium Thermus thermophilus (rmsd=19 Å) and supports the previous finding that in eukaryotes the N-module is turned relative to the Q-module when compared to bacteria. By contrast, the evolutionary rates contained little information about the structure of the membrane arm. A large evolutionary model of 45 subunits and assembly factors allows to predict subunit positions and interactions (rmsd = 52.6 Å). The model supports an interaction of NDUFAF3, C8orf38 and C2orf56 during the assembly of the proximal matrix arm and the membrane arm. The model further suggests a tight relationship between the assembly factor NUBPL and NDUFA2, which both have been linked to iron-sulfur cluster assembly, as well as between NDUFA12 and its paralog, the assembly factor NDUFAF2. Conclusions The physical distance between subunits of complex I is a major correlate of the rate of protein evolution in the complex I matrix arm and is sufficient to infer parts of the complex’s structure with high accuracy. The resulting evolutionary model predicts the positions of a number of subunits and assembly factors.
Collapse
Affiliation(s)
- Philip R Kensche
- Center for Molecular and Biomolecular Informatics/Nijmegen Center for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, Nijmegen, HB, 6500, The Netherlands.
| | | | | |
Collapse
|
4
|
NDUFB7 and NDUFA8 are located at the intermembrane surface of complex I. FEBS Lett 2011; 585:737-43. [PMID: 21310150 DOI: 10.1016/j.febslet.2011.01.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 01/21/2011] [Accepted: 01/31/2011] [Indexed: 01/15/2023]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is the first and largest protein complex of the oxidative phosphorylation. Crystal structures have elucidated the positions of most subunits of bacterial evolutionary origin in the complex, but the positions of the eukaryotic subunits are unknown. Based on the analysis of sequence conservation we propose intra-molecular disulfide bridges and the inter-membrane space localization of three Cx(9)C-containing subunits in human: NDUFS5, NDUFB7 and NDUFA8. We experimentally confirm the localization of the latter two, while our data are consistent with disulfide bridges in NDUFA8. We propose these subunits stabilize the membrane domain of complex I.
Collapse
|
5
|
Duarte M, Videira A. Effects of mitochondrial complex III disruption in the respiratory chain of Neurospora crassa. Mol Microbiol 2009; 72:246-58. [DOI: 10.1111/j.1365-2958.2009.06643.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Marques I, Dencher NA, Videira A, Krause F. Supramolecular organization of the respiratory chain in Neurospora crassa mitochondria. EUKARYOTIC CELL 2007; 6:2391-405. [PMID: 17873079 PMCID: PMC2168242 DOI: 10.1128/ec.00149-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The existence of specific respiratory supercomplexes in mitochondria of most organisms has gained much momentum. However, its functional significance is still poorly understood. The availability of many deletion mutants in complex I (NADH:ubiquinone oxidoreductase) of Neurospora crassa, distinctly affected in the assembly process, offers unique opportunities to analyze the biogenesis of respiratory supercomplexes. Herein, we describe the role of complex I in assembly of respiratory complexes and supercomplexes as suggested by blue and colorless native polyacrylamide gel electrophoresis and mass spectrometry analyses of mildly solubilized mitochondria from the wild type and eight deletion mutants. As an important refinement of the fungal respirasome model, we found that the standard respiratory chain of N. crassa comprises putative complex I dimers in addition to I-III-IV and III-IV supercomplexes. Three Neurospora mutants able to assemble a complete complex I, lacking only the disrupted subunit, have respiratory supercomplexes, in particular I-III-IV supercomplexes and complex I dimers, like the wild-type strain. Furthermore, we were able to detect the I-III-IV supercomplexes in the nuo51 mutant with no overall enzymatic activity, representing the first example of inactive respirasomes. In addition, III-IV supercomplexes were also present in strains lacking an assembled complex I, namely, in four membrane arm subunit mutants as well as in the peripheral arm nuo30.4 mutant. In membrane arm mutants, high-molecular-mass species of the 30.4-kDa peripheral arm subunit comigrating with III-IV supercomplexes and/or the prohibitin complex were detected. The data presented herein suggest that the biogenesis of complex I is linked with its assembly into supercomplexes.
Collapse
Affiliation(s)
- Isabel Marques
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | |
Collapse
|
7
|
Carneiro P, Duarte M, Videira A. The external alternative NAD(P)H dehydrogenase NDE3 is localized both in the mitochondria and in the cytoplasm of Neurospora crassa. J Mol Biol 2007; 368:1114-21. [PMID: 17379240 DOI: 10.1016/j.jmb.2007.02.080] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 02/19/2007] [Accepted: 02/22/2007] [Indexed: 11/18/2022]
Abstract
The filamentous fungus Neurospora crassa has a branched respiratory chain. Several alternative dehydrogenases, aside from the canonical complex I enzyme, are involved in the oxidation of NAD(P)H substrates. Based on homology searches in the fungal genome, we have tentatively identified one of these proteins. The corresponding gene was inactivated by the generation of repeat-induced point mutations and a null-mutant strain was isolated. This mutant is deficient in the oxidation of cytosolic NADH, and to a lesser extent NADPH. Thus, a fourth mitochondrial alternative NAD(P)H dehydrogenase, named NDE3, was recognized in N. crassa. Interestingly, a combination of Western blot analysis of cell fractions and the in vivo detection of the protein fused to the green fluorescent protein revealed that it is also located in the fungal cytoplasm. In contrast to the other NAD(P)H dehydrogenases, expression of the nde-3 gene is up-regulated in the late exponential growth phase of N. crassa. The absence of the protein results in an up-regulation of the nde-2 transcript in this phase of growth, suggesting that the proteins are important in specific stages of fungal development. The identification of the proteins responsible for the entry point of electrons from NAD(P)H into the respiratory chain of N. crassa is likely completed.
Collapse
Affiliation(s)
- Patrícia Carneiro
- IBMC--Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
| | | | | |
Collapse
|
8
|
Marques I, Duarte M, Assunção J, Ushakova AV, Videira A. Composition of complex I from Neurospora crassa and disruption of two "accessory" subunits. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1707:211-20. [PMID: 15863099 DOI: 10.1016/j.bbabio.2004.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 12/06/2004] [Accepted: 12/08/2004] [Indexed: 11/29/2022]
Abstract
Respiratory chain complex I of the fungus Neurospora crassa contains at least 39 polypeptide subunits, of which 35 are conserved in mammals. The 11.5 kDa and 14 kDa proteins, homologues of bovine IP15 and B16.6, respectively, are conserved among eukaryotes and belong to the membrane domain of the fungal enzyme. The corresponding genes were separately inactivated by repeat-induced point-mutations, and null-mutant strains of the fungus were isolated. The lack of either subunit leads to the accumulation of distinct intermediates of the membrane arm of complex I. In addition, the peripheral arm of the enzyme seems to be formed in mutant nuo14 but, interestingly, not in mutant nuo11.5. These results and the analysis of enzymatic activities of mutant mitochondria indicate that both polypeptides are required for complex I assembly and function.
Collapse
Affiliation(s)
- Isabel Marques
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | | | |
Collapse
|
9
|
Carneiro P, Duarte M, Videira A. The main external alternative NAD(P)H dehydrogenase of Neurospora crassa mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1608:45-52. [PMID: 14741584 DOI: 10.1016/j.bbabio.2003.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A DNA sequence homologous to non-proton-pumping NADH dehydrogenase genes was found in the genome of Neurospora crassa encoding a polypeptide of 577 amino acid residues, molecular mass of 64,656 Da, with a putative transmembrane domain. Analysis of fungal mitochondria fractionated with digitonin indicates that the protein is located at the outer face of the inner membrane of the organelle (external enzyme). The corresponding gene was inactivated by the generation of repeat-induced point mutations. Mitochondria from the resulting null-mutant nde2 are highly deficient in the oxidation of cytosolic NADH and NADPH. A triple mutant nde1/nde2/ndi1, lacking mitochondrial alternative NAD(P)H dehydrogenases, was obtained, indicating that these proteins are not essential in N. crassa. However, crosses between the nde2 mutant strain and complex I-deficient mutants yielded no viable double mutants. Transcription of the nde-2 gene, as well as of ndi-1 (internal enzyme), is repressed in the late exponential phase of fungal growth.
Collapse
Affiliation(s)
- Patrícia Carneiro
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 823, 4150-180 Oporto, Portugal
| | | | | |
Collapse
|
10
|
Marques I, Duarte M, Videira A. The 9.8 kDa subunit of complex I, related to bacterial Na(+)-translocating NADH dehydrogenases, is required for enzyme assembly and function in Neurospora crassa. J Mol Biol 2003; 329:283-90. [PMID: 12758076 DOI: 10.1016/s0022-2836(03)00443-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nuclear gene encoding a 9.8 kDa subunit of complex I, the homologue of mammalian MWFE protein, was identified in the genome of Neurospora crassa. The gene was cloned and inactivated in vivo by the generation of repeat-induced point mutations. Fungal mutant strains lacking the 9.8 kDa polypeptide were subsequently isolated. Analyses of mitochondrial proteins from mutant nuo9.8 indicate that the membrane and peripheral arms of complex I fail to assemble. Respiration of mutant mitochondria on matrix NADH is rotenone-insensitive, confirming that the 9.8 kDa protein is required for the assembly and activity of complex I. We found a similarity between the MWFE homologues and the C-terminal part of the nqrA subunit of bacterial Na(+)-translocating NADH:quinone oxidoreductases (Na(+)-NQR), suggesting a link between proton-pumping and sodium-pumping NADH dehydrogenases.
Collapse
Affiliation(s)
- Isabel Marques
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | |
Collapse
|
11
|
Videir A, Duarte M. On complex I and other NADH:ubiquinone reductases of Neurospora crassa mitochondria. J Bioenerg Biomembr 2001; 33:197-203. [PMID: 11695829 DOI: 10.1023/a:1010778802236] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mitochondrial complex I is the first component of the respiratory chain coupling electron transfer from NADH to ubiquinone to proton translocation across the inner membrane of the organelle. The enzyme from the fungus Neurospora crassa is similar to that of other organisms in terms of protein and prosthetic group composition, structure, and function. It contains a high number of polypeptide subunits of dual genetic origin. Most of its subunits were cloned, including those binding redox groups. Extensive gene disruption experiments were conducted, revealing many aspects of the structure, function, and biogenesis of complex I. Complex I is essential for the sexual phase of the life cycle of N. crassa, but not for the asexual stage. In addition to complex I, the fungal mitochondria contain at least three nonproton-pumping alternative NAD(P)H dehydrogenases feeding electrons to the respiratory chain from either matrix or cytosolic substrates.
Collapse
Affiliation(s)
- A Videir
- Instituto de Biologia Molecular e Celular, Porto, Portugal.
| | | |
Collapse
|
12
|
Melo AM, Duarte M, Møller IM, Prokisch H, Dolan PL, Pinto L, Nelson MA, Videira A. The external calcium-dependent NADPH dehydrogenase from Neurospora crassa mitochondria. J Biol Chem 2001; 276:3947-51. [PMID: 11073955 DOI: 10.1074/jbc.m008199200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have inactivated the nuclear gene coding for a putative NAD(P)H dehydrogenase from the inner membrane of Neurospora crassa mitochondria by repeat-induced point mutations. The respiratory rates of mitochondria from the resulting mutant (nde-1) were measured, using NADH or NADPH as substrates under different assay conditions. The results showed that the mutant lacks an external calcium-dependent NADPH dehydrogenase. The observation of NADH and NADPH oxidation by intact mitochondria from the nde-1 mutant suggests the existence of a second external NAD(P)H dehydrogenase. The topology of the NDE1 protein was further studied by protease accessibility, in vitro import experiments, and in silico analysis of the amino acid sequence. Taken together, it appears that most of the NDE1 protein extends into the intermembrane space in a tightly folded conformation and that it remains anchored to the inner mitochondrial membrane by an N-terminal transmembrane domain.
Collapse
Affiliation(s)
- A M Melo
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Duarte M, Videira A. Respiratory chain complex I is essential for sexual development in neurospora and binding of iron sulfur clusters are required for enzyme assembly. Genetics 2000; 156:607-15. [PMID: 11014810 PMCID: PMC1461281 DOI: 10.1093/genetics/156.2.607] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have cloned and disrupted in vivo, by repeat-induced point mutations, the nuclear gene coding for an iron sulfur subunit of complex I from Neurospora crassa, homologue of the mammalian TYKY protein. Analysis of the obtained mutant nuo21.3c revealed that complex I fails to assemble. The peripheral arm of the enzyme is disrupted while its membrane arm accumulates. Furthermore, mutated 21.3c-kD proteins, in which selected cysteine residues were substituted with alanines or serines, were expressed in mutant nuo21. 3c. The phenotypes of these strains regarding the formation of complex I are similar to that of the original mutant, indicating that binding of iron sulfur centers to protein subunits is a prerequisite for complex I assembly. Homozygous crosses of nuo21.3c strain, and of other complex I mutants, are unable to complete sexual development. The crosses are blocked at an early developmental stage, before fusion of the nuclei of opposite mating types. This phenotype can be rescued only by transformation with the intact gene. Our results suggest that this might be due to the compromised capacity of complex I-defective strains in energy production.
Collapse
Affiliation(s)
- M Duarte
- Instituto de Biologia Molecular e Celular, University of Porto, 4150-180 Porto, Portugal
| | | |
Collapse
|
14
|
Plesofsky N, Gardner N, Videira A, Brambl R. NADH dehydrogenase in Neurospora crassa contains myristic acid covalently linked to the ND5 subunit peptide. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1495:223-30. [PMID: 10699461 DOI: 10.1016/s0167-4889(99)00170-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mitochondrial, proton-pumping NADH:ubiquinone oxidoreductase consists of at least 35 subunits whose synthesis is divided between the cytosol and mitochondria; this complex I catalyzes the first steps of mitochondrial electron transfer and proton translocation. Radiolabel from [(3)H]myristic acid was incorporated by Neurospora crassa into the mitochondrial-encoded, approximately 70 kDa ND5 subunit of NADH dehydrogenase, as shown by immunoprecipitation. This myristate apparently was linked to the peptide through an amide linkage at an invariant lysine residue (Lys546), based upon analyses of proteolysis products. The myristoylated lysine residue occurs in the predicted transmembrane helix 17 (residues 539-563) of ND5. A consensus amino acid sequence around this conserved residue exists in homologous subunits of NADH dehydrogenase. Cytochrome c oxidase subunit 1, in all prokaryotes and eukaryotes, contains this same consensus sequence surrounding the lysine which is myristoylated in N. crassa.
Collapse
Affiliation(s)
- N Plesofsky
- Department of Plant Biology, The University of Minnesota, 220 BioSciences Center, 1445 Gortner Avenue, Saint Paul, MN 55108, USA
| | | | | | | |
Collapse
|
15
|
Sousa R, Barquera B, Duarte M, Finel M, Videira A. Characterisation of the last Fe-S cluster-binding subunit of Neurospora crassa complex I. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:142-6. [PMID: 10216160 DOI: 10.1016/s0005-2728(99)00014-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have cloned cDNAs encoding the last iron-sulphur protein of complex I from Neurospora crassa. The cDNA sequence contains an open reading frame that codes for a precursor polypeptide of 226 amino acid residues with a molecular mass of 24972 Da. Our results indicate that the mature protein belongs probably to the peripheral arm of complex I and is rather unstable when not assembled into the enzyme. The protein is highly homologous to the PSST subunit of bovine complex I, the most likely candidate to bind iron-sulphur cluster N-2. All the amino acid residues proposed to bind such a cluster are conserved in the fungal protein.
Collapse
Affiliation(s)
- R Sousa
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
16
|
Lelandais C, Albert B, Gutierres S, De Paepe R, Godelle B, Vedel F, Chétrit P. Organization and expression of the mitochondrial genome in the Nicotiana sylvestris CMSII mutant. Genetics 1998; 150:873-82. [PMID: 9755215 PMCID: PMC1460359 DOI: 10.1093/genetics/150.2.873] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previous analyses suggested that the Nicotiana sylvestris CMSII mutant carried a large deletion in its mitochondrial genome. Here, we show by cosmid mapping that the deletion is 60 kb in length and contains several mitochondrial genes or ORFs, including the complex I nad7 gene. However, due to the presence of large duplications in the progenitor mitochondrial genome, the only unique gene that appears to be deleted is nad7. RNA gel blot data confirm the absence of nad7 expression, strongly suggesting that the molecular basis for the CMSII abnormal phenotype, poor growth and male sterility, is the altered complex I structure. The CMSII mitochondrial genome appears to consist essentially of one of two subgenomes resulting from recombination between direct short repeats. In the progenitor mitochondrial genome both recombination products are detected by PCR and, reciprocally, the parental fragments are detected at the substoichiometric level in the mutant. The CMSII mtDNA organization has been maintained through six sexual generations.
Collapse
Affiliation(s)
- C Lelandais
- Institut de Biotechnologie des Plantes, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Dupuis A, Chevallet M, Darrouzet E, Duborjal H, Lunardi J, Issartel JP. The complex I from Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1364:147-65. [PMID: 9593868 DOI: 10.1016/s0005-2728(98)00025-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The NADH-ubiquinone oxidoreductase (type I NDH) of Rhodobacter capsulatus is a multisubunit enzyme encoded by the 14 genes of the nuo operon. This bacterial enzyme constitutes a valuable model for the characterization of the mitochondrial Complex I structure and enzymatic mechanism for the following reasons. (i) The mitochondria-encoded ND subunits are not readily accessible to genetic manipulation. In contrast, the equivalents of the mitochondrial ND1, ND2, ND4, ND4L, ND5 and ND6 genes can be easily mutated in R. capsulatus by homologous recombination. (ii) As illustrated in the case of ND1 gene, point mutations associated with human cytopathies can be reproduced and studied in this model system. (iii) The R. capsulatus model also allows the recombinant manipulations of iron-sulfur (Fe-S) subunits and the assignment of Fe-S clusters as illustrated in the case of the NUOI subunit (the equivalent of the mitochondrial TYKY subunit). (iv) Finally, like mitochondrial Complex I, the NADH-ubiquinone oxidoreductase of R. capsulatus is highly sensitive to the inhibitor piericidin-A which is considered to bind to or close to the quinone binding site(s) of Complex I. Therefore, isolation of R. capsulatus mutants resistant to piericidin-A represents a straightforward way to map the inhibitor binding sites and to try and define the location of quinone binding site(s) in the enzyme. These illustrations that describe the interest in the R. capsulatus NADH-ubiquinone oxidoreductase model for the general study of Complex I will be critically developed in the present review.
Collapse
Affiliation(s)
- A Dupuis
- Laboratoire de BioEnergétique Cellulaire et Pathologique (BECP), EA 2019 UJF, Département de Biologie Moléculaire et Structurale CEA-grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Respiratory chain complex I is a complicated enzyme of mitochondria, that couples electron transfer from NADH to ubiquinone to the proton translocation across the inner membrane of the organelle. The fungus Neurospora crassa has been used as one of the main model organisms to study this enzyme. Complex I is composed of multiple polypeptide subunits of dual genetic origin and contains several prosthetic groups involved in its activity. Most subunits have been cloned and those binding redox centres have been identified. Yet, the functional role of certain complex I proteins remains unknown. Insight into the possible origin and the mechanisms of complex I assembly has been gained. Several mutant strains of N. crassa, in which specific subunits of complex I were disrupted, have been isolated and characterised. This review concerns many aspects of the structure, function and biogenesis of complex I that are being elucidated.
Collapse
Affiliation(s)
- A Videira
- Instituto de Biologia Molecular e Celular and Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
19
|
Alves PC, Videira A. The membrane domain of complex I is not assembled in the stopper mutant E35 of Neurospora. Biochem Cell Biol 1998. [DOI: 10.1139/o98-014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The assembly of mitochondrial NADH : ubiquinone oxidoreductase (complex I) was studied in the E35 stopper mutant of Neurospora crassa at different times during growth in liquid media. Assembly of complex I as well as of its membrane domain is impaired in this strain throughout the growth period. Nevertheless, a structure that resembles the peripheral arm of the enzyme is still formed in the mitochondria of this mutant. The absence of the membrane domain of complex I in E35 can be attributed to the specific deletion of the mitochondrial ND2 and ND3 subunits of the enzyme.Key words: mitochondria, complex I, stopper mutants, Neurospora crassa.
Collapse
|
20
|
Duarte M, Schulte U, Videira A. Identification of the TYKY homologous subunit of complex I from Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1322:237-41. [PMID: 9452770 DOI: 10.1016/s0005-2728(97)00084-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A polypeptide subunit of complex I from Neurospora crassa, homologous to bovine TYKY, was expressed in Escherichia coli, purified and used for the production of rabbit antiserum. The mature mitochondrial protein displays a molecular mass of 21280 Da and results from cleavage of a presequence consisting of the first 34 N-terminal amino acids of the precursor. This protein was found closely associated with the peripheral arm of complex I.
Collapse
Affiliation(s)
- M Duarte
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Portugal
| | | | | |
Collapse
|