1
|
Miloslavina YA, Thomas B, Reus M, Gupta KBSS, Oostergetel GT, Andreas LB, Holzwarth AR, de Groot HJM. Contrasting packing modes for tubular assemblies in chlorosomes. PHOTOSYNTHESIS RESEARCH 2024; 161:105-115. [PMID: 38538911 PMCID: PMC11269348 DOI: 10.1007/s11120-024-01089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/27/2024] [Indexed: 07/25/2024]
Abstract
The largest light-harvesting antenna in nature, the chlorosome, is a heterogeneous helical BChl self-assembly that has evolved in green bacteria to harvest light for performing photosynthesis in low-light environments. Guided by NMR chemical shifts and distance constraints for Chlorobaculum tepidum wild-type chlorosomes, the two contrasting packing modes for syn-anti parallel stacks of BChl c to form polar 2D arrays, with dipole moments adding up, are explored. Layered assemblies were optimized using local orbital density functional and plane wave pseudopotential methods. The packing mode with the lowest energy contains syn-anti and anti-syn H-bonding between stacks. It can accommodate R and S epimers, and side chain variability. For this packing, a match with the available EM data on the subunit axial repeat and optical data is obtained with multiple concentric cylinders for a rolling vector with the stacks running at an angle of 21° to the cylinder axis and with the BChl dipole moments running at an angle ß ∼ 55° to the tube axis, in accordance with optical data. A packing mode involving alternating syn and anti parallel stacks that is at variance with EM appears higher in energy. A weak cross-peak at -6 ppm in the MAS NMR with 50 kHz spinning, assigned to C-181, matches the shift of antiparallel dimers, which possibly reflects a minor impurity-type fraction in the self-assembled BChl c.
Collapse
Affiliation(s)
- Yuliya A Miloslavina
- Institute of Chemistry, Leiden University, Box 9502, 2300 RA, Leiden, The Netherlands
- Max-Planck-Institut für Multidisziplinäre Naturwissenschaften, Am Faßberg 11, 37077, Göttingen, Germany
- Eduard-Zintl-Institut für Anorganische and Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str, 64287, Darmstadt, Germany
| | - Brijith Thomas
- Institute of Chemistry, Leiden University, Box 9502, 2300 RA, Leiden, The Netherlands
- Science Division, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Michael Reus
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim a. d. Ruhr, Germany
| | | | - Gert T Oostergetel
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Loren B Andreas
- Max-Planck-Institut für Multidisziplinäre Naturwissenschaften, Am Faßberg 11, 37077, Göttingen, Germany
| | - Alfred R Holzwarth
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim a. d. Ruhr, Germany
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Huub J M de Groot
- Institute of Chemistry, Leiden University, Box 9502, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
2
|
Yakovlev AG, Taisova AS, Fetisova ZG. Low-Frequency Oscillations of Bacteriochlorophyll Oligomers in Chlorosomes of Photosynthetic Green Bacteria. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2084-2093. [PMID: 38462452 DOI: 10.1134/s0006297923120118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 03/12/2024]
Abstract
In green photosynthetic bacteria, light is absorbed by bacteriochlorophyll (BChl) c/d/e oligomers, which are located in chlorosomes - unique structures created by Nature to collect the energy of very weak light fluxes. Using coherent femtosecond spectroscopy at cryogenic temperature, we detected and studied low-frequency vibrational motions of BChl c oligomers in chlorosomes of the green bacteria Chloroflexus (Cfx.) aurantiacus. The objects of the study were chlorosomes isolated from the bacterial cultures grown under different light intensity. It was found that the Fourier spectrum of low-frequency coherent oscillations in the Qy band of BChl c oligomers depends on the light intensity used for the growth of bacteria. It turned out that the number of low-frequency vibrational modes of chlorosomes increases as illumination under which they were cultivated decreases. Also, the frequency range within which these modes are observed expands, and frequencies of the most modes change. Theoretical modeling of the obtained data and analysis of the literature led to conclusion that the structural basis of Cfx. aurantiacus chlorosomes are short linear chains of BChl c combined into more complex structures. Increase in the length of these chains in chlorosomes grown under weaker light leads to the observed changes in the spectrum of vibrations of BChl c oligomers. This increase is an effective mechanism for bacteria adaptation to changing external conditions.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Alexandra S Taisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Zoya G Fetisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
3
|
Utilization of blue-green light by chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus: Ultrafast excitation energy conversion and transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148396. [PMID: 33581107 DOI: 10.1016/j.bbabio.2021.148396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/14/2023]
Abstract
Chlorosomes of photosynthetic green bacteria are unique molecular assemblies providing efficient light harvesting followed by multi-step transfer of excitation energy to reaction centers. In each chlorosome, 104-105 bacteriochlorophyll (BChl) c/d/e molecules are organized by self-assembly into high-ordered aggregates. We studied the early-time dynamics of the excitation energy flow and energy conversion in chlorosomes isolated from Chloroflexus (Cfx.) aurantiacus bacteria by pump-probe spectroscopy with 30-fs temporal resolution at room temperature. Both the S2 state of carotenoids (Cars) and the Soret states of BChl c were excited at ~490 nm, and absorption changes were probed at 400-900 nm. A global analysis of spectroscopy data revealed that the excitation energy transfer (EET) from Cars to BChl c aggregates occurred within ~100 fs, and the Soret → Q energy conversion in BChl c occurred faster within ~40 fs. This conclusion was confirmed by a detailed comparison of the early exciton dynamics in chlorosomes with different content of Cars. These processes are accompanied by excitonic and vibrational relaxation within 100-270 fs. The well-known EET from BChl c to the baseplate BChl a proceeded on a ps time-scale. We showed that the S1 state of Cars does not participate in EET. We discussed the possible presence (or absence) of an intermediate state that might mediates the Soret → Qy internal conversion in chlorosomal BChl c. We discussed a possible relationship between the observed exciton dynamics and the structural heterogeneity of chlorosomes.
Collapse
|
4
|
Yakovlev AG, Taisova AS, Fetisova ZG. Q-band hyperchromism and B-band hypochromism of bacteriochlorophyll c as a tool for investigation of the oligomeric structure of chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus. PHOTOSYNTHESIS RESEARCH 2020; 146:95-108. [PMID: 31939070 DOI: 10.1007/s11120-019-00707-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Chlorosomes of green photosynthetic bacteria are the most amazing example of long-range ordered natural light-harvesting antennae. Chlorosomes are the largest among all known photosynthetic light-harvesting structures (~ 104-105 pigments in the aggregated state). The chlorosomal bacteriochlorophyll (BChl) c/d/e molecules are organized via self-assembly and do not require proteins to provide a scaffold for efficient light harvesting. Despite numerous investigations, a consensus regarding the spatial structure of chlorosomal antennae has not yet been reached. In the present work, we studied hyperchromism/hypochromism in the chlorosomal BChl c Q/B absorption bands of the green photosynthetic bacterium Chloroflexus (Cfx.) aurantiacus. The chlorosomes were isolated from cells grown under different light intensities and therefore, as we discovered earlier, they had different sizes of both BChl c antennae and their unit building blocks. We have shown experimentally that the Q-/B-band hyperchromism/hypochromism is proportional to the size of the chlorosomal antenna. We explained theoretically these findings in terms of excitonic intensity borrowing between the Q and B bands for the J-/H-aggregates of the BChls. The theory developed by Gülen (Photosynth Res 87:205-214, 2006) showed the dependence of the Q-/B-band hyperchromism/hypochromism on the structure of the aggregates. For the model of exciton-coupled BChl c linear chains within a unit building block, the theory predicted an increase in the hyperchromism/hypochromism with the increase in the number of molecules per chain and a decrease in it with the increase in the number of chains. It was previously shown that this model ensured a good fit with spectroscopy experiments and approximated the BChl c low packing density in vivo. The presented experimental and theoretical studies of the Q-/B-band hyperchromism/hypochromism permitted us to conclude that the unit building block of Cfx. aurantiacus chlorosomes comprises of several short BChl c chains.This conclusion is in accordance with previous linear and nonlinear spectroscopy studies on Cfx. aurantiacus chlorosomes.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russian Federation, 119991.
| | - Alexandra S Taisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russian Federation, 119991
| | - Zoya G Fetisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russian Federation, 119991.
| |
Collapse
|
5
|
Yakovlev A, Taisova A, Shuvalov V, Fetisova Z. Estimation of the bacteriochlorophyll c oligomerisation extent in Chloroflexus aurantiacus chlorosomes by very low-frequency vibrations of the pigment molecules: A new approach. Biophys Chem 2018; 240:1-8. [DOI: 10.1016/j.bpc.2018.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/14/2018] [Accepted: 05/19/2018] [Indexed: 10/16/2022]
|
6
|
Yakovlev A, Taisova A, Arutyunyan A, Shuvalov V, Fetisova Z. Variability of aggregation extent of light-harvesting pigments in peripheral antenna of Chloroflexus aurantiacus. PHOTOSYNTHESIS RESEARCH 2017; 133:343-356. [PMID: 28361448 DOI: 10.1007/s11120-017-0374-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
The stationary ground state and femtosecond time-resolved absorption spectra as well as spectra of circular dichroism were measured at room temperature using freshly prepared samples of chlorosomes isolated from fresh cultures of the green bacterium Chloroflexus aurantiacus. Cultures were grown by using as inoculum the same seed culture but under different light conditions. All measured spectra clearly showed the red shift of BChl c Qy bands (up to 5 nm) for low-light chlorosomes as compared to high-light ones, together with concomitant narrowing of these bands and increasing of their amplitudes. The sizes of the unit BChl c aggregates of the high-light-chlorosomes and the low-light ones were estimated. The fit of all experimental spectra was obtained within the framework of our model proposed before (Fetisova et al., Biophys J 71:995-101, 1996). The model assumes that a unit building block of the BChl c antenna has a form of a tubular aggregate of L = 6 linear single or double exciton-coupled pigment chains within a rod element, with the pigment packing density, approximating that in vivo. The simultaneous fit of all experimental spectra gave the number of pigments in each individual linear pigment chain N = 4 and N = 6 for the high-light and the low-light BChl c unit building blocks, respectively. The size of a unit building block in the BChl c antenna was found to vary from L × N = 24 to L × N = 36 exciton-coupled BChl c molecules being governed by the growth-light intensity. All sets of findings for Chloroflexus aurantiacus chlorosomes demonstrated the biologically expedient light-controlled variability, predicted by us, of the extent of BChl c aggregation within a unit building block in this antenna.
Collapse
Affiliation(s)
- Andrei Yakovlev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russian Federation, 119991.
| | - Alexandra Taisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russian Federation, 119991
| | - Alexander Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russian Federation, 119991
| | - Vladimir Shuvalov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation, 142290
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russian Federation, 119991
| | - Zoya Fetisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russian Federation, 119991.
| |
Collapse
|
7
|
Taisova AS, Yakovlev AG, Fetisova ZG. Size variability of the unit building block of peripheral light-harvesting antennas as a strategy for effective functioning of antennas of variable size that is controlled in vivo by light intensity. BIOCHEMISTRY (MOSCOW) 2014; 79:251-9. [PMID: 24821452 DOI: 10.1134/s0006297914030110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This work continuous a series of studies devoted to discovering principles of organization of natural antennas in photosynthetic microorganisms that generate in vivo large and highly effective light-harvesting structures. The largest antenna is observed in green photosynthesizing bacteria, which are able to grow over a wide range of light intensities and adapt to low intensities by increasing of size of peripheral BChl c/d/e antenna. However, increasing antenna size must inevitably cause structural changes needed to maintain high efficiency of its functioning. Our model calculations have demonstrated that aggregation of the light-harvesting antenna pigments represents one of the universal structural factors that optimize functioning of any antenna and manage antenna efficiency. If the degree of aggregation of antenna pigments is a variable parameter, then efficiency of the antenna increases with increasing size of a single aggregate of the antenna. This means that change in degree of pigment aggregation controlled by light-harvesting antenna size is biologically expedient. We showed in our previous work on the oligomeric chlorosomal BChl c superantenna of green bacteria of the Chloroflexaceae family that this principle of optimization of variable antenna structure, whose size is controlled by light intensity during growth of bacteria, is actually realized in vivo. Studies of this phenomenon are continued in the present work, expanding the number of studied biological materials and investigating optical linear and nonlinear spectra of chlorosomes having different structures. We show for oligomeric chlorosomal superantennas of green bacteria (from two different families, Chloroflexaceae and Oscillochloridaceae) that a single BChl c aggregate is of small size, and the degree of BChl c aggregation is a variable parameter, which is controlled by the size of the entire BChl c superantenna, and the latter, in turn, is controlled by light intensity in the course of cell culture growth.
Collapse
Affiliation(s)
- A S Taisova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | | | |
Collapse
|
8
|
Fujita T, Huh J, Saikin SK, Brookes JC, Aspuru-Guzik A. Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria. PHOTOSYNTHESIS RESEARCH 2014; 120:273-289. [PMID: 24504540 DOI: 10.1007/s11120-014-9978-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 01/23/2014] [Indexed: 06/03/2023]
Abstract
We present a theoretical study of excitation dynamics in the chlorosome antenna complex of green photosynthetic bacteria based on a recently proposed model for the molecular assembly. Our model for the excitation energy transfer (EET) throughout the antenna combines a stochastic time propagation of the excitonic wave function with molecular dynamics simulations of the supramolecular structure and electronic structure calculations of the excited states. We characterized the optical properties of the chlorosome with absorption, circular dichroism and fluorescence polarization anisotropy decay spectra. The simulation results for the excitation dynamics reveal a detailed picture of the EET in the chlorosome. Coherent energy transfer is significant only for the first 50 fs after the initial excitation, and the wavelike motion of the exciton is completely damped at 100 fs. Characteristic time constants of incoherent energy transfer, subsequently, vary from 1 ps to several tens of ps. We assign the time scales of the EET to specific physical processes by comparing our results with the data obtained from time-resolved spectroscopy experiments.
Collapse
Affiliation(s)
- Takatoshi Fujita
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA,
| | | | | | | | | |
Collapse
|
9
|
Pšenčík J, Butcher SJ, Tuma R. Chlorosomes: Structure, Function and Assembly. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
10
|
Linnanto JM, Korppi-Tommola JEI. Exciton Description of Chlorosome to Baseplate Excitation Energy Transfer in Filamentous Anoxygenic Phototrophs and Green Sulfur Bacteria. J Phys Chem B 2013; 117:11144-61. [DOI: 10.1021/jp4011394] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juha M. Linnanto
- Department of Chemistry, P.O.
Box 35, University of Jyväskylä, FIN-40014, Finland
- University of Tartu, Institute of Physics, Riia 142,
EE-51014 Tartu, Estonia
| | | |
Collapse
|
11
|
Dostál J, Mančal T, Augulis RN, Vácha F, Pšenčík J, Zigmantas D. Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Energy Diffusion in Chlorosomes. J Am Chem Soc 2012; 134:11611-7. [DOI: 10.1021/ja3025627] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jakub Dostál
- Department of Chemical Physics, Lund University, Getingevägen 60, 221 00 Lund,
Sweden
- Faculty of Mathematics
and Physics, Charles University in Prague, Ke Karlovu 3, 121 16
Prague, Czech Republic
| | - Tomáš Mančal
- Faculty of Mathematics
and Physics, Charles University in Prague, Ke Karlovu 3, 121 16
Prague, Czech Republic
| | - Ramu-nas Augulis
- Department of Chemical Physics, Lund University, Getingevägen 60, 221 00 Lund,
Sweden
| | - František Vácha
- Faculty
of Science, University of South Bohemia, Branišovská
31, 370 05 České Budějovice, Czech Republic
| | - Jakub Pšenčík
- Faculty of Mathematics
and Physics, Charles University in Prague, Ke Karlovu 3, 121 16
Prague, Czech Republic
| | - Donatas Zigmantas
- Department of Chemical Physics, Lund University, Getingevägen 60, 221 00 Lund,
Sweden
| |
Collapse
|
12
|
Linnanto JM, Korppi-Tommola JEI. Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates. PHOTOSYNTHESIS RESEARCH 2008; 96:227-245. [PMID: 18443917 DOI: 10.1007/s11120-008-9304-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 04/07/2008] [Indexed: 05/26/2023]
Abstract
Molecular mechanics calculations and exciton theory have been used to study pigment organization in chlorosomes of green bacteria. Single and double rod, multiple concentric rod, lamella, and Archimedean spiral macrostructures of bacteriochlorophyll c molecules were created and their spectral properties evaluated. The effects of length, width, diameter, and curvature of the macrostructures as well as orientations of monomeric transition dipole moment vectors on the spectral properties of the aggregates were studied. Calculated absorption, linear dichroism, and polarization dependent fluorescence-excitation spectra of the studied long macrostructures were practically identical, but circular dichroism spectra turned out to be very sensitive to geometry and monomeric transition dipole moment orientations of the aggregates. The simulations for long multiple rod and spiral-type macrostructures, observed in recent high-resolution electron microscopy images (Oostergetel et al., FEBS Lett 581:5435-5439, 2007) gave shapes of circular dichroism spectra observed experimentally for chlorosomes. It was shown that the ratio of total circular dichroism intensity to integrated absorption of the Q(y) transition is a good measure of degree of tubular structures in the chlorosomes. Calculations suggest that the broad Q(y) line width of chlorosomes of sulfur bacteria could be due to (1) different orientations of the transition moment vectors in multi-walled rod structures or (2) a variety of Bchl-aggregate structures in the chlorosomes.
Collapse
Affiliation(s)
- Juha M Linnanto
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland.
| | | |
Collapse
|
13
|
Novoderezhkin V, Taisova A, Fetisova ZG. Unit building block of the oligomeric chlorosomal antenna of the green photosynthetic bacterium Chloroflexus aurantiacus: modeling of nonlinear optical spectra. Chem Phys Lett 2001. [DOI: 10.1016/s0009-2614(01)00045-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Carbonera D, Bordignon E, Giacometti G, Agostini G, Vianelli A, Vannini C. Fluorescence and Absorption Detected Magnetic Resonance of Chlorosomes from Green BacteriaChlorobium tepidumandChloroflexus aurantiacus. A Comparative Study†. J Phys Chem B 2001. [DOI: 10.1021/jp001778+] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Tamiaki H, Kubo M, Oba T. Synthesis and Self-Assembly of Zinc Methyl Bacteriopheophorbide-f and its Homolog. Tetrahedron 2000. [DOI: 10.1016/s0040-4020(00)00590-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Mauring K, Novoderezhkin V, Taisova A, Fetisova Z. Exciton levels structure of antenna bacteriochlorophyll c aggregates in the green bacterium Chloroflexus aurantiacus as probed by 1.8-293 K fluorescence spectroscopy. FEBS Lett 1999; 456:239-42. [PMID: 10456316 DOI: 10.1016/s0014-5793(99)00953-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have demonstrated temperature-dependence of the steady-state fluorescence lineshape of the bacteriochlorophyll (BChl) c band measured for intact cells of the green bacterium Chloroflexus aurantiacus over the 1.8-293 K range. The measured temperature-dependence has been shown to be in good agreement with the theoretical one, calculated for our original model of pigment organization in the chlorosomal oligomeric antenna of green photosynthetic bacteria based on spectral hole-burning studies (Fetisova, Z.G. et al. (1996) Biophys. J. 71, 995-1010). This model implies that the BChl c antenna unit is a tubular aggregate of six exciton-coupled linear pigment chains having the exciton level structure with strongly allowed higher levels.
Collapse
Affiliation(s)
- K Mauring
- Institute of Physics, Tartu, Estonia
| | | | | | | |
Collapse
|
17
|
Fidy J, Laberge M, Kaposi AD, Vanderkooi JM. Fluorescence line narrowing applied to the study of proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1386:331-51. [PMID: 9733992 DOI: 10.1016/s0167-4838(98)00101-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence line narrowing is a high resolution spectroscopic technique that uses low temperature and laser excitation to optically select specific subpopulations from the inhomogeneously broadened absorption band of the sample. When applied to the study of fluorescent groups in proteins one can obtain vibronically resolved spectra, which can be analyzed to give information on spectral line shapes, vibrational energies of both the ground and excited state molecule, and the inhomogeneous distribution function of the electronic transitions. These parameters reveal information about the chromophoric prosthetic group and the protein matrix and are functions of geometric strains and local electric fields imposed by the protein. Examples of the use of fluorescence line narrowing are discussed in investigations of heme proteins, photosynthetic systems and tryptophan-containing proteins.
Collapse
Affiliation(s)
- J Fidy
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | | | |
Collapse
|
18
|
Savikhin S, Buck DR, Struve WS, Blankenship RE, Taisova AS, Novoderezhkin VI, Fetisova ZG. Excitation delocalization in the bacteriochlorophyll c antenna of the green bacterium Chloroflexus aurantiacus as revealed by ultrafast pump-probe spectroscopy. FEBS Lett 1998; 430:323-6. [PMID: 9688564 DOI: 10.1016/s0014-5793(98)00691-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Room temperature absorption difference spectra were measured on the femtosecond through picosecond time scales for chlorosomes isolated from the green bacterium Chloroflexus aurantiacus. Anomalously high values of photoinduced absorption changes were revealed in the BChl c Qy transition band. Photoinduced absorption changes at the bleaching peak in the BChl c band were found to be 7-8 times greater than those at the bleaching peak in the BChl a band of the chlorosome. This appears to be the first direct experimental proof of excitation delocalization over many BChl c antenna molecules in the chlorosome.
Collapse
Affiliation(s)
- S Savikhin
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, 50011, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Linnanto J, Helenius VM, Oksanen JAI, Peltola T, Garaud JL, Korppi-Tommola JEI. Exciton Interactions and Femtosecond Relaxation in Chlorophyll a−Water and Chlorophyll a−Dioxane Aggregates. J Phys Chem A 1998. [DOI: 10.1021/jp9728520] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Linnanto
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland
| | - V. M. Helenius
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland
| | - J. A. I. Oksanen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland
| | - T. Peltola
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland
| | - J.-L. Garaud
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland
| | | |
Collapse
|
20
|
Fetisova Z, Freiberg A, Novoderezhkin V, Taisova A, Timpmann K. Antenna size dependent exciton dynamics in the chlorosomal antenna of the green bacterium Chloroflexus aurantiacus. FEBS Lett 1996; 383:233-6. [PMID: 8925903 DOI: 10.1016/0014-5793(96)00164-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Using picosecond fluorescence spectroscopy, we demonstrated antenna size dependent exciton dynamics in chlorosomal antenna, measured for intact cells of different cultures of the green bacterium Chloroflexus aurantiacus with different chlorosomal antenna size determined by electron microscopic examination of ultrathin sections of the cells. The measured bacteriochlorophyll (BChl) c excitation lifetimes show a quasilinear dependence on chlorosome size as predicted in our model for cylindrical exciton migration within the three-dimensional chlorosomal antenna. The migration model was developed for the proposed exciton model of chlorosomal BChl c aggregation. The data predict the time constant values for excitation energy transfer between BChl c aggregates as well as to BChl a of the baseplate.
Collapse
Affiliation(s)
- Z Fetisova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | | | |
Collapse
|