1
|
Levis SC, Baram TZ, Mahler SV. Neurodevelopmental origins of substance use disorders: Evidence from animal models of early-life adversity and addiction. Eur J Neurosci 2022; 55:2170-2195. [PMID: 33825217 PMCID: PMC8494863 DOI: 10.1111/ejn.15223] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023]
Abstract
Addiction is a chronic relapsing disorder with devastating personal, societal, and economic consequences. In humans, early-life adversity (ELA) such as trauma, neglect, and resource scarcity are linked with increased risk of later-life addiction, but the brain mechanisms underlying this link are still poorly understood. Here, we focus on data from rodent models of ELA and addiction, in which causal effects of ELA on later-life responses to drugs and the neurodevelopmental mechanisms by which ELA increases vulnerability to addiction can be determined. We first summarize evidence for a link between ELA and addiction in humans, then describe how ELA is commonly modeled in rodents. Since addiction is a heterogeneous disease with many individually varying behavioral aspects that may be impacted by ELA, we next discuss common rodent assays of addiction-like behaviors. We then summarize the specific addiction-relevant behavioral phenotypes caused by ELA in male and female rodents and discuss some of the underlying changes in brain reward and stress circuits that are likely responsible. By better understanding the behavioral and neural mechanisms by which ELA promotes addiction vulnerability, we hope to facilitate development of new approaches for preventing or treating addiction in those with a history of ELA.
Collapse
Affiliation(s)
- Sophia C. Levis
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA
| | - Tallie Z. Baram
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA
- Department of Pediatrics, University of California Irvine, Irvine, CA
| | - Stephen V. Mahler
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA
| |
Collapse
|
2
|
Birnie MT, Levis SC, Mahler SV, Baram TZ. Developmental Trajectories of Anhedonia in Preclinical Models. Curr Top Behav Neurosci 2022; 58:23-41. [PMID: 35156184 DOI: 10.1007/7854_2021_299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This chapter discusses how the complex concept of anhedonia can be operationalized and studied in preclinical models. It provides information about the development of anhedonia in the context of early-life adversity, and the power of preclinical models to tease out the diverse molecular, epigenetic, and network mechanisms that are responsible for anhedonia-like behaviors.Specifically, we first discuss the term anhedonia, reviewing the conceptual components underlying reward-related behaviors and distinguish anhedonia pertaining to deficits in motivational versus consummatory behaviors. We then describe the repertoire of experimental approaches employed to study anhedonia-like behaviors in preclinical models, and the progressive refinement over the past decade of both experimental instruments (e.g., chemogenetics, optogenetics) and conceptual constructs (salience, valence, conflict). We follow with an overview of the state of current knowledge of brain circuits, nodes, and projections that execute distinct aspects of hedonic-like behaviors, as well as neurotransmitters, modulators, and receptors involved in the generation of anhedonia-like behaviors. Finally, we discuss the special case of anhedonia that arises following early-life adversity as an eloquent example enabling the study of causality, mechanisms, and sex dependence of anhedonia.Together, this chapter highlights the power, potential, and limitations of using preclinical models to advance our understanding of the origin and mechanisms of anhedonia and to discover potential targets for its prevention and mitigation.
Collapse
Affiliation(s)
- Matthew T Birnie
- Departments of Anatomy/Neurobiology and Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Sophia C Levis
- Departments of Anatomy/Neurobiology and Neurobiology/Behavior, University of California-Irvine, Irvine, CA, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Departments of Anatomy/Neurobiology and Pediatrics, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Life-course effects of early life adversity exposure on eating behavior and metabolism. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:237-273. [PMID: 34311901 DOI: 10.1016/bs.afnr.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Environmental variations in early life influence brain development, making individuals more vulnerable to psychiatric and metabolic disorders. Early life stress (ELS) has a strong impact on the development of eating behavior. However, eating is a complex behavior, determined by an interaction between signals of energy homeostasis, neuronal circuits involved in its regulation, and circuits related to rewarding properties of the food. Although mechanisms underlying ELS-induced altered feeding behavior are not completely understood, evidence suggest that the effects of ELS on metabolic, mood, and emotional disorders, as well as reward system dysfunctions can contribute directly or indirectly to altered feeding behavior. The focus of this chapter is to discuss the effects of ELS on eating behavior and metabolism, considering different factors that control appetite such as energy homeostasis, hedonic properties of the food, emotional and cognitive status. After highlighting classic studies on the association between ELS and eating behavior alterations, we discuss how exposure to adversity can interact with genetics characteristics to predict variable outcomes.
Collapse
|
4
|
Levis SC, Mahler SV, Baram TZ. The Developmental Origins of Opioid Use Disorder and Its Comorbidities. Front Hum Neurosci 2021; 15:601905. [PMID: 33643011 PMCID: PMC7904686 DOI: 10.3389/fnhum.2021.601905] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Opioid use disorder (OUD) rarely presents as a unitary psychiatric condition, and the comorbid symptoms likely depend upon the diverse risk factors and mechanisms by which OUD can arise. These factors are heterogeneous and include genetic predisposition, exposure to prescription opioids, and environmental risks. Crucially, one key environmental risk factor for OUD is early life adversity (ELA). OUD and other substance use disorders are widely considered to derive in part from abnormal reward circuit function, which is likely also implicated in comorbid mental illnesses such as depression, bipolar disorder, and schizophrenia. ELA may disrupt reward circuit development and function in a manner predisposing to these disorders. Here, we describe new findings addressing the effects of ELA on reward circuitry that lead to OUD and comorbid disorders, potentially via shared neural mechanisms. We discuss some of these OUD-related problems in both humans and animals. We also highlight the increasingly apparent, crucial contribution of biological sex in mediating the range of ELA-induced disruptions of reward circuitry which may confer risk for the development of OUD and comorbid neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sophia C. Levis
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Stephen V. Mahler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
5
|
Masrouri H, Azadi M, Semnanian S, Azizi H. Early life maternal deprivation attenuates morphine induced inhibition in lateral paragigantocellularis neurons in adult rats. Brain Res Bull 2021; 169:128-135. [PMID: 33482287 DOI: 10.1016/j.brainresbull.2021.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 02/04/2023]
Abstract
Early life stress can serve as one of the principle sources leading to individual differences in confronting challenges throughout the lifetime. Maternal deprivation (MD), a model of early life stress, can cause persistent alterations in brain function, and it may constitute a risk factor for later incidence of drug addiction. It is becoming more apparent that early life MD predisposes opiate abuse in adulthood. Although several behavioral and molecular studies have addressed this issue, changes in electrophysiological features of the neurons are yet to be understood. The lateral paragigantocellularis (LPGi) nucleus, which participates in the mediation of opiate dependence and withdrawal, may be susceptible to modifications following MD. This study sought to find whether early life MD can alter the discharge activity of LPGi neurons and their response to acute morphine administration in adult rats. Male Wistar rats experienced MD on postnatal days (PNDs) 1-14 for three h per day. Afterward, they were left undisturbed until PND 70, during which the extracellular activities of LPGi neurons were recorded in anesthetized animals at baseline and in response to acute morphine. In both MD and control groups, acute morphine administration induced heterogeneous (excitatory, inhibitory, and no effect) responses in LPGi neurons. At baseline recording, the interspike interval variability of the LPGi neurons was attenuated in both inhibitory and excitatory responses in animals with the history of MD. The extent of morphine-induced discharge inhibition was also lower in deprived animals compared to the control group. These findings suggest that early life MD induces long-term alterations in LPGi neuronal activity in response to acute administration of morphine. Therefore, the MD may alter the vulnerability to develop opiate abuse in adulthood.
Collapse
Affiliation(s)
- Hossein Masrouri
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Masrouri H, Azadi M, Semnanian S, Azizi H. Maternal deprivation induces persistent adaptations in putative dopamine neurons in rat ventral tegmental area: in vivo electrophysiological study. Exp Brain Res 2020; 238:2221-2228. [PMID: 32705295 DOI: 10.1007/s00221-020-05884-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022]
Abstract
Early life aversive experiences can trigger persistent deficits in neuronal signaling within the mesolimbic pathway, most notably in the dopamine (DA) neurons of the ventral tegmental area (VTA). The identity of such cellular mechanisms currently appears as an important issue. To address this concern, we investigated whether early life maternal deprivation (MD) would affect the electrical activity of VTA DA neurons, via in vivo extracellular single-unit recording. Male Wistar rats were deprived of their dams for 3 h per day from postnatal days (PND) 1-14. Thereafter, the adult animals (PND 70-80) were tested for the discharge activity of putative VTA DA neurons. The VTA DA neurons displayed a decrease in firing rate and an increase in the variability of baseline discharge activity in deprived animals. MD also caused a decrease in burst firing of VTA DA neurons compared to control subjects. In summary, early life MD induces a hypoactive VTA DA system, which may contribute to lifespan psychopathologies.
Collapse
Affiliation(s)
- Hossein Masrouri
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Emmons R, Sadok T, Rovero NG, Belnap MA, Henderson HJM, Quan AJ, Del Toro NJ, Halladay LR. Chemogenetic manipulation of the bed nucleus of the stria terminalis counteracts social behavioral deficits induced by early life stress in C57BL/6J mice. J Neurosci Res 2020; 99:90-109. [PMID: 32476178 DOI: 10.1002/jnr.24644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Abstract
Trauma during critical periods of development can induce long-lasting adverse effects. To study neural aberrations resulting from early life stress (ELS), many studies utilize rodent maternal separation, whereby pups are intermittently deprived of maternal care necessary for proper development. This can produce adulthood behavioral deficits related to anxiety, reward, and social behavior. The bed nucleus of the stria terminalis (BNST) encodes aspects of anxiety-like and social behaviors, and also undergoes developmental maturation during the early postnatal period, rendering it vulnerable to effects of ELS. Mice underwent maternal separation (separation 4 hr/day during postnatal day (PD)2-5 and 8 hr/day on PD6-16) with early weaning on PD17, which induced behavioral deficits in adulthood performance on two-part social interaction task designed to test social motivation (choice between a same-sex novel conspecific or an empty cup) and social novelty preference (choice between the original-novel conspecific vs. a new-novel conspecific). We used chemogenetics to non-selectively silence or activate neurons in the BNST to examine its role in social motivation and social novelty preference, in mice with or without the history of ELS. Manipulation of BNST produced differing social behavior effects in non-stressed versus ELS mice; social motivation was decreased in non-stressed mice following BNST activation, but unchanged following BNST silencing, while ELS mice showed no change in social behavior after BNST activation, but exhibited enhancement of social motivation-for which they were deficient prior-following BNST silencing. Findings emphasize the BNST as a potential therapeutic target for social anxiety disorders instigated by childhood trauma.
Collapse
Affiliation(s)
- Randi Emmons
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | - Tasneem Sadok
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | - Natalie G Rovero
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | - Malia A Belnap
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | | | - Alex J Quan
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | - Noël J Del Toro
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | | |
Collapse
|
8
|
Bloomfield MA, McCutcheon RA, Kempton M, Freeman TP, Howes O. The effects of psychosocial stress on dopaminergic function and the acute stress response. eLife 2019; 8:46797. [PMID: 31711569 PMCID: PMC6850765 DOI: 10.7554/elife.46797] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/12/2019] [Indexed: 01/19/2023] Open
Abstract
Chronic psychosocial adversity induces vulnerability to mental illnesses. Animal studies demonstrate that this may be mediated by dopaminergic dysfunction. We therefore investigated whether long-term exposure to psychosocial adversity was associated with dopamine dysfunction and its relationship to psychological and physiological responses to acute stress. Using 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine ([18F]-DOPA) positron emission tomography (PET), we compared dopamine synthesis capacity in n = 17 human participants with high cumulative exposure to psychosocial adversity with n = 17 age- and sex-matched participants with low cumulative exposure. The PET scan took place 2 hr after the induction of acute psychosocial stress using the Montréal Imaging Stress Task to induce acute psychosocial stress. We found that dopamine synthesis correlated with subjective threat and physiological response to acute psychosocial stress in the low exposure group. Long-term exposure to psychosocial adversity was associated with dampened striatal dopaminergic function (p=0.03, d = 0.80) and that psychosocial adversity blunted physiological yet potentiated subjective responses to acute psychosocial stress. Future studies should investigate the roles of these changes in vulnerability to mental illnesses.
Collapse
Affiliation(s)
- Michael Ap Bloomfield
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom.,Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, UCL Institute of Mental Health, University College London, London, United Kingdom.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom.,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom.,NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom.,The Traumatic Stress Clinic, St Pancras Hospital, Camden and Islington NHS Foundation Trust, London, United Kingdom.,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Robert A McCutcheon
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Matthew Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Tom P Freeman
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, UCL Institute of Mental Health, University College London, London, United Kingdom.,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom.,Department of Psychology, University of Bath, Bath, United Kingdom
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
9
|
Early life stress and the propensity to develop addictive behaviors. Int J Dev Neurosci 2019; 78:156-169. [PMID: 31255718 DOI: 10.1016/j.ijdevneu.2019.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
There is a vast literature on effects of early life manipulations in rodents much of which is aimed at investigating the long-term consequences related to emotion and cognition in adulthood. Less is known about how these manipulations affect responses reflective of alcohol (AUD) and substance (SUD) use disorders. The purpose of this paper is to review the literature of studies that employed early life manipulations and assessed behavioral responses to psychoactive substances, specifically alcohol, opiates, and stimulants, in rodents. While the findings with alcohol are more limited and mixed, studies with opiates and stimulants show strong support for the ability of these manipulations to enhance behavioral responsivity to these substances in line with epidemiological data. Some outcomes show sex differences. The mechanisms that influence these enduring changes may reflect epigenetic alterations. Several studies support a role for altered DNA methylation (and other epigenetic mechanisms) as biological responses to early environmental insults. The chemical changes induced by DNA methylation affect transcriptional activity of DNA and thus can have a long-term impact on the individual's phenotype. Such effects are particularly robust when they occur during sensitive periods of brain development (e.g., first postnatal weeks in rodents). We review this emerging literature as it relates to the known neurobiology of AUDs and SUDs and suggest new avenues of research. Such findings will have implications for the treatment and prevention of AUDs and SUDs and could provide insight into factors that support resiliency.
Collapse
|
10
|
Baracz SJ, Everett NA, Cornish JL. The impact of early life stress on the central oxytocin system and susceptibility for drug addiction: Applicability of oxytocin as a pharmacotherapy. Neurosci Biobehav Rev 2018; 110:114-132. [PMID: 30172802 DOI: 10.1016/j.neubiorev.2018.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Early life trauma is strongly associated with an increased vulnerability to abuse illicit drugs and the impairment of neural development. This includes alterations to the development of the oxytocin system, which plays a pivotal role in the regulation of social behaviours and emotion. Dysregulation of this important system also contributes to increased susceptibility to develop drug addiction. In this review, we provide an overview of the animal models of early life stress that are widely used, and discuss the impact that early life stress has on drug-taking behaviour in adolescence and adulthood in both sexes. We link this to the changes that early life stress has on the endogenous oxytocin system, and how exogenously administered oxytocin may help to re-establish functioning of the system, and in turn, reduce drug-taking behaviour.
Collapse
Affiliation(s)
- Sarah J Baracz
- Department of Psychology, Macquarie University, North Ryde, NSW, 2109, Australia.
| | - Nicholas A Everett
- Department of Psychology, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jennifer L Cornish
- Department of Psychology, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
11
|
Novick AM, Levandowski ML, Laumann LE, Philip NS, Price LH, Tyrka AR. The effects of early life stress on reward processing. J Psychiatr Res 2018; 101:80-103. [PMID: 29567510 PMCID: PMC5889741 DOI: 10.1016/j.jpsychires.2018.02.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 01/19/2023]
Abstract
Early life stress (ELS), in the form of childhood maltreatment, abuse, or neglect, increases the risk for psychiatric sequelae later in life. The neurobiology of response to early stress and of reward processing overlap substantially, leading to the prediction that reward processing may be a primary mediator of the effects of early life stress. We describe a growing body of literature investigating the effects of early life stressors on reward processing in animals and humans. Despite variation in the reviewed studies, an emerging pattern of results indicates that ELS results in deficits of ventral striatum-related functions of reward responsiveness and approach motivation, especially when the stressor is experienced in early in development. For stressors experienced later in the juvenile period and adolescence, the animal literature suggests an opposite effect, in which ELS results in increased hedonic drive. Future research in this area will help elucidate the transdiagnostic impact of early life stress, and therefore potentially identify and intervene with at-risk youth, prior to the emergence of clinical psychopathology.
Collapse
Affiliation(s)
- Andrew M. Novick
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Corresponding author: Andrew M Novick, MD PhD, Butler Hospital, 345 Blackstone Blvd, Providence, RI 02906, USA,
| | - Mateus L. Levandowski
- Developmental Cognitive Neuroscience Lab (DCNL), Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Laura E. Laumann
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Noah S. Philip
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Center for Neurorestoration and Neurotechnology, Providence VA, Providence, RI, USA
| | - Lawrence H. Price
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Audrey R. Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
12
|
Models of progressive neurological dysfunction originating early in life. Prog Neurobiol 2017; 155:2-20. [DOI: 10.1016/j.pneurobio.2015.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/11/2015] [Accepted: 10/11/2015] [Indexed: 01/01/2023]
|
13
|
Wang J, Fang Q, Yang C. Effects of paternal deprivation on cocaine-induced behavioral response and hypothalamic oxytocin immunoreactivity and serum oxytocin level in female mandarin voles. Behav Brain Res 2017; 334:135-141. [PMID: 28756211 DOI: 10.1016/j.bbr.2017.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
Early paternal behavior plays a critical role in behavioral development in monogamous species. The vast majority of laboratory studies investigating the influence of parental behavior on cocaine vulnerability focus on the effects of early maternal separation. However, comparable studies on whether early paternal deprivation influences cocaine-induced behavioral response are substantially lacking. Mandarin vole (Microtus mandarinus) is a monogamous rodent with high levels of paternal care. After mandarin vole pups were subjected to early paternal deprivation, acute cocaine- induced locomotion, anxiety- like behavior and social behavior were examined in 45day old female pups, while hypothalamic oxytocin immunoreactivity and serum oxytocin level were also assessed. We found that cocaine increased locomotion and decreased social investigation, contact behavior and serum oxytocin level regardless of paternal care. Cocaine increased anxiety levels and decreased oxytocin immunoreactive neurons of the paraventricular nuclei and supraoptic nuclei in the bi-parental care group, whilst there were no specific effects in the paternal deprivation group. These results indicate that paternal deprivation results in different behavioral response to acute cocaine exposure in adolescents, which may be in part associated with the alterations in oxytocin immunoreactivity and peripheral OT level.
Collapse
Affiliation(s)
- Jianli Wang
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan, Ningxia 750021, China.
| | - Qianqian Fang
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan, Ningxia 750021, China; College of Life Sciences, Shaanxi Normal University, Xian, Shaanxi 710062, China
| | - Chenxi Yang
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan, Ningxia 750021, China
| |
Collapse
|
14
|
Zellner MR, Ranaldi R. Separation, Motivation, And Depression: Neonatal Isolation Reduces Food-Rewarded Operant Responding in Hats. PSYCHOLOGICAL RECORD 2017. [DOI: 10.1007/bf03395556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Nishi M, Sasagawa T, Horii-Hayashi N. Effects of early life adverse experiences on the brain: implications from maternal separation. Nihon Yakurigaku Zasshi 2017; 149:72-75. [PMID: 28154300 DOI: 10.1254/fpj.149.72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Sasagawa T, Horii-Hayashi N, Okuda A, Hashimoto T, Azuma C, Nishi M. Long-term effects of maternal separation coupled with social isolation on reward seeking and changes in dopamine D1 receptor expression in the nucleus accumbens via DNA methylation in mice. Neurosci Lett 2017; 641:33-39. [DOI: 10.1016/j.neulet.2017.01.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/26/2016] [Accepted: 01/11/2017] [Indexed: 01/10/2023]
|
17
|
Exposure to early adversity: Points of cross-species translation that can lead to improved understanding of depression. Dev Psychopathol 2016; 27:477-91. [PMID: 25997766 DOI: 10.1017/s0954579415000103] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The relationship between developmental exposure to adversity and affective disorders is reviewed. Adversity discussed herein includes physical and sexual abuse, neglect, or loss of a caregiver in humans. While these stressors can occur at any point during development, the unique temporal relationship to specific depressive symptoms was the focus of discussion. Further influences of stress exposure during sensitive periods can vary by gender and duration of abuse as well. Data from animal studies are presented to provide greater translational and causal understanding of how sensitive periods, different types of psychosocial stressors, and sex interact to produce depressive-like behaviors. Findings from maternal separation, isolation rearing, chronic variable stress, and peer-peer rearing paradigms clarify interpretation about how various depressive behaviors are influenced by age of exposure. Depressive behaviors are broken down into the following categories: mood and affect, anhedonia, energy, working memory, sleep-wake, appetite changes, suicide, and general malaise. Cross-species evidence from humans, nonhuman primates, rats, and mice within each of these categories is discussed. In conclusion, sensitive periods for affective-related behaviors (anxiety, mood, and controllability) occur earlier in life, while other aspects of depression are associated with adversity later during adolescence.
Collapse
|
18
|
Lomanowska AM, Melo AI. Deconstructing the function of maternal stimulation in offspring development: Insights from the artificial rearing model in rats. Horm Behav 2016; 77:224-36. [PMID: 26112882 DOI: 10.1016/j.yhbeh.2015.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/24/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
This article is part of a Special Issue on "Parental Care". Maternal behavior has an important function in stimulating adequate growth and development of the young. Several approaches have been used in primates and rodents to deconstruct and examine the influence of specific components of maternal stimulation on offspring development. These approaches include observational studies of typical mother-infant interactions and studies of the effects of intermittent or complete deprivation of maternal contact. In this review, we focus on one unique approach using rats that enables the complete control of maternal variables by means of rearing rat pups artificially without contact with the mother or litter, while maintaining stable nutrition, temperature and exposure to stressful stimuli. This artificial rearing model permits the removal and controlled replacement of relevant maternal and litter stimuli and has contributed valuable insights regarding the influence of these stimuli on various developmental outcomes. It also enables the analysis of factors implicated in social isolation itself and their long-term influence. We provide an overview of the effects of artificial rearing on behavior, physiology, and neurobiology, including the influence of replacing maternal tactile stimulation and littermate contact on these outcomes. We then discuss the relevance of these effects in terms of the maternal role in regulating different aspects of offspring development and implications for human research. We emphasize that artificial rearing of rats does not lead to a global insult of nervous system development, making this paradigm useful in investigating specific developmental effects associated with maternal stimulation.
Collapse
Affiliation(s)
- Anna M Lomanowska
- School of Psychology, Laval University, Centre de recherche de l'Institut universitaire en santé mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Angel I Melo
- Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, Apdo Postal 62. C.P. Tlaxcala, Tlax. C.P. 90000, México.
| |
Collapse
|
19
|
Hensleigh E, Pritchard LM. Maternal separation increases methamphetamine-induced damage in the striatum in male, but not female rats. Behav Brain Res 2014; 295:3-8. [PMID: 25535855 DOI: 10.1016/j.bbr.2014.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/13/2014] [Accepted: 12/02/2014] [Indexed: 11/25/2022]
Abstract
Methamphetamine abuse impacts the global economy through costs associated with drug enforcement, emergency room visits, and treatment. Previous research has demonstrated early life stress, such as childhood abuse, increases the likelihood of developing a substance abuse disorder. However, the effects of early life stress on neuronal damage induced by binge methamphetamine administration are unknown. We aimed to elucidate the effects of early life stress on methamphetamine induced dopamine damage in the striatum. Pups were separated from dams for 3h per day during the first two weeks of development or 15 min for control. In adulthood, rats received either subcutaneous 0.9% saline or 5.0mg/kg METH injections every 2h for a total of four injections. Rectal temperatures were taken before the first injection and 1h after each subsequent injection. Seven days after treatment, rats were euthanized and striatum was collected for quantification of tyrosine hydroxylase (TH) and dopamine transporters (DAT) content by Western blot. Methamphetamine significantly elevated core body temperature in males and decreased striatal DAT and TH content, and this effect was potentiated by early life stress. Females did not exhibit elevated core body temperatures or changes in DAT or TH in either condition. Results indicate maternal separation increases methamphetamine induced damage, and females are less susceptible to methamphetamine induced damage.
Collapse
Affiliation(s)
- Emily Hensleigh
- Department of Psychology, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, United States
| | - Laurel M Pritchard
- Department of Psychology, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, United States.
| |
Collapse
|
20
|
Melo AI. Role of sensory, social, and hormonal signals from the mother on the development of offspring. ADVANCES IN NEUROBIOLOGY 2014; 10:219-48. [PMID: 25287543 DOI: 10.1007/978-1-4939-1372-5_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
For mammals, sensory, social, and hormonal experience early in life is essential for the continuity of the infant's development. These experiences come from the mother through maternal care, and have enduring effects on the physiology and behavior of the adult organism. Disturbing the mother-offspring interaction by maternal deprivation (neglect) or exposure to adverse events as chronic stress, maltreatment, or sexual abuse has negative effects on the mental, psychological, physiological, and behavioral health. Indeed, these kinds of negative experiences can be the source of some neuropsychiatric diseases as depression, anxiety, impulsive aggression, and antisocial behavior. The purpose of this chapter is to review the most relevant evidence that supports the participation of cues from the mother and/or littermates during the postnatal preweaning period for the development of nervous system of the offspring. These findings come from the most frequently utilized experimental paradigms used in animal models, such as natural variations in maternal behavior, handling, partial maternal deprivation, and total maternal deprivation and artificial rearing. Through the use of these experimental procedures, it is possible to positively (handling paradigm), or negatively (maternal deprivation paradigms), affect the offspring's development. Finally, this chapter reviews the importance of the hormones that pups ingest through the maternal milk during early lactation on the development of several physiological systems, including the immune, endocrine systems, as well as on the adult behavior of the offspring.
Collapse
Affiliation(s)
- Angel I Melo
- Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico,
| |
Collapse
|
21
|
Risk factors for sedentary behavior in young adults: similarities in the inequalities. J Dev Orig Health Dis 2014; 1:255-61. [PMID: 25141873 DOI: 10.1017/s204017441000019x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Physical activity is a known protective factor, with benefits for both metabolic and psychological aspects of health. Our objective was to verify early and late determinants of physical activity in young adults. A total of 2063 individuals from a birth cohort in Ribeirão Preto, Brazil, were studied at the age of 23-25 years. Poisson regression was performed using three models: (1) early model considering birth weight, gestational age, maternal income, schooling and smoking; (2) late model considering individual's gender, schooling, smoking and body mass index; and (3) combined (early + late) model. Physical activity was evaluated using the International Physical Activity Questionnaire, stratifying the individuals into active or sedentary. The general rate of sedentary behavior in the sample was 49.6%. In the early model, low birth weight (relative risk (RR) = 1.186, confidence interval (95%CI) 1.005-1.399) was a risk factor for sedentary activity. Female gender (RR = 1.379, 95%CI = 1.259-1.511) and poor schooling (RR = 1.126, 95%CI = 1.007-1.259) were associated with sedentary behavior in the late model. In the combined model, only female gender and participant's schooling remained significant. An interaction between birth weight and individual's schooling was found, in which sedentary behavior was more prevalent in individuals born with low birth weight only if they had higher educational levels. Variables of early development and social insertion in later life interact to determine an individual's disposition to practice physical activities. This study may support the theoretical model 'Similarities in the inequalities', in which opposed perinatal backgrounds have the same impact over a health outcome in adulthood when facing unequal social achievement during the life-course.
Collapse
|
22
|
Anier K, Malinovskaja K, Pruus K, Aonurm-Helm A, Zharkovsky A, Kalda A. Maternal separation is associated with DNA methylation and behavioural changes in adult rats. Eur Neuropsychopharmacol 2014; 24:459-68. [PMID: 23972903 DOI: 10.1016/j.euroneuro.2013.07.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 07/17/2013] [Accepted: 07/26/2013] [Indexed: 11/28/2022]
Abstract
Early life stress is known to promote long-term neurobiological changes, which may underlie the increased risk of psychopathology. Maternal separation (MS) is used as an early life stressor that causes profound neurochemical and behavioural changes in the pups that persist into adulthood. However, the exact mechanism of how MS alters these behavioural changes is not yet understood. Epigenetic modifications, such as DNA methylation, are critical regulators of persistent gene expression changes and may be related to behavioural disorders. The aim of the present study was to investigate whether early life stress on rats could alter cocaine-induced behavioural sensitisation in adulthood via aberrant DNA methylation. We have three main findings: (1) MS increased DNA methyltransferases (DNMTs) expression in the nucleus accumbens (NAc) of infant and adult rats; (2) MS induced DNA hypomethylation on a global level in the NAc, and hypermethylation of the promoter regions of the protein phosphatase 1 catalytic subunit (PP1C) and adenosine A2Areceptor (A2AR) genes, which was associated with their transcriptional downregulation in the NAc; (3) MS-induced molecular changes paralleled an increased response to cocaine-induced locomotor activity and exploratory behaviour in adult rats. Thus, our results suggest that stressful experiences in early life may create a background, via aberrant DNA methylation, which promotes the development of cocaine-induced behavioural sensitisation in adulthood.
Collapse
Affiliation(s)
- Kaili Anier
- Department of Pharmacology, Institute of Bio- and Translational Medicine, University of Tartu, 19 Ravila street, Tartu 50411, Estonia
| | - Kristina Malinovskaja
- Department of Pharmacology, Institute of Bio- and Translational Medicine, University of Tartu, 19 Ravila street, Tartu 50411, Estonia
| | - Katrin Pruus
- Department of Pharmacology, Institute of Bio- and Translational Medicine, University of Tartu, 19 Ravila street, Tartu 50411, Estonia
| | - Anu Aonurm-Helm
- Department of Pharmacology, Institute of Bio- and Translational Medicine, University of Tartu, 19 Ravila street, Tartu 50411, Estonia
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Bio- and Translational Medicine, University of Tartu, 19 Ravila street, Tartu 50411, Estonia
| | - Anti Kalda
- Department of Pharmacology, Institute of Bio- and Translational Medicine, University of Tartu, 19 Ravila street, Tartu 50411, Estonia.
| |
Collapse
|
23
|
Nylander I, Roman E. Is the rodent maternal separation model a valid and effective model for studies on the early-life impact on ethanol consumption? Psychopharmacology (Berl) 2013; 229:555-69. [PMID: 23982922 PMCID: PMC3782650 DOI: 10.1007/s00213-013-3217-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/10/2013] [Indexed: 12/18/2022]
Abstract
RATIONALE Early-life events can cause long-term neurobiological and behavioural changes with a resultant effect upon reward and addiction processes that enhance risk to develop alcohol use disorders. Maternal separation (MS) is used to study the mediating mechanisms of early-life influences in rodents. In MS studies, the pups are exposed to maternal absence during the first postnatal weeks. The outcome of MS experiments exhibits considerable variation and questions have been raised about the validity of MS models. OBJECTIVES This short review aims to provide information about experimental conditions that are important to consider when assessing the impact of early-life environment on voluntary ethanol consumption. RESULTS The results from currently used MS protocols are not uniform. However, studies consistently show that longer separations of intact litters predispose for higher ethanol consumption and/or preference in adult male rats as compared to shorter periods of MS. Studies using individual pup MS paradigms, other controls, low ethanol concentrations, adult females or examining adolescent consumption reported no differences or inconsistent results. CONCLUSIONS There is no "a rodent MS model", there are several models and they generate different results. The compiled literature shows that MS is a model of choice for analysis of early-life effects on voluntary ethanol consumption but there are examples of MS paradigms that are not suitable. These studies emphasize the importance to carefully designed MS experiments to supply the optimal conditions to definitely test the research hypothesis and to be particulate in the interpretation of the outcome.
Collapse
Affiliation(s)
- Ingrid Nylander
- Department of Pharmaceutical Biosciences, Neuropharmacology Addiction & Behaviour, Uppsala University, Box 591, 751 24, Uppsala, Sweden,
| | | |
Collapse
|
24
|
Bardo MT, Neisewander JL, Kelly TH. Individual differences and social influences on the neurobehavioral pharmacology of abused drugs. Pharmacol Rev 2013; 65:255-90. [PMID: 23343975 PMCID: PMC3565917 DOI: 10.1124/pr.111.005124] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The interaction of drugs with biologic targets is a critical area of research, particularly for the development of medications to treat substance use disorders. In addition to understanding these drug-target interactions, however, there is a need to understand more fully the psychosocial influences that moderate these interactions. The first section of this review introduces some examples from human behavioral pharmacology that illustrate the clinical importance of this research. The second section covers preclinical evidence to characterize some of the key individual differences that alter drug sensitivity and abuse vulnerability, related primarily to differences in response to novelty and impulsivity. Evidence is presented to indicate that critical neuropharmacological mechanisms associated with these individual differences involve integrated neurocircuits underlying stress, reward, and behavioral inhibitory processes. The third section covers social influences on drug abuse vulnerability, including effects experienced during infancy, adolescence, and young adulthood, such as maternal separation, housing conditions, and social interactions (defeat, play, and social rank). Some of the same neurocircuits involved in individual differences also are altered by social influences, although the precise neurochemical and cellular mechanisms involved remain to be elucidated fully. Finally, some speculation is offered about the implications of this research for the prevention and treatment of substance abuse.
Collapse
Affiliation(s)
- M T Bardo
- Department of Psychology, University of Kentucky, BBSRB Room 447, 741 S. Limestone, Lexington, KY 40536-0509, USA.
| | | | | |
Collapse
|
25
|
Hall FS, Perona MTG. Have studies of the developmental regulation of behavioral phenotypes revealed the mechanisms of gene-environment interactions? Physiol Behav 2012; 107:623-40. [PMID: 22643448 PMCID: PMC3447116 DOI: 10.1016/j.physbeh.2012.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/30/2022]
Abstract
This review addresses the recent convergence of our long-standing knowledge of the regulation of behavioral phenotypes by developmental experience with recent advances in our understanding of mechanisms regulating gene expression. This review supports a particular perspective on the developmental regulation of behavioral phenotypes: That the role of common developmental experiences (e.g. maternal interactions, peer interactions, exposure to a complex environment, etc.) is to fit individuals to the circumstances of their lives within bounds determined by long-standing (evolutionary) mechanisms that have shaped responses to critical and fundamental types of experience via those aspects of gene structure that regulate gene expression. The phenotype of a given species is not absolute for a given genotype but rather variable within bounds that is determined by mechanisms regulated by experience (e.g. epigenetic mechanisms). This phenotypic variation is not necessarily random, or evenly distributed along a continuum of description or measurement, but often highly disjointed, producing distinct, even opposing, phenotypes. The potentiality for these varying phenotypes is itself the product of evolution, the potential for alternative phenotypes itself conveying evolutionary advantage. Examples of such phenotypic variation, resulting from environmental or experiential influences, have a long history of study in neurobiology, and a number of these will be discussed in this review: neurodevelopmental experiences that produce phenotypic variation in visual perception, cognitive function, and emotional behavior. Although other examples will be discussed, particular emphasis will be made on the role of social behavior on neurodevelopment and phenotypic determination. It will be argued that an important purpose of some aspects of social behavior is regulation of neurobehavioral phenotypes by experience via genetic regulatory mechanisms.
Collapse
Affiliation(s)
- F Scott Hall
- Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassel Drive, Baltimore, MD 21224, United States.
| | | |
Collapse
|
26
|
Pritchard LM, Hensleigh E, Lynch S. Altered locomotor and stereotyped responses to acute methamphetamine in adolescent, maternally separated rats. Psychopharmacology (Berl) 2012; 223:27-35. [PMID: 22414962 PMCID: PMC3398239 DOI: 10.1007/s00213-012-2679-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 02/24/2012] [Indexed: 12/14/2022]
Abstract
RATIONALE Neonatal maternal separation (MS) has been used to model the effects of early life stress in rodents. MS alters behavioral responses to a variety of abused drugs, but few studies have examined its effects on methamphetamine sensitivity. OBJECTIVES We sought to determine the effects of MS on locomotor and stereotyped responses to low-to-moderate doses of methamphetamine in male and female adolescent rats. METHODS Male and female rat pups were subjected to 3 h per day of MS on postnatal days (PN) 2-14 or a brief handling control procedure during the same period. During adolescence (approximately PN 40), all rats were tested for locomotor activity and stereotyped behavior in response to acute methamphetamine administration (0, 1.0, or 3.0 mg/kg, s.c.). RESULTS MS rats of both sexes exhibited increased locomotor activity in a novel environment, relative to handled controls. MS increased the locomotor response to methamphetamine (METH), and this effect occurred at different doses for male (3.0 mg/kg) and female (1.0 mg/kg) rats. MS also increased stereotyped behavior in response to METH (1.0 mg/kg) in both sexes. CONCLUSIONS MS enhances the locomotor response to METH in a dose- and sex-dependent manner. These results suggest that individuals with a history of early life stress may be particularly vulnerable to the psychostimulant effects of METH, even at relatively low doses.
Collapse
|
27
|
Sheppard AB, Gross SC, Pavelka SA, Hall MJ, Palmatier MI. Caffeine increases the motivation to obtain non-drug reinforcers in rats. Drug Alcohol Depend 2012; 124:216-22. [PMID: 22336397 PMCID: PMC3383337 DOI: 10.1016/j.drugalcdep.2012.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 01/17/2012] [Accepted: 01/17/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Caffeine is widely considered to be a reinforcer in humans, but this effect is difficult to measure in non-human animals. We hypothesized that caffeine may have dual reinforcing effects comparable to nicotine--limited primary reinforcing effects, but potent reinforcement enhancing effects. The present studies tested this hypothesis by investigating the effect of caffeine on responding for non-drug rewards. METHODS In two experiments, rats were shaped to respond on a progressive ratio (PR) schedule for sucrose solution (20%, w/v; experiment 1) or a fixed ratio 2 (FR2) schedule for a moderately reinforcing visual stimulus (VS; experiment 2). Pretreatment with various doses of caffeine (0-50 mg/kg, intraperitoneal injection) were administered prior to tests over successive week days (M-F). In experiment 1, acute administration of low-moderate caffeine doses (6.25-25 mg/kg) increased responding for sucrose under the PR schedule. This effect of caffeine declined over the initial 15 test days. In experiment 2, only acute pretreatment with 12.5mg/kg caffeine increased responding for the visual stimulus and complete tolerance to this effect of caffeine was observed over the 15 days of testing. In follow up tests we found that abstinence periods of 4 and 8 days resulted in incomplete recovery of the enhancing effects of caffeine. CONCLUSION The findings suggest that caffeine enhances the reinforcing effects of non-drug stimuli, but that the pharmacological profile of these effects may differ from other psychomotor stimulants.
Collapse
Affiliation(s)
| | | | | | | | - Matthew I. Palmatier
- Corresponding Author: Matthew I. Palmatier, 469 Bluemont Hall, 1100 Mid Campus Drive, Manhattan, KS 66506,
| |
Collapse
|
28
|
Logrip ML, Zorrilla EP, Koob GF. Stress modulation of drug self-administration: implications for addiction comorbidity with post-traumatic stress disorder. Neuropharmacology 2011; 62:552-64. [PMID: 21782834 DOI: 10.1016/j.neuropharm.2011.07.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/11/2011] [Accepted: 07/06/2011] [Indexed: 12/27/2022]
Abstract
Drug abuse and dependence present significant health burdens for our society, affecting roughly 10% of the population. Stress likely contributes to the development and persistence of drug use; for example, rates of substance dependence are elevated among individuals diagnosed with post-traumatic stress disorder (PTSD). Thus, understanding the interaction between stress and drug use, and associated neuroadaptations, is key for developing therapies to combat substance use disorders. For this purpose, many rodent models of the effects of stress exposure on substance use have been developed; the models can be classified according to three categories of stress exposure: developmental, adult nonsocial, and adult social. The present review addresses preclinical findings on the effect of each type of trauma on responses to and self-administration of drugs of abuse by focusing on a key exemplar for each category. In addition, the potential efficacy of targeting neuropeptide systems that have been implicated in stress responses and stress system neuroadaptation in order to treat comorbid PTSD and substance abuse will be discussed. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Marian L Logrip
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
29
|
Muhammad A, Kolb B. Maternal separation altered behavior and neuronal spine density without influencing amphetamine sensitization. Behav Brain Res 2011; 223:7-16. [PMID: 21515311 DOI: 10.1016/j.bbr.2011.04.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/06/2011] [Accepted: 04/10/2011] [Indexed: 12/14/2022]
Abstract
We studied the long-term influence of maternal separation (MS) on periadolescent behavior, adult amphetamine (AMPH) sensitization, and structural plasticity in the corticolimbic regions in rats. Male and female pups, separated daily for 3h from the dam during postnatal day 3-21, were tested for periadolescent exploratory, emotional, cognitive, and social behaviors. The development and persistence of drug-induced behavioral sensitization were tested by repeated AMPH administration and a challenge, respectively. The spine density was examined in the nucleus accumbens (NAc), the medial prefrontal cortex (mPFC), and the orbital frontal cortex (OFC) from Golgi-Cox stained neurons. The results showed that MS enhanced anxiety-like behavior in males. MS abolished the sex difference in playful attacks observed in controls with resultant feminization of male play behavior. Furthermore, the probability of complete rotation defense to face an attack was decreased in females. AMPH administration resulted in the development of behavioral sensitization that persisted at least for two weeks. Sensitization was not influenced by MS. MS increased the spine density in the NAc, the mPFC, and the OFC. Repeated AMPH administration increased the spine density in the NAc and the mPFC, and decreased it in the OFC. MS blocked the drug-induced alteration in these regions. In sum, MS during development influenced periadolescent behavior in males, and structurally reorganized cortical and subcortical brain regions without affecting AMPH-induced behavioral sensitization.
Collapse
|
30
|
Hensleigh E, Smedley L, Pritchard LM. Sex, but not repeated maternal separation during the first postnatal week, influences novel object exploration and amphetamine sensitivity. Dev Psychobiol 2010; 53:132-40. [PMID: 20886535 DOI: 10.1002/dev.20499] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 08/13/2010] [Indexed: 11/12/2022]
Abstract
Sensation seeking and early life stress are both risk factors for developing substance use disorders. Neural adaptations resulting from early life stress may mediate individual differences in novelty responsiveness, and, in turn, contribute to drug abuse vulnerability. Animal models also demonstrate associations between novelty responsiveness or early life stress and increased sensitivity to psychostimulants. We investigated whether repeated maternal separation affects responses to novelty during adolescence and to amphetamine during adulthood, and whether maternal separation alters the relationship between these behavioral variables. Rat pups underwent separation (180 min/day) or control procedures (15 min/day) on postnatal days (PND) 2-8. Novel object exploration and amphetamine response were tested at PND 38 and 60, respectively. Adolescent males were less active in a novel environment and approached novel objects more frequently than females, but adult females showed greater amphetamine-induced locomotion. Maternal separation did not affect novelty responsiveness or amphetamine sensitivity. Locomotor activity in an inescapable, novel environment during adolescence predicted amphetamine-induced locomotor activity during adulthood in maternally separated rats, but not in controls. The results of this study suggest that adolescent responses to novelty may be particularly predictive of future substance abuse among survivors of early life trauma. Furthermore, sex differences in novelty and amphetamine responsiveness may complicate the relationship between these behavioral variables.
Collapse
Affiliation(s)
- E Hensleigh
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV 89154-5030, USA
| | | | | |
Collapse
|
31
|
Harsh corporal punishment is associated with increased T2 relaxation time in dopamine-rich regions. Neuroimage 2010; 53:412-9. [PMID: 20600981 DOI: 10.1016/j.neuroimage.2010.06.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/11/2010] [Accepted: 06/15/2010] [Indexed: 01/18/2023] Open
Abstract
Harsh corporal punishment (HCP) was defined as frequent parental administration of corporal punishment (CP) for discipline, with occasional use of objects such as straps, or paddles. CP is linked to increased risk for depression and substance abuse. We examine whether long-term exposure to HCP acts as sub-traumatic stressor that contributes to brain alterations, particularly in dopaminergic pathways, which may mediate their increased vulnerability to drug and alcohol abuse. Nineteen young adults who experienced early HCP but no other forms of maltreatment and twenty-three comparable controls were studied. T2 relaxation time (T2-RT) measurements were performed with an echo planar imaging TE stepping technique and T2 maps were calculated and analyzed voxel-by-voxel to locate regional T2-RT differences between groups. Previous studies indicated that T2-RT provides an indirect index of resting cerebral blood volume. Region of interest (ROI) analyses were also conducted in caudate, putamen, nucleus accumbens, anterior cingulate cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus and cerebellar hemispheres. Voxel-based relaxometry showed that HCP was associated with increased T2-RT in right caudate and putamen. ROI analyses also revealed increased T2-RT in dorsolateral prefrontal cortex, substantia nigra, thalamus and accumbens but not globus pallidus or cerebellum. There were significant associations between T2-RT measures in dopamine target regions and use of drugs and alcohol, and memory performance. Alteration in the paramagnetic or hemodynamic properties of dopaminergic cell body and projection regions were observed in subjects with HCP, and these findings may relate to their increased risk for drug and alcohol abuse.
Collapse
|
32
|
Branchi I, D'Andrea I, Cirulli F, Lipp HP, Alleva E. Shaping brain development: mouse communal nesting blunts adult neuroendocrine and behavioral response to social stress and modifies chronic antidepressant treatment outcome. Psychoneuroendocrinology 2010; 35:743-51. [PMID: 19945226 DOI: 10.1016/j.psyneuen.2009.10.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/31/2009] [Accepted: 10/31/2009] [Indexed: 11/30/2022]
Abstract
Early experiences shape brain function and behavior and, consequently, vulnerability to psychopathology at adulthood. Here we exploited the mouse communal nest (CN) paradigm in order to investigate the effect of the early social environment on the emergence of endophenotypes of depression and on antidepressant efficacy at adulthood. CN, which consists in a single nest where three mothers keep their pups together and share care-giving behavior until weaning, is characterized by high levels of maternal behavior and peer interactions, thus representing an highly stimulating environment. Our results show that, when compared to mice reared in standard laboratory conditions (SN), adult CN mice exhibited greater sucrose preference on the first days of the test, displayed reduced anhedonia during social stress and had lower corticosterone levels after acute and prolonged social stress. Furthermore, in line with previous work, CN displayed longer immobility than SN mice in the forced swim test. Here we show that such behavioral response is differently affected by antidepressants according to early experiences. A 3-week fluoxetine treatment affected only SN mice, leading to an increase of immobility duration up to the levels showed by CN mice, while acute fluoxetine administration decreased immobility duration in both groups. These results show that being reared in a CN profoundly changes developmental trajectories, reducing the adult display of endophenotypes of depression and modifying response to antidepressants. The present findings suggest that early experiences represent one of those factors to be taken into account to identify the appropriate individual pharmacological strategy to treat depression in patients.
Collapse
Affiliation(s)
- Igor Branchi
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | | | | | | | | |
Collapse
|
33
|
Lomanowska AM, Ammari N, Kraemer GW. Interactions between the effects of early isolation rearing and complex housing on adult locomotor activity and sensitivity to amphetamine in rats involve noradrenergic neurotransmission. Pharmacol Biochem Behav 2010; 95:100-5. [DOI: 10.1016/j.pbb.2009.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
|
34
|
Faure J, Stein DJ, Daniels W. Maternal separation fails to render animals more susceptible to methamphetamine-induced conditioned place preference. Metab Brain Dis 2009; 24:541-59. [PMID: 19821019 DOI: 10.1007/s11011-009-9158-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 07/09/2009] [Indexed: 11/30/2022]
Abstract
The maternal separation (MS) paradigm is an animal model that has been successfully used to study the long term effects of child abuse and neglect. Experiments showed that animals subjected to trauma and stress early in life display behavioural, endocrinological and growth factor abnormalities at a later stage in life, results that mirrored clinical conditions. It is apparent that adverse events early in life may affect the development and maturation of the brain negatively. The purpose of the present study was to investigate whether the abnormal brain development occurring in separated animals would also enhance the development of a preference for psychostimulant drug usage. Rats were subjected to maternal deprivation and further exposed to methamphetamine-induced conditioned place preference (CPP) which primarily measures drug reward (ventral striatum) learning and memory. Apomorphine-induced locomotor activity was also assessed to investigate the effects of methamphetamine on the dorsal (primarily locomotor activity) striatal dopaminergic system. We found that four consecutive injections of methamphetamine resulted in CPP behaviour 24 h after the 4th injection. A further four injections yielded similar CPP results and this effect lasted for at least 7 days until the third CPP assessment. These animals also had decreased ACTH and corticosterone secretions, but the prolactin levels were increased. Prior exposure to maternal separation did not have any effect on the CPP test. The ACTH and corticosterone secretions were also similarly reduced. However maternal separation decreased the release of prolactin and this reduction was not evident in the separated group that received methamphetamine. There was no significant difference in the apomorphine-induced locomotor activity of normally reared animals whether they received methamphetamine or saline. Interestingly there was a significant difference in locomotor activity between the two groups of animals that were subjected to maternal deprivation. The separated animals that received methamphetamine displayed markedly reduced locomotor activity upon apomorphine administration when compared to those that were treated with saline. Taken together, we conclude that maternal deprivation differentially influences dorsal and ventral striatal regions implicating dopaminergic mechanisms.
Collapse
Affiliation(s)
- Jacqueline Faure
- Department of Biomedical Sciences, University of Stellenbosch, Tygerberg, Western Cape, Cape Town, South Africa.
| | | | | |
Collapse
|
35
|
Engert V, Joober R, Meaney MJ, Hellhammer DH, Pruessner JC. Behavioral response to methylphenidate challenge: influence of early life parental care. Dev Psychobiol 2009; 51:408-16. [PMID: 19492313 DOI: 10.1002/dev.20380] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rat studies have shown that pups subjected to suboptimal rearing conditions exhibited permanently dysregulated dopamine activity and altered behavioral responses to dopamine stimulation. In humans, heightened stress-induced mesoaccumbens dopamine release in adults reporting low maternal care experience has been shown. We explored the relationship between quality of parental care and behavioral responsivity to reward and 20 mg of the dopamine agonist methylphenidate (MPH). Forty-three male university students accomplished a monetarily rewarded card-sorting task in a placebo controlled between-subjects study design. In participants scoring above the cut-off score for high parental care as assessed by the Parental Bonding Inventory, MPH decreased performance accuracy in the reward condition of the task. Contrarily, reward-induced performance accuracy of low care participants was enhanced with MPH. Activity measures in response to reward and MPH were uninfluenced by parental care. This is the first human study to reveal that the behavioral MPH response interacts with early life parental care experience.
Collapse
Affiliation(s)
- Veronika Engert
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada H4H 1R3.
| | | | | | | | | |
Collapse
|
36
|
Kohut SJ, Roma PG, Davis CM, Zernig G, Saria A, Dominguez JM, Rice KC, Riley AL. The impact of early environmental rearing condition on the discriminative stimulus effects and Fos expression induced by cocaine in adult male and female rats. Psychopharmacology (Berl) 2009; 203:383-97. [PMID: 18953528 PMCID: PMC2661818 DOI: 10.1007/s00213-008-1368-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE A number of environmental manipulations, including maternal separation (MS), have been shown to alter behavioral responses to drugs of abuse. OBJECTIVES This study assessed if MS affected the stimulus and Fos-inducing effects of cocaine. MATERIALS AND METHODS In experiment 1, male and female Sprague-Dawley rats were exposed to brief maternal separations (BMS), long maternal separations (LMS), or animal facility rearing (AFR) and then trained as adults to discriminate cocaine (10 mg/kg, intraperitoneally) from saline. Following training, generalization tests to novel doses of cocaine and other dopaminergic compounds were performed. Assessments of variations in training dose pretreatment times were also made. In experiment 2, male and female rats exposed to MS conditions were administered cocaine or saline for 14 days, and Fos expression in the mesolimbic system was measured. RESULTS In males, BMS retarded the acquisition of the cocaine discrimination. Generalization to novel doses of cocaine did not differ among rearing conditions, but the training dose cue lasted longer in LMS. Distinct generalization and ED(50) profiles were found between male rearing conditions for all dopamine compounds. While BMS females had higher cocaine ED(50) estimates, no other differences were found in females. LMS males and females, as well as AFR females, had significant increases in Fos expression after cocaine in a region-specific manner. No differences were found with other rearing groups. CONCLUSION Early environmental variables altered the stimulus effects (in a sex-dependent manner) as well as the neuronal responsiveness to cocaine, which may be mediated by the dopamine system.
Collapse
Affiliation(s)
- Stephen J Kohut
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, DC 20016, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Stevenson CW, Meredith JP, Spicer CH, Mason R, Marsden CA. Early life programming of innate fear and fear learning in adult female rats. Behav Brain Res 2009; 198:51-7. [DOI: 10.1016/j.bbr.2008.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/07/2008] [Accepted: 10/11/2008] [Indexed: 02/06/2023]
|
38
|
Withdrawal emotional-regulation in infant rats from genetic animal models of depression. Behav Brain Res 2008; 193:94-100. [DOI: 10.1016/j.bbr.2008.04.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/24/2008] [Accepted: 04/28/2008] [Indexed: 11/19/2022]
|
39
|
Miczek KA, Yap JJ, Covington HE. Social stress, therapeutics and drug abuse: preclinical models of escalated and depressed intake. Pharmacol Ther 2008; 120:102-28. [PMID: 18789966 PMCID: PMC2713609 DOI: 10.1016/j.pharmthera.2008.07.006] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 12/16/2022]
Abstract
The impact of ostensibly aversive social stresses on triggering, amplifying and prolonging intensely rewarding drug taking is an apparent contradiction in need of resolution. Social stress encompasses various types of significant life events ranging from maternal separation stress, brief episodes of social confrontations in adolescence and adulthood, to continuous subordination stress, each with its own behavioral and physiological profile. The neural circuit comprising the VTA-accumbens-PFC-amygdala is activated by brief episodes of social stress, which is critical for the DA-mediated behavioral sensitization and increased stimulant consumption. A second neural circuit comprising the raphe-PFC-hippocampus is activated by continuous subordination stress and other types of uncontrollable stress. In terms of the development of therapeutics, brief maternal separation stress has proven useful in characterizing compounds acting on subtypes of GABA, glutamate, serotonin and opioid receptors with anxiolytic potential. While large increases in alcohol and cocaine intake during adulthood have been seen after prolonged maternal separation experiences during the first two weeks of rodent life, these effects may be modulated by additional yet to be identified factors. Brief episodes of defeat stress can engender behavioral sensitization that is relevant to escalated and prolonged self-administration of stimulants and possibly opioids, whereas continuous subordination stress leads to anhedonia-like effects. Understanding the intracellular cascade of events for the transition from episodic to continuous social stress in infancy and adulthood may provide insight into the modulation of basic reward processes that are critical for addictive and affective disorders.
Collapse
Affiliation(s)
- Klaus A Miczek
- Departments of Psychology, Psychiatry, Pharmacology and Neuroscience, Tufts University, Medford and Boston, MA 02155, United States.
| | | | | |
Collapse
|
40
|
Vitarella D. DEVELOPMENT OF AN INHALATION SYSTEM FOR THE SIMULTANEOUS EXPOSURE OF RAT DAMS AND PUPS DURING DEVELOPMENTAL NEUROTOXICITY STUDIES. Inhal Toxicol 2008. [DOI: 10.1080/089583798197303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
Laviola G, Ognibene E, Romano E, Adriani W, Keller F. Gene-environment interaction during early development in the heterozygous reeler mouse: clues for modelling of major neurobehavioral syndromes. Neurosci Biobehav Rev 2008; 33:560-72. [PMID: 18845182 DOI: 10.1016/j.neubiorev.2008.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 09/12/2008] [Accepted: 09/16/2008] [Indexed: 01/19/2023]
Abstract
Autism and schizophrenia are multifactorial disorders with increasing prevalence in the young population. Among candidate molecules, reelin (RELN) is a protein of the extracellular matrix playing a key role in brain development and synaptic plasticity. The heterozygous (HZ) reeler mouse provides a model for studying the role of reelin deficiency for the onset of these syndromes. We investigated whether early indices of neurobehavioral disorders can be identified in the infant reeler, and whether the consequences of ontogenetic adverse experiences may question or support the suitability of this model. A first study focused on the link between early exposure to Chlorpyryfos and its enduring neurobehavioral consequences. Our data are interesting in view of recently discovered cholinergic abnormalities in autism and schizophrenia, and may suggest new avenues for early pharmacological intervention. In a second study, we analyzed the consequences of repeated maternal separation early in ontogeny. The results provide evidence of how unusual stress early in development are converted into altered behavior in some, but not all, individuals depending on gender and genetic background. A third study aimed to verify the reliability of the model at critical age windows. Data suggest reduced anxiety, increased impulsivity and disinhibition, and altered pain threshold in response to morphine for HZ, supporting a differential organization of brain dopaminergic, serotonergic and opioid systems in this genotype. In conclusion, HZ exhibited a complex behavioral and psycho-pharmacological phenotype, and differential responsivity to ontogenetic adverse conditions. HZ may be used to disentangle interactions between genetic vulnerability and environmental factors. Such an approach could help to model the pathogenesis of neurodevelopmental psychiatric diseases.
Collapse
Affiliation(s)
- Giovanni Laviola
- Sect. Behavioral Neuroscience, Dept. Cell Biology, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Roma, Italy.
| | | | | | | | | |
Collapse
|
42
|
Ognibene E, Adriani W, Caprioli A, Ghirardi O, Ali SF, Aloe L, Laviola G. The effect of early maternal separation on brain derived neurotrophic factor and monoamine levels in adult heterozygous reeler mice. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1269-76. [PMID: 18501492 DOI: 10.1016/j.pnpbp.2008.03.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/28/2008] [Accepted: 03/28/2008] [Indexed: 01/19/2023]
Abstract
OBJECTIVE AND METHODS The reeler heterozygous (HZ) mice have provided a model for studying the relationship between reelin (a protein of extracellular matrix) haploinsufficiency and the emergence of neuropsychiatric diseases. In a neurodevelopmental framework, the enduring consequences of early maternal separation (5 h/day during the first postnatal week, or handling controls, H) were studied in reeler HZ and wild type (WT) mice at adulthood. The modulatory effects of a chronic treatment with the atypical antipsychotic olanzapine (OLZ, 1.5 mg/kg for 40 days) were also investigated. RESULTS Early maternal separation had long-term effects on brain plasticity, with a reduction of brain- and glial- derived neurotrophic factor (BDNF and GDNF) in several brain areas of mice, but such a consequence was less marked in the HZ genotype. On the other hand, treatment with OLZ did not affect at all the GDNF but led to an increase of BDNF levels in maternally separated (SEP) mice, an effect which was far more marked in the HZ genotype. Brain levels of serotonin (5-HT) were markedly increased, striatal dopamine (DA) was increased, whereas metabolites and turnover were decreased, in SEP mice of both genotypes. The spontaneous home-cage activity was generally lower in HZ than WT mice, and OLZ treatment contrasted this hypoactivity profile. Maternal separation also decreased the interest toward an unknown mouse proposed as a social stimulus, but only in WT mice. CONCLUSION We investigated the interplay between genetic vulnerability (reelin haploinsufficiency), the outcome of early stressful experiences, and the efficacy of the antipsychotic drug therapy. The reeler HZ genotype exhibited a slightly lower sensitivity to the environmental insult as well as an enhanced response to the atypical antipsychotic treatment.
Collapse
Affiliation(s)
- Elisa Ognibene
- Section of Behavioral Neuroscience, Dept. Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Choy KHC, van den Buuse M. Attenuated disruption of prepulse inhibition by dopaminergic stimulation after maternal deprivation and adolescent corticosterone treatment in rats. Eur Neuropsychopharmacol 2008; 18:1-13. [PMID: 17490864 DOI: 10.1016/j.euroneuro.2007.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 02/21/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
The development of schizophrenia may include an early neurodevelopmental stress component which increases vulnerability to later stressful life events, in combination leading to overt disease. We investigated the effect of an early stress, in the form of maternal deprivation, combined with a later stress, simulated by chronic periadolescent corticosterone treatment, on behaviour in rats. Acute treatment with apomorphine caused disruption of prepulse inhibition (PPI) in controls and in rats that had undergone either maternal deprivation or corticosterone treatment, but was surprisingly absent in rats that had undergone the combined early and late stress. Amphetamine treatment significantly disrupted PPI in both non-deprived groups, but was absent in both maternally deprived groups. The serotonin-1A receptor agonist, 8-OH-DPAT, induced a significant disruption of PPI in all groups. Amphetamine-induced locomotor hyperactivity was similar in all groups. These results show an inhibitory interaction of early stress, caused by maternal deprivation, combined with 'adolescent' stress, simulated by corticosterone treatment, on dopaminergic regulation of PPI. The altered effects of apomorphine and amphetamine could indicate differential changes in dopamine receptor signalling leading to functional desensitisation, or altered modulation of sensory gating in the nucleus accumbens by limbic structures such as the hippocampus.
Collapse
Affiliation(s)
- Kwok Ho Christopher Choy
- Behavioural Neuroscience Laboratory, Mental Health Research Institute of Victoria, 155 Oak Street, Parkville, Victoria 3052, Australia
| | | |
Collapse
|
44
|
Roma PG, Huntsberry ME, Riley AL. Separation stress, litter size, and the rewarding effects of low-dose morphine in the dams of maternally separated rats. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:429-33. [PMID: 17182163 DOI: 10.1016/j.pnpbp.2006.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/12/2006] [Accepted: 11/03/2006] [Indexed: 11/29/2022]
Abstract
Potential differences in sensitivity to the rewarding effects of morphine as a function of litter separation stress were assessed in post-weaning rat dams. During the first two weeks postnatal, Sprague-Dawley rat litters were subjected to daily 15- or 180-min sessions of dam-pup separation while control litters only experienced twice-weekly animal facility care. One week after weaning, the dams (n=7 per group) underwent a fully unbiased conditioned place preference (CPP) procedure to 1 mg/kg subcutaneous morphine. CPP responses after each conditioning cycle were recorded. Rates of acquisition and asymptotic levels of CPP were comparable in all groups; however, an inverse relationship between litter size and magnitude of morphine CPP was revealed. Although these initial data indicate no differential sensitivity to the rewarding effects of low-dose morphine produced by the stress of litter separation, this assessment of litter size and drug-induced place conditioning in post-weaning litter-separated dams is the first of its kind. Potential effects of other doses, drugs of abuse and post-partum manipulations remain to be evaluated within this emerging etiological model.
Collapse
Affiliation(s)
- Peter G Roma
- Psychopharmacology Laboratory, Department of Psychology, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016, USA.
| | | | | |
Collapse
|
45
|
Ognibene E, Adriani W, Macrì S, Laviola G. Neurobehavioural disorders in the infant reeler mouse model: Interaction of genetic vulnerability and consequences of maternal separation. Behav Brain Res 2007; 177:142-9. [PMID: 17141885 DOI: 10.1016/j.bbr.2006.10.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 10/24/2006] [Accepted: 10/27/2006] [Indexed: 02/07/2023]
Abstract
Studies on heterozygous (HZ) reeler mice suggest a relationship between reelin (a protein of extra cellular matrix) haploinsufficiency and the presence of altered neural networks and behaviour. Neonatal adverse and/or stimulating experiences might interfere with the emergence of this genetic-dependent phenotype. Repeated episodes of maternal separation early in ontogeny result in enduring neuroendocrine, neurochemical and behavioural alterations in the offspring. Therefore, in order to investigate whether developmental indexes of neurobehavioural disorders can be studied in the infant reeler mouse model, and whether ontogenetic adverse experiences may question or improve its suitability, homozygous reeler (RL), heterozygous (HZ) and wild-type (WT) mouse pups underwent maternal separation (SEP, 5h/day) or handling (H, 3min/day) on PND 2-6. As expected, a sex difference appeared, for measure of emotional and communicative behaviour in infant mice. On PND 7, compared to other genotypes, RL mouse pups from the H control group, showed reduced levels of ultrasound (USV) production and of locomotion. Surprisingly, this deficit in RL mice was fully reverted by maternal separation. Maternal separation per se reduced social motivation in the homing test at PND 9 in WT mice, with no effects on HZ and RL ones. Additionally, female pups emitted much lower levels of ultrasound production than males within the H control group. Such a baseline sex difference, however, disappeared in the SEP group. The present results provide evidence that unusual stress and related hormonal stimulation early in development may (i) independently shape individual phenotype and (ii) interact with a genetic make-up to substantially modify its "natural" developmental trajectories.
Collapse
Affiliation(s)
- Elisa Ognibene
- Section of Behavioural Neuroscience, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy.
| | | | | | | |
Collapse
|
46
|
Slotten HA, Kalinichev M, Hagan JJ, Marsden CA, Fone KCF. Long-lasting changes in behavioural and neuroendocrine indices in the rat following neonatal maternal separation: Gender-dependent effects. Brain Res 2006; 1097:123-32. [PMID: 16730678 DOI: 10.1016/j.brainres.2006.04.066] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 04/12/2006] [Accepted: 04/14/2006] [Indexed: 11/20/2022]
Abstract
Neonatal maternal separation (MS) has been used to model long-term changes in neurochemistry and behaviour associated with exposure to early-life stress. This study characterises changes in behavioural and neuroendocrine parameters following MS. On postnatal days (PND) 3-15, male and female Long-Evans rats underwent 3 h daily MS. Non-handled (NH) control offspring remained with the dams. Starting at PND 90, behaviour was assessed at weekly intervals in the elevated plus-maze, elevated T-maze, and locomotor activity boxes, and body weight monitored throughout. At the end of the study, adrenals were weighed and blood collected for analysis of plasma corticosterone and adrenocorticotropic hormone (ACTH) under basal conditions and following restraint stress. As adults, MS weighed more than NH animals. Activity on the open arms of the plus-maze was similar between MS and NH animals. In the T-maze, MS males had shorter emergence latencies than their NH counterparts. Spontaneous ambulation in a novel environment was significantly higher in MS than in NH animals, and males exhibited overall lower activity than females. Basal plasma corticosterone was lower in MS than in NH females, but no rearing condition difference was observed following restraint stress. Females had higher corticosterone and ACTH levels than males, whereas adrenal glands of MS animals weighed less than those of NH controls. The MS paradigm caused long-term gender dependent effects on behaviour and HPA axis status. The consistent gender differences confirm and expand existing results showing altered anxiety and stress reactivity in male and female rats.
Collapse
Affiliation(s)
- Helge A Slotten
- Institute of Neuroscience, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, Nottingham, UK.
| | | | | | | | | |
Collapse
|
47
|
De La Garza R. Wistar Kyoto rats exhibit reduced sucrose pellet reinforcement behavior and intravenous nicotine self-administration. Pharmacol Biochem Behav 2005; 82:330-7. [PMID: 16226802 DOI: 10.1016/j.pbb.2005.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 08/25/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
A phenotype of heightened anxiety-like behavior is hypothesized to be associated with altered reinforcement behavior. To test this hypothesis, we studied patterns of sucrose pellet intake and intravenous nicotine self-administration in animals that exhibit anxiety-like behavior at baseline, Wistar Kyoto (WKY) rats, as compared to normal controls (Wistar rats). WKY rats exhibited significantly reduced sucrose pellet self-administration behavior as assessed by both fixed and progressive ratio schedules of reinforcement and exhibited significantly reduced self-administration of intravenous nicotine. On the basis of previously published findings, we hypothesize that altered mesolimbic dopamine responses, as well as heightened HPA axis functioning, may account for reduced nicotine self-administration and sucrose pellet reinforcement responding in WKY rats. These studies highlight the role of heightened anxiety-like behavior, resulting from the genetic background of the animal, in altering behavioral responses to reinforcing stimuli.
Collapse
Affiliation(s)
- Richard De La Garza
- David Geffen School of Medicine at the University of California Los Angeles, Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90024, USA.
| |
Collapse
|
48
|
Ito R, Everitt BJ, Robbins TW. The hippocampus and appetitive Pavlovian conditioning: effects of excitotoxic hippocampal lesions on conditioned locomotor activity and autoshaping. Hippocampus 2005; 15:713-21. [PMID: 15906393 DOI: 10.1002/hipo.20094] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hippocampus (HPC) is known to be critically involved in the formation of associations between contextual/spatial stimuli and behaviorally significant events, playing a pivotal role in learning and memory. However, increasing evidence indicates that the HPC is also essential for more basic motivational processes. The amygdala, by contrast, is important for learning about the motivational significance of discrete cues. This study investigated the effects of excitotoxic lesions of the rat HPC and the basolateral amygdala (BLA) on the acquisition of a number of appetitive behaviors known to be dependent on the formation of Pavlovian associations between a reward (food) and discrete stimuli or contexts: (1) conditioned/anticipatory locomotor activity to food delivered in a specific context and (2) autoshaping, where rats learn to show conditioned discriminated approach to a discrete visual CS+. While BLA lesions had minimal effects on conditioned locomotor activity, hippocampal lesions facilitated the development of both conditioned activity to food and autoshaping behavior, suggesting that hippocampal lesions may have increased the incentive motivational properties of food and associated conditioned stimuli, consistent with the hypothesis that the HPC is involved in inhibitory processes in appetitive conditioning.
Collapse
Affiliation(s)
- Rutsuko Ito
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK.
| | | | | |
Collapse
|
49
|
Jaworski JN, Francis DD, Brommer CL, Morgan ET, Kuhar MJ. Effects of early maternal separation on ethanol intake, GABA receptors and metabolizing enzymes in adult rats. Psychopharmacology (Berl) 2005; 181:8-15. [PMID: 15830234 DOI: 10.1007/s00213-005-2232-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 02/07/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Maternal separation (MS) in neonatal rats affects ethanol self-administration (SA) in adulthood; however, the conditions and mechanisms need to be clarified. OBJECTIVES The goal of this study was to determine the effect of MS on ethanol SA in adulthood in different groups of rats, which control for time of separation, handling, and rearing conditions and, for mechanistic assessment, to examine GABA-A receptors in the central nucleus of the amygdala (CeA) and levels of liver metabolizing enzymes. METHODS Newborn, male Long-Evans rats were randomly assigned to different groups and treated over postnatal days 2-14. The rats were picked up by their tails and put back down with no separation (MS0), separated from their mother for 15 min/day (MS15), separated from their mother for 180 min/day (MS180), handled once for a bedding change (NH), or were animal facility reared (AFR). In adulthood, these rats were allowed 5-day continuous access to ethanol, and GABA-A receptors and liver enzymes were measured. RESULTS The MS15 group consumed and preferred significantly less ethanol (about one third) than the MS180 group; however, neither group was different from the MS0 or the AFR group. The NH group consumed and preferred significantly more ethanol than all other groups, at least twice that of the MS180s. GABA-A receptors were increased in the CeA in MS15s, which could help explain the effects. Alcohol dehydrogenase may have been altered in the AFRs. CONCLUSIONS Various treatments in neonates affect ethanol intake and GABA-A receptors, and possibly ethanol metabolism, in adulthood. These changes were not simply related to time of separation but were also due to the degree of handling.
Collapse
Affiliation(s)
- J N Jaworski
- Yerkes National Primate Research Center and the Department of Pharmacology, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | |
Collapse
|
50
|
Sandstrom NJ, Hart SR. Isolation stress during the third postnatal week alters radial arm maze performance and corticosterone levels in adulthood. Behav Brain Res 2005; 156:289-96. [PMID: 15582115 DOI: 10.1016/j.bbr.2004.05.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 05/28/2004] [Accepted: 05/31/2004] [Indexed: 10/26/2022]
Abstract
Stressful experiences during development cause long-lasting changes in neuroendocrine systems as well as lasting changes in behavior. The present study examines the long-term consequences of daily periods of social isolation during the third postnatal week on radial arm maze performance in adulthood. Male rat pups were either isolated for 6 h per day between postnatal days 15-21 or remained in the home cage. This manipulation caused a significant increase in plasma corticosterone during the isolation period. As adults, these animals were tested on a 12-arm radial arm maze. Rats that experienced social isolation during development made more working memory errors during initial acquisition but reached an asymptotic level of performance comparable to controls. The pattern of reference memory errors across testing was comparable to the pattern of working memory errors, though the difference between isolated and control animals was not significant. Blood samples taken in adulthood revealed that social isolation during development results in an long-term elevation in plasma corticosterone levels. These findings indicate that isolation stress during the third week of life leads to lasting impairments in cognition and HPA axis activity and suggest a potential alteration in hippocampal function.
Collapse
Affiliation(s)
- Noah J Sandstrom
- Department of Psychology, Bronfman Science Center, Williams College, Williamstown, MA 01267, USA.
| | | |
Collapse
|