1
|
Abstract
ATP-sensitive K+ channels (KATP) are inwardly-rectifying potassium channels, broadly expressed throughout the body. KATP is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels thus playing an important physiological role by coupling cellular metabolism with membrane excitability. The hetero-octameric channel complex is formed of 4 pore-forming inward rectifier Kir6.x subunits (Kir6.1 or Kir6.2) and 4 regulatory sulfonylurea receptor subunits (SUR1, SUR2A, or SUR2B). These subunits can associate in various tissue-specific combinations to form functional KATP channels with distinct electrophysiological and pharmacological properties. KATP channels play many important physiological roles and mutations in channel subunits can result in diseases such as disorders of insulin handling, cardiac arrhythmia, cardiomyopathy, and neurological abnormalities. The tissue-specific expression of KATP channel subunits coupled with their rich and diverse pharmacology makes KATP channels attractive therapeutic targets in the treatment of endocrine and cardiovascular diseases.
Collapse
|
2
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
4
|
Longden TA, Nelson MT. Vascular inward rectifier K+ channels as external K+ sensors in the control of cerebral blood flow. Microcirculation 2015; 22:183-96. [PMID: 25641345 PMCID: PMC4404517 DOI: 10.1111/micc.12190] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/16/2015] [Indexed: 12/25/2022]
Abstract
For decades it has been known that external K(+) ions are rapid and potent vasodilators that increase CBF. Recent studies have implicated the local release of K(+) from astrocytic endfeet-which encase the entirety of the parenchymal vasculature-in the dynamic regulation of local CBF during NVC. It has been proposed that the activation of KIR channels in the vascular wall by external K(+) is a central component of these hyperemic responses; however, a number of significant gaps in our knowledge remain. Here, we explore the concept that vascular KIR channels are the major extracellular K(+) sensors in the control of CBF. We propose that K(+) is an ideal mediator of NVC, and discuss KIR channels as effectors that produce rapid hyperpolarization and robust vasodilation of cerebral arterioles. We provide evidence that KIR channels, of the KIR 2 subtype in particular, are present in both the endothelial and SM cells of parenchymal arterioles and propose that this dual positioning of KIR 2 channels increases the robustness of the vasodilation to external K(+), enables the endothelium to be actively engaged in NVC, and permits electrical signaling through the endothelial syncytium to promote upstream vasodilation to modulate CBF.
Collapse
Affiliation(s)
- Thomas A Longden
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont, USA
| | | |
Collapse
|
5
|
Gliadin fragments and a specific gliadin 33-mer peptide close KATP channels and induce insulin secretion in INS-1E cells and rat islets of langerhans. PLoS One 2013; 8:e66474. [PMID: 23785500 PMCID: PMC3681969 DOI: 10.1371/journal.pone.0066474] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022] Open
Abstract
In non-obese diabetic (NOD) mice, diabetes incidence is reduced by a gluten-free diet. Gluten peptides, such as the compound gliadin, can cross the intestinal barrier and may directly affect pancreatic beta cells. We investigated the effects of enzymatically-digested gliadin in NOD mice, INS-1E cells and rat islets. Six injections of gliadin digest in 6-week-old NOD mice did not affect diabetes development, but increased weight gain (20% increase by day 100). In INS-1E cells, incubation with gliadin digest induced a dose-dependent increase in insulin secretion, up to 2.5-fold after 24 hours. A similar effect was observed in isolated rat islets (1.6-fold increase). In INS-1E cells, diazoxide reduced the stimulatory effect of gliadin digest. Additionally, gliadin digest was shown to decrease current through KATP-channels. A specific gliadin 33-mer had a similar effect, both on current and insulin secretion. Finally, INS-1E incubation with gliadin digest potentiated palmitate-induced insulin secretion by 13% compared to controls. Our data suggest that gliadin fragments may contribute to the beta-cell hyperactivity observed prior to the development of type 1 diabetes.
Collapse
|
6
|
Yu L, Jin X, Cui N, Wu Y, Shi Z, Zhu D, Jiang C. Rosiglitazone selectively inhibits K(ATP) channels by acting on the K(IR) 6 subunit. Br J Pharmacol 2013; 167:26-36. [PMID: 22394376 DOI: 10.1111/j.1476-5381.2012.01934.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Rosiglitazone is an anti-diabetic drug acting as an insulin sensitizer. We recently found that rosiglitazone also inhibits the vascular isoform of ATP-sensitive K(+) channels and compromises vasodilatory effects of β-adrenoceptor activation and pinacidil. As its potency for the channel inhibition is in the micromolar range, rosiglitazone may be used as an effective K(ATP) channel inhibitor for research and therapeutic purposes. Therefore, we performed experiments to determine whether other isoforms of K(ATP) channels are also sensitive to rosiglitazone and what their sensitivities are. EXPERIMENTAL APPROACH K(IR) 6.1/SUR2B, K(IR) 6.2/SUR1, K(IR) 6.2/SUR2A, K(IR) 6.2/SUR2B and K(IR) 6.2ΔC36 channels were expressed in HEK293 cells and were studied using patch-clamp techniques. KEY RESULTS Rosiglitazone inhibited all isoforms of K(ATP) channels in excised patches and in the whole-cell configuration. Its IC(50) was 10 µmol·L(-1) for the K(IR) 6.1/SUR2B channel and ∼45 µmol·L(-1) for K(IR) 6.2/SURx channels. Rosiglitazone also inhibited K(IR) 6.2ΔC36 channels in the absence of the sulphonylurea receptor (SUR) subunit, with potency (IC(50) = 45 µmol·L(-1) ) almost identical to that for K(IR) 6.2/SURx channels. Single-channel kinetic analysis showed that the channel inhibition was mediated by augmentation of the long-lasting closures without affecting the channel open state and unitary conductance. In contrast, rosiglitazone had no effect on K(IR) 1.1, K(IR) 2.1 and K(IR) 4.1 channels, suggesting that the channel inhibitory effect is selective for K(IR) 6.x channels. CONCLUSIONS AND IMPLICATIONS These results suggest a novel K(ATP) channel inhibitor that acts on the pore-forming K(IR) 6.x subunit, affecting the channel gating.
Collapse
Affiliation(s)
- Lei Yu
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Valero MS, Pereboom D, Barcelo-Batllory S, Brines L, Garay RP, Alda JO. Protein kinase A signalling is involved in the relaxant responses to the selective β-oestrogen receptor agonist diarylpropionitrile in rat aortic smooth muscle in vitro. J Pharm Pharmacol 2011; 63:222-9. [PMID: 21235586 DOI: 10.1111/j.2042-7158.2010.01203.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The oestrogen receptor β (ERβ) selective agonist diarylpropionitrile (DPN) relaxes endothelium-denuded rat aorta, but the signalling mechanism is unknown. The aim of this study was to assess whether protein kinase A (PKA) signalling is involved in DPN action. METHODS cAMP was measured by radioimmunoassay, HSP20 phosphorylation by 2D gel electrophoresis with immunoblotting, and membrane potential and free cytosolic calcium by flow cytometry. KEY FINDINGS DPN increased cAMP content and hyperpolarised cell membranes over the same range of concentrations as it relaxed phenylephrine-precontracted aortic rings (10-300 µM). DPN-induced vasorelaxation was largely reduced by the PKA inhibitors Rp-8-Br-cAMPS (8-bromoadenosine-3', 5'-cyclic monophosphorothioate, Rp-isomer) and H-89 (N-(2-bromocynnamyl(amino)ethyl)-5-isoquinoline sulfonamide HCl) (-73%) and by the adenylate cyclase inhibitor MDL12330A (cis-N-(2-phenylcyclopentyl)-azacyclotridec-1-en-2-amine)) (-65.5%). Conversely, the PKG inhibitor Rp-8-Br-cGMP was inactive against DPN vasorelaxation. In aortic smooth muscle segments, DPN increased PKA-dependent HSP20 phosphorylation, an effect reversed by H-89. Relaxant responses to DPN were modestly antagonised (-23 to -48% reduction; n=12 per compound) by the potassium channel inhibitors iberiotoxin, PNU-37883A, 4-aminopyridine, or BaCl(2) . All four potassium channel inhibitors together reduced DPN relaxation by 86±9% (n=12) and fully blocked DPN hyperpolarisation. CONCLUSIONS ERβ-dependent relaxation of rat aortic smooth muscle evokes an adenylate cyclase/cAMP/PKA signalling pathway, likely activating the cystic fibrosis transmembrane conductance regulator chloride channel and at least four potassium channels.
Collapse
Affiliation(s)
- Marta S Valero
- Department of Physiology and Pharmacology, School of Medicine, Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Neuropeptide Y suppresses anorexigenic output from the ventromedial nucleus of the hypothalamus. J Neurosci 2010; 30:3380-90. [PMID: 20203197 DOI: 10.1523/jneurosci.4031-09.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Output from the hypothalamic ventromedial nucleus (VMN) is anorexigenic and is supported by the excitatory actions of leptin. The VMN is also highly sensitive to the orexigenic actions of Neuropeptide Y (NPY). We report that NPY robustly inhibits VMN neurons by hyperpolarizing them and decreasing their ability to fire action potentials. This action was mediated by Y(1) receptors coupled to the activation of GIRKs (G-protein-coupled inwardly rectifying potassium channels). Approximately 80% of VMN neurons expressing leptin receptors were sensitive to the actions of NPY, whereas 75% of NPY-sensitive neurons in VMN also responded to glucose by being uniformly inhibited by elevations in glucose. Interestingly, only approximately 36% of NPY-sensitive, leptin receptor b-expressing neurons were also glucosensitive. We suggest that NPY inhibits VMN neurons that are excited by leptin, thereby arresting the anorexigenic tone exerted by VMN neurons. The results further suggest a dynamic interplay between anorexigenic and orexigenic neuromodulators within the VMN to directly affect energy balance.
Collapse
|
9
|
Tammaro P, Ashcroft FM. A mutation in the ATP-binding site of the Kir6.2 subunit of the KATP channel alters coupling with the SUR2A subunit. J Physiol 2007; 584:743-53. [PMID: 17855752 PMCID: PMC2277002 DOI: 10.1113/jphysiol.2007.143149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutations in the pore-forming subunit of the ATP-sensitive K(+) (K(ATP)) channel Kir6.2 cause neonatal diabetes. Understanding the molecular mechanism of action of these mutations has provided valuable insight into the relationship between the structure and function of the K(ATP) channel. When Kir6.2 containing a mutation (F333I) in the putative ATP-binding site is coexpressed with the cardiac type of regulatory K(ATP) channel subunit, SUR2A, the channel sensitivity to ATP inhibition is reduced and the intrinsic open probability (P(o)) is increased. However, the extent of macroscopic current activation by MgADP was unaffected. Here we examine rundown and MgADP activation of wild-type and Kir6.2-F333I/SUR2A channels using single-channel recording, noise analysis and spectral analysis. We also compare the effect of mutating the adjacent residue, G334, on rundown and MgADP activation. All three approaches indicated that rundown of Kir6.2-F333I/SUR2A channels is due to a reduction in the number of active channels in the patch and that MgADP reactivation involves recruitment of inactive channels. In contrast, rundown and MgADP reactivation of wild-type and Kir6.2-G334D/SUR2A channels, and of Kir6.2-F333I/SUR1 channels, involve a gradual change in P(o). Our results suggest that F333 in Kir6.2 interacts functionally with SUR2A to modulate channel rundown and MgADP activation. This interaction is fairly specific as it is not disturbed when the adjacent residue (G334) is mutated. It is also not a consequence of the enhanced P(o) of Kir6.2-F333I/SUR2A channels, as it is not found for other mutant channels with high P(o) (Kir6.2-I296L/SUR2A).
Collapse
Affiliation(s)
- Paolo Tammaro
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | | |
Collapse
|
10
|
Piao L, Li J, McLerie M, Lopatin AN. Cardiac IK1 underlies early action potential shortening during hypoxia in the mouse heart. J Mol Cell Cardiol 2007; 43:27-38. [PMID: 17498734 PMCID: PMC2082127 DOI: 10.1016/j.yjmcc.2007.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 11/17/2022]
Abstract
It is established that prolonged hypoxia leads to activation of K(ATP) channels and action potential (AP) shortening, but the mechanisms behind the early phase of metabolic stress remain controversial. Under normal conditions IK1 channels are constitutively active while K(ATP) channels are closed. Therefore, early changes in IK1 may underlie early AP shortening. This hypothesis was tested using transgenic mice with suppressed IK1 (AAA-TG). In isolated AAA-TG hearts AP shortening was delayed by approximately 24 s compared to WT hearts. In WT ventricular myocytes, blocking oxidative phosphorylation with 1 mM cyanide (CN; 28 degrees C) led to a 29% decrease in APD90 within approximately 3-5 min. The effect of CN was reversed by application of 100 microM Ba2+, a selective blocker of IK1, but not by 10 microM glybenclamide, a selective blocker of KATP channels. Accordingly, voltage-clamp experiments revealed that both CN and true hypoxia lead to early activation of IK1. In AAA-TG myocytes, neither CN nor glybenclamide or Ba2+ had any effect on AP. Further experiments showed that buffering of intracellular Ca2+ with 20 mM BAPTA prevented IK1 activation by CN, although CN still caused a 54% increase in IK1 in a Ca2+ -free bath solution. Importantly, both (i) 20 microM ruthenium red, a selective inhibitor of SR Ca2+ -release, and (ii) depleting SR by application of 10 microM ryanodine+1 mM caffeine, abolished the activation of IK1 by CN. The above data strongly argue that in the mouse heart IK1, not KATP, channels are responsible for the early AP shortening during hypoxia.
Collapse
Affiliation(s)
| | | | | | - Anatoli N. Lopatin
- To whom correspondence should be addressed: Dr. Anatoli Lopatin, University of Michigan, Department of Molecular & Integrative Physiology, Room 7812, Medical Science II, 1150 W Medical Center Drive, Ann Arbor, MI 48105, Phone: 734-615-8903; Fax: 734-936-8813; E-mail:
| |
Collapse
|
11
|
Smith MA, Hisadome K, Al-Qassab H, Heffron H, Withers DJ, Ashford MLJ. Melanocortins and agouti-related protein modulate the excitability of two arcuate nucleus neuron populations by alteration of resting potassium conductances. J Physiol 2006; 578:425-38. [PMID: 17068101 PMCID: PMC1864999 DOI: 10.1113/jphysiol.2006.119479] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The hypothalamic melanocortin system is crucial for the control of appetite and body weight. Two of the five melanocortin receptors, MC3R and MC4R are involved in hypothalamic control of energy homeostasis, with the MC4R having the major influence. It is generally thought that the main impact of the melanocortin system on hypothalamic circuits is external to the arcuate nucleus, and that any effect locally in the arcuate nucleus is inhibitory on proopiomelanocortin-expressing (POMC) neurons. In contrast, using current- and voltage-clamp recordings from identified neurons, we demonstrate that MC3R and MC4R agonists depolarize arcuate POMC neurons and a separate arcuate neuronal population identified by the rat insulin 2 promoter (RIPCre) transgene expression. Furthermore, the endogenous MC3R and MC4R antagonist, agouti-related protein (AgRP), hyperpolarizes POMC and RIPCre neurons in the absence of melanocortin agonist, consistent with inverse agonism at the MC4R. A decreased transient outward (I(A)) potassium conductance, and to a lesser extent the inward rectifier (K(IR)) conductance, underlies neuronal depolarization, whereas an increase in I(A) mediates AgRP-induced hyperpolarization. Accordingly, POMC and RIPCre neurons may be targets for peptide transmitters that are possibly released locally from AgRP-expressing and POMC neurons in the arcuate nucleus, adding further previously unappreciated complexity to the arcuate system.
Collapse
MESH Headings
- 4-Aminopyridine/pharmacology
- Action Potentials/drug effects
- Adenylyl Cyclase Inhibitors
- Agouti-Related Protein
- Animals
- Arcuate Nucleus of Hypothalamus/cytology
- Arcuate Nucleus of Hypothalamus/drug effects
- Arcuate Nucleus of Hypothalamus/physiology
- Barium/pharmacology
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Integrases/genetics
- Integrases/metabolism
- Intercellular Signaling Peptides and Proteins/pharmacology
- Melanocortins/pharmacology
- Melanocyte-Stimulating Hormones/pharmacology
- Mice
- Mice, Transgenic
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques
- Peptides, Cyclic/pharmacology
- Potassium Channel Blockers/pharmacology
- Potassium Channels/physiology
- Receptor, Melanocortin, Type 3/agonists
- Receptor, Melanocortin, Type 3/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- Mark A Smith
- Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | | | | | | | | | |
Collapse
|
12
|
Acevedo JJ, Mendoza-Lujambio I, de la Vega-Beltrán JL, Treviño CL, Felix R, Darszon A. KATP channels in mouse spermatogenic cells and sperm, and their role in capacitation. Dev Biol 2005; 289:395-405. [PMID: 16343479 DOI: 10.1016/j.ydbio.2005.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 11/01/2005] [Accepted: 11/04/2005] [Indexed: 11/21/2022]
Abstract
Mammalian sperm must undergo a series of physiological changes after leaving the testis to become competent for fertilization. These changes, collectively known as capacitation, occur in the female reproductive tract where the sperm plasma membrane is modified in terms of its components and ionic permeability. Among other events, mouse sperm capacitation leads to an increase in the intracellular Ca(2+) and pH as well as to a hyperpolarization of the membrane potential. It is well known that ion channels play a crucial role in these events, though the molecular identity of the particular channels involved in capacitation is poorly defined. In the present work, we report the identification and potential functional role of K(ATP) channels in mouse spermatogenic cells and sperm. By using whole-cell patch clamp recordings in mouse spermatogenic cells, we found K(+) inwardly rectifying (K(ir)) currents that are sensitive to Ba(2+), glucose and the sulfonylureas (tolbutamide and glibenclamide) that block K(ATP) channels. The presence of these channels was confirmed using inhibitors of the ATP synthesis and K(ATP) channel activators. Furthermore, RT-PCR assays allowed us to detect transcripts for the K(ATP) subunits SUR1, SUR2, K(ir)6.1 and K(ir)6.2 in total RNA from elongated spermatids. In addition, immunoconfocal microscopy revealed the presence of these K(ATP) subunits in mouse spermatogenic cells and sperm. Notably, incubation of sperm with tolbutamide during capacitation abolished hyperpolarization and significantly decreased the percentage of AR in a dose-dependent fashion. Together, our results provide evidence for the presence of K(ATP) channels in mouse spermatogenic cells and sperm and disclose the contribution of these channels to the capacitation-associated hyperpolarization.
Collapse
Affiliation(s)
- Juan José Acevedo
- Department of Developmental Genetics and Molecular Physiology, Institute of Biotechnology, UNAM, Cuernavaca, Mexico
| | | | | | | | | | | |
Collapse
|
13
|
Diaz RJ, Zobel C, Cho HC, Batthish M, Hinek A, Backx PH, Wilson GJ. Selective Inhibition of Inward Rectifier K
+
Channels (Kir2.1 or Kir2.2) Abolishes Protection by Ischemic Preconditioning in Rabbit Ventricular Cardiomyocytes. Circ Res 2004; 95:325-32. [PMID: 15231687 DOI: 10.1161/01.res.0000137727.34938.35] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Volume regulatory Cl- channels are key regulators of ischemic preconditioning (IPC). Because Cl- efflux must be balanced by an efflux of cations to maintain cell membrane electroneutrality during volume regulation, we hypothesize that I(K1) channels may play a role in IPC. We subjected cultured cardiomyocytes to 60-minute simulated ischemia (SI) followed by 60-minute of simulated reperfusion (SR) and assessed percent cell death using trypan blue staining. Ischemic preconditioning (10-minute SI/10-minute SR) significantly (P<0.0001) reduced the percent cell death in nontransfected cardiomyocytes [IPC(CM) 18.0+/-2.1% versus control (C(CM)) 48.3+/-1.0%]. IPC protection was not altered by overexpression of the reporter gene (enhanced green fluorescent protein, EGFP). However, overexpression of dominant-negative Kir2.1 or Kir2.2 genes using adenoviruses (AdEGFPKir2.1DN or AdEGFPKir2.2DN) encoding the reporter gene EGFP prevented IPC protection [both IPC(CM)+AdEGFPKir2.1DN 45.8+/-2.3% (mean+/-SEM) and IPC(CM)+AdEGFPKir2.2DN 47.9+/-1.4% versus IPC(CM); P<0.0001] in cultured cardiomyocytes (n=8 hearts). Transfection of cardiomyocytes with AdEGFPKir2.1DN or AdEGFPKir2.2DN did not affect cell death in control (nonpreconditioned) cardiomyocytes (both C(CM)+ AdEGFPKir2.1DN 45.8+/-0.7% and C(CM)+AdEGFPKir2.2DN 46.2+/-1.3% versus C(CM); not statistically significant). Similar effects were observed in both cultured (n=5 hearts) and freshly isolated (n=4 hearts) ventricular cardiomyocytes after I(K1) blockade with 20 micromol/L BaCl2 plus 1 micromol/L nifedipine (to prevent Ba2+ uptake). Nifedipine alone neither protected against ischemic injury nor blocked IPC protection. Our findings establish that I(K1) channels play an important role in IPC protection.
Collapse
Affiliation(s)
- Roberto J Diaz
- Division of Cardiovascular Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Ba(2+) is widely used as a tool in patch-clamp studies because of its ability to block a variety of K(+) channels and to pass Ca(2+) channels. Its potential ability to block the cardiac transient outward K(+) current (I(to)) has not been clearly documented. We performed whole cell patch-clamp studies in canine ventricular and atrial myocytes. Extracellular application of Ba(2+) produced potent inhibition of I(to) with an IC(50) of approximately 40 microM. The effects were voltage independent, and the inactivation kinetics were not altered by Ba(2+). The potency of Ba(2+) was approximately 10 times higher than that of 4-aminopyridine (a selective I(to) blocker with an IC(50) of 430 microM) under identical conditions. By comparison, Ba(2+) blockade of the inward rectifier K(+) current was voltage dependent; the IC(50) was approximately 20 times lower (2.5 microM) than that for I(to) when determined at -100 mV and was comparable to I(to) as determined at -60 mV (IC(50) = 26 microM). Ba(2+) concentrations of </=1 mM or higher failed to block ultrarapid delayed rectifier K(+) current. Our data suggest that Ba(2+) can be considered a potent blocker of I(to).
Collapse
Affiliation(s)
- H Shi
- Research Center, Montreal Heart Institute, Montreal, Quebec H1T 1C8
| | | | | |
Collapse
|
15
|
Teramoto N, Brading AF, Ito Y. Glibenclamide-sensitive K+ channels underlying levcromakalim-induced relaxation in pig urethra. Eur J Pharmacol 1999; 365:291-300. [PMID: 9988114 DOI: 10.1016/s0014-2999(98)00885-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate the possible mechanisms involved in the stable and long-lasting levcromakalim-induced relaxation of the resting urethral tone, we have performed mechanical and voltage-clamp experiments using intact tissue and isolated cells from pig urethra, respectively. At negative membrane potentials, levcromakalim induced time- and voltage-independent membrane currents in whole-cell configurations. In cell-attached patches, levcromakalim not only increased the open-state probability (the NP(0) value) of the glibenclamide-sensitive 43 pS K+ channel (K(GS)) in a concentration-dependent manner, but also activated K(GS) with a time- and voltage-independence. During long burst-like channel activity, neither the mean open lifetime nor the mean closed time of K(GS) exhibited voltage-dependency between -100 and - 40 mV. It is concluded that levcromakalim causes a stable and potent relaxation of pig urethra through opening of K(GS) which possesses time- and voltage-independent activating mechanisms.
Collapse
Affiliation(s)
- N Teramoto
- Department of Pharmacology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
16
|
Xie LH, Takano M, Noma A. The inhibitory effect of propranolol on ATP-sensitive potassium channels in neonatal rat heart. Br J Pharmacol 1998; 123:599-604. [PMID: 9517376 PMCID: PMC1565199 DOI: 10.1038/sj.bjp.0701630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. Whole cell and single channel recordings of ATP-sensitive K+ current (I(K,ATP)) were carried out in ventricular myocytes isolated from neonatal rat hearts. 2. (+/-)-Propranolol, a commonly used beta-blocker, inhibited the whole cell I(K,ATP) in a concentration-dependent manner with a half-maximal concentration (IC50) of 6.7 +/- 1.4 microM, whereas it blocked the inward rectifier K+ current (I(K,I)) only at much higher concentrations (IC50 = 102.4 +/- 20.2 microM). The inhibition was time- and voltage-independent. 3. In the outside-out patch configuration, (+/-)-propranolol inhibited I(K,ATP) (IC50 = 9.8 +/- 2.9 microM) by decreasing the open probability of the channel without inducing additional noise in the open-channel current or a decrease of single channel conductance. The single channel current of I(K,I) was also blocked by (+/-)-propranolol in the same way as I(K,ATP). 4. (+)-Propranolol, an optic isomer having no beta-blocking effect, inhibited I(K,ATP) (IC50 = 5.8 +/- 1.0 microM), whilst atenolol, a selective beta1-blocker had no effect. Neither GDPbetaS (1 mM) nor GTPgammaS (200 microM) included in the pipette solution modulated the inhibitory effect of (+/-)-propranolol. 5. We concluded that the inhibitory effect of (+/-)-propranolol was not via the beta-adrenergic signal transduction pathway, but by direct inhibition of I(K,ATP) channels.
Collapse
Affiliation(s)
- L H Xie
- Department of Physiology, Faculty of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|
17
|
Gribble FM, Ashfield R, Ammälä C, Ashcroft FM. Properties of cloned ATP-sensitive K+ currents expressed in Xenopus oocytes. J Physiol 1997; 498 ( Pt 1):87-98. [PMID: 9023770 PMCID: PMC1159236 DOI: 10.1113/jphysiol.1997.sp021843] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. We have studied the electrophysiological properties of cloned ATP-sensitive K+ channels (KATP channels) heterologously expressed in Xenopus oocytes. This channel comprises a sulphonylurea receptor subunit (SUR) and an inwardly rectifying K+ channel subunit (Kir). 2. Oocytes injected with SUR1 and either Kir6.2 or Kir6.1 exhibited large inwardly rectifying K+ currents when cytosolic ATP levels were lowered by the metabolic inhibitors azide or FCCP. No currents were observed in response to azide in oocytes injected with Kir6.2, Kir6.1 or SUR1 alone, indicating that both the sulphonylurea receptor (SUR1) and an inward rectifier (Kir6.1 or Kir6.2) are needed for functional channel activity. 3. The pharmacological properties of Kir6.2-SUR1 currents resembled those of native beta-cell ATP-sensitive K+ channel currents (KATP currents): the currents were > 90% blocked by tolbutamide (500 microM), meglitinide (10 microM) or glibenclamide (100 nM), and activated 1.8-fold by diazoxide (340 microM), 1.4-fold by pinacidil (1 mM) and unaffected by cromakalim (0.5 mM). 4. Macroscopic Kir6.2-SUR1 currents in inside-out patches were inhibited by ATP with a Ki of 28 microM. Kir6.1-SUR1 currents ran down within seconds of patch excision preventing analysis of ATP sensitivity. 5. No sensitivity to tolbutamide or metabolic inhibition was observed when SUR1 was coexpressed with either Kir1.1a or Kir2.1, suggesting that these proteins do not couple in Xenopus ocytes. 6. Our data demonstrate that the Xenopus oocyte constitutes a good expression system for cloned KATP channels and that expression may be assayed by azide-induced metabolic inhibition.
Collapse
Affiliation(s)
- F M Gribble
- University Laboratory of Physiology, Oxford, UK
| | | | | | | |
Collapse
|
18
|
Abstract
GABA and the GABAB receptor agonist baclofen activated a potassium conductance in acutely dissociated hippocampal CA3 neurons. Baclofen-activated current required internal GTP, was purely potassium selective, and showed strong inward rectification. As with acetylcholine-activated current in atrial myocytes, external Cs+ blocked inward but not outward current in a highly voltage-dependent manner, whereas Ba2+ blocked with no voltage dependence. Unlike the cardiac current, however, the baclofen-activated current showed no intrinsic voltage-dependent relaxation. With fast solution exchange, current was activated by baclofen or GABA with a lag of approximately 50 msec followed by an exponential phase (time constant approximately 225 msec at saturating agonist concentrations); deactivation was preceded by a lag of approximately 150 msec and occurred with a time constant of approximately 1 sec. GABA activated the potassium conductance with a half maximally effective concentration (EC50) of 1.6 microM, much lower than that for activation of GABAA receptor-activated chloride current in the same cells (EC50 approximately 25 microM). At low GABA concentrations, activation of the GABAB current had a Hill coefficient of 1.4-2.1, suggesting cooperativity in the receptor-to-channel pathway. Although the maximal conductance activated by GABAB receptors is much smaller than that activated by GABAA receptors, its higher sensitivity to GABA and slower time course make it well suited to respond to low concentrations of extra-synaptic GABA.
Collapse
|
19
|
Ammälä C, Moorhouse A, Ashcroft FM. The sulphonylurea receptor confers diazoxide sensitivity on the inwardly rectifying K+ channel Kir6.1 expressed in human embryonic kidney cells. J Physiol 1996; 494 ( Pt 3):709-14. [PMID: 8865068 PMCID: PMC1160671 DOI: 10.1113/jphysiol.1996.sp021526] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. We have examined the effects of diazoxide and intracellular ATP (ATPi) on whole-cell currents in HEK293 cells transfected transiently with the inwardly rectifying K+ channel Kir6.1 (uKATP1) or cotransfected with Kir6.1 and the sulphonylurea receptor (SUR1). 2. Kir6.1 currents were unaffected by the K+ channel opener diazoxide or by dialysis with 0.3 mM ATPi. 3. Kir6.1-SUR1 currents increased in amplitude when cells were dialysed with 0.3 mM ATP, but not with 5 mM ATP. This activation may be explained by the loss of endogenous ATP from the cell when the intracellular solution contains 0.3 mM ATP. Kir6.1-SUR1 currents were also activated by diazoxide; this activation was greater with 0.3 mM ATP1 than with 5 mM ATP1. 4. We conclude that SUR1 is required to confer both diazoxide and ATP sensitivity on Kir6.1.
Collapse
Affiliation(s)
- C Ammälä
- University Laboratory of Physiology, Oxford, UK
| | | | | |
Collapse
|