1
|
Kasznicki J, Kosmalski M, Sliwinska A, Mrowicka M, Stanczyk M, Majsterek I, Drzewoski J. Evaluation of oxidative stress markers in pathogenesis of diabetic neuropathy. Mol Biol Rep 2012; 39:8669-78. [PMID: 22718504 PMCID: PMC3404273 DOI: 10.1007/s11033-012-1722-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/06/2012] [Indexed: 12/16/2022]
Abstract
Experimental evidences suggest that hyperglycaemia-induced overproduction of reactive oxygen species and subsequent damage to proteins, lipids and DNA may play a key role in the development of distal symmetric polyneuropathy (DSPN)—the most common complication of diabetes mellitus. The study population consisted of 51 individuals aged 52–82 years classified into 3 groups: 16 patients diagnosed with type 2 diabetes mellitus (T2DM) with DSPN, 16 T2DM patients without DSPN and 19 control subjects without diabetes and neuropathy. The study was conducted to determine the activity of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX) and total antioxidant status (TAS) in the examined groups. An alkaline comet assay was used to determine the extent of DNA damage of oxidized purines as glicosylo-formamidoglicosylase (Fpg) sites, and oxidized pyrimidines as endonuclease III (Nth) sites. A significant decrease of SOD (P < 0.05), GPX (P < 0.05) and nonsignificant decrease of CAT (P > 0.05), and TAS status (P > 0.05) were seen in T2DM patients with neuropathy compared to T2DM patients as well as controls. T2DM patients with or without neuropathy revealed significantly lower (P < 0.05) plasma concentration of nitrous oxide compared to the control subjects. Endogenous level of oxidative DNA damage in T2DM patients with DSPN was significantly higher compared both to the controls and T2DM patients without DSPN (P < 0.001). Moreover, lymphocytes isolated from T2DM patients with DSPN were more susceptible to oxidative DNA lesions induced by hydrogen peroxide than from T2DM patients without DSPN (P < 0.001). Our results confirm hypothesis that oxidative stress may play a substantial role in the development and progression of diabetic distal symmetric polyneuropathy.
Collapse
Affiliation(s)
- Jacek Kasznicki
- Department of Internal Medicine, Diabetology and Clinical Pharmacology, Medical University of Lodz, ul. Parzeczewska 35, 95-100 Zgierz, Poland.
| | | | | | | | | | | | | |
Collapse
|
2
|
Han Y, Zhang W, Tang Y, Bai W, Yang F, Xie L, Li X, Zhou S, Pan S, Chen Q, Ferro A, Ji Y. l-Tetrahydropalmatine, an active component of Corydalis yanhusuo W.T. Wang, protects against myocardial ischaemia-reperfusion injury in rats. PLoS One 2012; 7:e38627. [PMID: 22715398 PMCID: PMC3371051 DOI: 10.1371/journal.pone.0038627] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 05/08/2012] [Indexed: 12/31/2022] Open
Abstract
l-Tetrahydropalmatine (l-THP) is an active ingredients of Corydalis yanhusuo W.T. Wang, which protects against acute global cerebral ischaemia-reperfusion injury. In this study, we show that l-THP is cardioprotective in myocardial ischaemia-reperfusion injury and examined the mechanism. Rats were treated with l-THP (0, 10, 20, 40 mg/kg b.w.) for 20 min before occlusion of the left anterior descending coronary artery and subjected to myocardial ischaemia-reperfusion (30 min/6 h). Compared with vehicle-treated animals, the infarct area/risk area (IA/RA) of l-THP (20, 40 mg/kg b.w.) treated rats was reduced, whilst l-THP (10 mg/kg b.w.) had no significant effect. Cardiac function was improved in l-THP-treated rats whilst plasma creatine kinase activity declined. Following treatment with l-THP (20 mg/kg b.w.), subunit of phosphatidylinositol 3-kinase p85, serine473 phosphorylation of Akt and serine1177 phosphorylation of endothelial NO synthase (eNOS) increased in myocardium, whilst expression of inducible NO synthase (iNOS) decreased. However, the expression of HIF-1α and VEGF were increased in I30 minR6 h, but decreased to normal level in I30 minR24 h, while treatment with l-THP (20 mg/kg b.w.) enhanced the levels of these two genes in I30 minR24 h. Production of NO in myocardium and plasma, activity of myeloperoxidase (MPO) in plasma and the expression of tumour necrosis factor-α (TNF-α) in myocardium were decreased by l-THP. TUNEL assay revealed that l-THP (20 mg/kg b.w.) reduced apoptosis in myocardium. Thus, we show that l-THP activates the PI3K/Akt/eNOS/NO pathway and increases expression of HIF-1α and VEGF, whilst depressing iNOS-derived NO production in myocardium. This effect may decrease the accumulation of inflammatory factors, including TNF-α and MPO, and lessen the extent of apoptosis, therefore contributing to the cardioprotective effects of l-THP in myocardial ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Yi Han
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Zhang
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yan Tang
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Wenli Bai
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Fan Yang
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Liping Xie
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiaozhen Li
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Suming Zhou
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Chen
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Albert Ferro
- Department of Clinical Pharmacology, Cardiovascular Division, School of Medicine, King's College London, London, United Kingdom
| | - Yong Ji
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
3
|
Evaluation of oxidative stress markers in pathogenesis of primary open-angle glaucoma. Exp Mol Pathol 2011; 90:231-7. [DOI: 10.1016/j.yexmp.2011.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 01/09/2011] [Accepted: 01/10/2011] [Indexed: 11/15/2022]
|
4
|
Abstract
Nitric oxide (NO) plays a crucial role in many aspects of the pathophysiology of heart failure. NO is a double-edged sword; NO inhibits ischemia/reperfusion (I/R) injury, represses inflammation, and prevents left ventricular (LV) remodeling, whereas excess NO and co-existence of reactive oxygen species (ROS) with NO are injurious. The failing heart is exposed to not only oxidative stress by a plethora of humoral factors and inflammatory cells but also nitrosative stress. Activation of nitric oxide synthase (NOS) of any isoforms, [i.e., endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS)], concomitant with oxidative stress results in NOS uncoupling, leading to further oxidative/nitrosative stress. Indiscriminate removal of oxidative stress is not an effective means to prevent this detrimental process, because oxidative stress is necessary for an adaptive mechanism for cell survival against noxious stimuli. Therefore, removal of ROS in a site-specific manner or inhibition of the source of injurious ROS without affecting redox-sensitive survival signal transduction pathways represents a promising approach to elicit the beneficial effect of NO. Recent emerging pharmacological tools and regular exercise inhibit ROS generation in the proximity of NOSs, thereby increasing bioavailable NO and exerting cardioprotection against I/R injury and LV remodeling.
Collapse
Affiliation(s)
- Hajime Otani
- The Second Department of Internal Medicine, Division of Cardiology, Kansai Medical University, Moriguchi City, Japan.
| |
Collapse
|
5
|
Liu JQ, Zelko IN, Folz RJ. Reoxygenation-induced constriction in murine coronary arteries: the role of endothelial NADPH oxidase (gp91phox) and intracellular superoxide. J Biol Chem 2004; 279:24493-7. [PMID: 15070892 DOI: 10.1074/jbc.m402920200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work suggests that superoxide mediates hypoxia/reoxygenation (H/R)-induced constriction of isolated mouse coronary arteries (CA). To determine the source of superoxide overproduction during H/R we studied CA obtained from transgenic (Tg) mice overexpressing human CuZn-superoxide dismutase (SOD) and mice lacking gp91(phox) using an in vitro vascular ring bioassay. We found that under normoxic conditions CA isolated from wild type (wt) mice, CuZn-SOD Tg mice and gp91(phox) knock-out mice had similar contractile responses to U46619 and hypoxia and similar dilation responses to acetylcholine. In wt CA, 30 min of hypoxia (1% O(2)) followed by reoxygenation (16% O(2)) resulted in further coronary vasoconstriction (internal diameter from 105 +/- 11 to 84.5 +/- 17.9 microm), whereas this response was completely blocked in both CuZn-SOD Tg and gp91(phox) knock-out CA (104.3 +/- 10.5 to 120.7 +/- 14 microm and 143.3 +/- 15.3 to 172.7 +/- 12.5 microm, respectively, p < 0.01). Furthermore, we show that H/R enhances the generation of superoxide radicals in wt CA (25.8 +/- 0.7 relative light units per second (RLU/s)), whereas CuZn-SOD Tg CA (12.2 +/- 0.8 RLU/s, p < 0.01) and gp91(phox) CA (12.5 +/- 0.9 RLU/s, p < 0.01) show reduced levels. These results demonstrate that H/R-induced vasoconstriction is mediated by intracellular superoxide overproduction via endothelial NADPH oxidase gp91(phox). Therefore, increasing endogenous levels of CuZn-SOD in CA may provide a novel cardioprotective strategy for maintaining coronary perfusion under conditions of H/R.
Collapse
Affiliation(s)
- John Q Liu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
6
|
Abou-El-Hassan MAI, Rabelink MJWE, van der Vijgh WJF, Bast A, Hoeben RC. A comparative study between catalase gene therapy and the cardioprotector monohydroxyethylrutoside (MonoHER) in protecting against doxorubicin-induced cardiotoxicity in vitro. Br J Cancer 2004; 89:2140-6. [PMID: 14647150 PMCID: PMC2376857 DOI: 10.1038/sj.bjc.6601430] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cardiotoxicity is the main dose-limiting side effect of doxorubicin in the clinic. Being a free radical producer, doxorubicin affects the heart specifically because of its low antioxidant capacity. Among those antioxidants, catalase is present in very low levels in the heart compared to other organs. Since catalase is an essential enzyme in detoxifying hydrogen peroxide, the aim of the present study was to investigate the protective effect of catalase as delivered by an adenovirus vector against doxorubicin-induced cardiotoxicity in cultured neonatal rat cardiac myocytes (NeRCaMs). 7-Monohydroxyethylrutoside (MonoHER), a potent cardioprotector currently under clinical investigations, was included in the study as a reference. Neonatal rat cardiac myocytes were infected with different multiplicity of infections (MOIs) of adenovirus encoding catalase (AdCat). A control infection with an adenovirus vector encoding a nonrelated protein was included. The activity and content of catalase in infected cells were determined during 3 days postinfection. One group of NeRCaMs was infected with AdCat before treatment with doxorubicin (0–50 μM). The second and third group were treated with doxorubicin (0–50 μM) with and without 1 mM monohydroxyethylrutoside (monoHER), respectively. The LDH release and viability of treated cells were measured 24 and 48 h after doxorubicin treatment. The beating rate was followed in three other groups of cells receiving the same treatments within 3 days after doxorubicin (0–100 μM) treatment. Catalase activity increased in AdCat-infected cells, with different MOIs, starting from the second day after infection as compared to the mock-infected cells (P<0.03). At the third day of infection, an MOI of more than 50 caused cytopathic effects, which hampered the use of higher viral titres. With an MOI of 50, catalase activity increased 3.5-fold in AdCat-infected cells 3 days postinfection (P=0.021) compared to mock-infected cells. The beating rate and survival of NeRCaMs decreased in a concentration and time-dependent manner after doxorubicin treatment (P<0.0005). This cytotoxicity was associated with an increase in the LDH release from the treated cells (P<0.0005). The cells stopped beating 24 h after treatment with >50 μM doxorubicin. A 3.5-fold increase in the activity of catalase did not protect NeRCaMs against any of the cytotoxic effects of doxorubicin on NeRCaMs. In contrast, monoHER (1 mM) significantly protected NeRCaMs against the lethal effects of doxorubicin on the survival, LDH release and the beating rate of NeRCaMs (P<0.004) during 48 h after doxorubicin treatment. This protection resulted in a prolongation of the beating of doxorubicin-treated cells after the end of the experiment (i.e. >72 h). The present study (1) illustrates that the cytotoxicity of high MOI of AdCat (>50) limited the possibility to increase catalase activity more than 3.5-fold, which was not enough to protect infected NeRCaMs against doxorubicin-induced cardiotoxicity and (2) confirms the efficacy of monoHER as a cardioprotector. Thus, the use of monoHER proves more suitable for the prevention of doxorubicin-induced cardiotoxicity than catalase gene transfer employing adenovirus vectors.
Collapse
Affiliation(s)
- M A I Abou-El-Hassan
- Department of Medical Oncology, Free University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
7
|
Zhu HL, Stewart AS, Taylor MD, Vijayasarathy C, Gardner TJ, Sweeney HL. Blocking free radical production via adenoviral gene transfer decreases cardiac ischemia-reperfusion injury. Mol Ther 2000; 2:470-5. [PMID: 11082320 DOI: 10.1006/mthe.2000.0193] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Periods of cardiac ischemia followed by reperfusion can lead to either transient loss of function (stunning) or permanent functional loss stemming from infarction, depending upon the length of the ischemic period. In either case the primary mediator of the injury may by oxygen-derived free radicals generated upon the reestablishment of blood flow. The heart's primary defense against peroxide, glutathione peroxidase, is depleted during ischemia. Thus, the ischemic myocardium might derive significant protection from increased levels of the enzyme, catalase, which can remove hydrogen peroxide in a redox-independent manner. To test these assertions, we studied the ability of adenoviral gene transfer to increase intracellular antioxidant activity via catalase expression. What we observed was that increasing catalase activity in the heart was sufficient to prevent the stunning associated with 15 min of ischemia followed by reperfusion.
Collapse
Affiliation(s)
- H L Zhu
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | | | | | |
Collapse
|
8
|
Sun Y, Oberley LW. Suitability of copper chloride as a reaction terminator for superoxide dismutase activity assay. Clin Chim Acta 1994; 226:101-3. [PMID: 8070127 DOI: 10.1016/0009-8981(94)90108-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|