1
|
Mallorson R, Miyagi E, Kao S, Sukegawa S, Saito H, Fabryova H, Morellatto Ruggieri L, Mediouni S, Valente ST, Strebel K. Transcriptional regulation of the HIV-1 inhibitory factor human mannose receptor 1 by the myeloid-specific transcription factor PU.1. J Virol 2024; 98:e0170223. [PMID: 38078733 PMCID: PMC10804955 DOI: 10.1128/jvi.01702-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 01/04/2024] Open
Abstract
HIV-1 infection of human macrophages leads to the downmodulation of human mannose receptor 1 (hMRC1), a cell-surface glycoprotein that is involved in the host innate immune response. We previously reported that downmodulation of hMRC1 involves the transactivator of transcription (Tat)-dependent transcriptional silencing of the hMRC1 promoter. However, the inhibitory effect of Tat on hMRC1 transcription was indirect and involved inhibition of the transcriptional activator PU.1, which normally upregulates hMRC1 expression in macrophages and other myeloid cells. We cloned a 284-bp fragment of the hMRC1 promoter, and within it, we identified four PU.1 box elements. We assessed the relative contribution of each of the four PU.1 boxes to PU.1-dependent transcriptional regulation and, surprisingly, found that only one of the four PU.1 boxes [PU.1(b)] was critically required for PU.1-mediated upregulation of luciferase expression. Transfer of this PU.1 box to a heterologous promoter conferred PU.1 responsiveness to an otherwise PU.1 insensitive promoter. Electrophoretic mobility shift assays identified this PU.1 box as a direct binding site for PU.1 both in the context of the hMRC1 promoter and the heterologous promoter. Furthermore, mutational analysis of the PU.1 protein identified the C-terminal DNA-binding domain in PU.1 as the region responsible for interaction with the PU.1 box. Recombinant HIV-1 Tat protein did not bind to the hMRC1 promoter element but efficiently interfered with the binding of PU.1 protein to the hMRC1 promoter. Thus, Tat is likely to inhibit the formation of active PU.1 transcription complexes, presumably by binding to and depleting common transcriptional cofactors.IMPORTANCEHIV-1 infection of cells results in the modulation of cellular gene expression by virus-encoded proteins in a manner that benefits the virus. We reported that HIV-1 transactivator of transcription (Tat) dysregulates the expression of the human mannose receptor 1 (hMRC1). hMRC1 is involved in the innate immune response of macrophages to foreign pathogens. Tat does not act directly on the hMRC1 promoter but instead inhibits PU.1, a cellular transcription factor regulating hMRC1 gene expression. Here, we characterize the PU.1-dependent regulation of hMRC1 expression. We identified four potential PU.1 binding sites in the hMRC1 promoter region but found that only one, PU.1(b), functioned as a true binding site for PU.1. Transfer of the PU.1(b) box to a heterologous promoter did not activate this promoter per se but rendered it responsive to PU.1. Our results support the view that PU.1 acts as a transcriptional co-factor whose activity can be regulated by HIV-1 Tat.
Collapse
Affiliation(s)
- Rosa Mallorson
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Eri Miyagi
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Sandra Kao
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Sayaka Sukegawa
- Department of Molecular Virology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hideki Saito
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Helena Fabryova
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Sonia Mediouni
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida, USA
| | - Klaus Strebel
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Van Gulck E, Pardons M, Nijs E, Verheyen N, Dockx K, Van Den Eynde C, Battivelli E, Vega J, Florence E, Autran B, Archin NM, Margolis DM, Katlama C, Hamimi C, Van Den Wyngaert I, Eyassu F, Vandekerckhove L, Boden D. A truncated HIV Tat demonstrates potent and specific latency reversal activity. Antimicrob Agents Chemother 2023; 67:e0041723. [PMID: 37874295 PMCID: PMC10649039 DOI: 10.1128/aac.00417-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/09/2023] [Indexed: 10/25/2023] Open
Abstract
A major barrier to HIV-1 cure is caused by the pool of latently infected CD4 T-cells that persist under combination antiretroviral therapy (cART). This latent reservoir is capable of producing replication-competent infectious viruses once prolonged suppressive cART is withdrawn. Inducing the reactivation of HIV-1 gene expression in T-cells harboring a latent provirus in people living with HIV-1 under cART may result in depletion of this latent reservoir due to cytopathic effects or immune clearance. Studies have investigated molecules that reactivate HIV-1 gene expression, but to date, no latency reversal agent has been identified to eliminate latently infected cells harboring replication-competent HIV in cART-treated individuals. Stochastic fluctuations in HIV-1 tat gene expression have been described and hypothesized to allow the progression into proviral latency. We hypothesized that exposing latently infected CD4+ T-cells to Tat would result in effective latency reversal. Our results indicate the capacity of a truncated Tat protein and mRNA to reactivate HIV-1 in latently infected T-cells ex vivo to a similar degree as the protein kinase C agonist: phorbol 12-myristate 13-acetate, without T-cell activation or any significant transcriptome perturbation.
Collapse
Affiliation(s)
- Ellen Van Gulck
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marion Pardons
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Erik Nijs
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nick Verheyen
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Koen Dockx
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Christel Van Den Eynde
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Emilie Battivelli
- Janssen Infectious Diseases, A Division of Janssen Pharmaceutica NV, Brisbane, California, USA
| | - Jerel Vega
- Arcturus Therapeutics, Science Center Drive, San Diego, California, USA
| | | | - Brigitte Autran
- Faculty of Medicine Sorbonne-University, CIMI-Paris, UPMC/Inserm, Paris, France
| | - Nancie M. Archin
- University of North Carolina School of Medicine and UNC, HIV Cure Center, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- University of North Carolina School of Medicine and UNC, HIV Cure Center, Chapel Hill, North Carolina, USA
| | - Christine Katlama
- Department Infectious Diseases, Hospital Pitié Salpetière, Sorbonne-University and IPLESP, Paris, France
| | - Chiraz Hamimi
- Faculty of Medicine Sorbonne-University, CIMI-Paris, UPMC/Inserm, Paris, France
| | - Ilse Van Den Wyngaert
- Discovery Sciences, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Filmon Eyassu
- Discovery Sciences, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Daniel Boden
- Janssen Infectious Diseases, A Division of Janssen Pharmaceutica NV, Brisbane, California, USA
| |
Collapse
|
3
|
The Myeloid-Specific Transcription Factor PU.1 Upregulates Mannose Receptor Expression but Represses Basal Activity of the HIV-LTR Promoter. J Virol 2022; 96:e0065222. [PMID: 35766490 PMCID: PMC9327697 DOI: 10.1128/jvi.00652-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human mannose receptor 1 (MRC1) is a cell surface receptor expressed in macrophages and other myeloid cells that inhibits human immunodeficiency virus type 1 (HIV-1) particle release by tethering virions to producer cell membranes. HIV-1 counteracts MRC1 expression by inhibiting mrc1 transcription. Here, we investigated the mechanism of MRC1 downregulation in HIV-1-infected macrophages. We identified the myeloid cell-specific transcription factor PU.1 as critical for regulating MRC1 expression. In the course of our study, we recognized a complex interplay between HIV-1 Tat and PU.1 transcription factors: Tat upregulated HIV-1 gene expression but inhibited mrc1 transcription, whereas PU.1 inhibited HIV-1 transcription but activated MRC1 expression. Disturbing this equilibrium by silencing PU.1 resulted in increased HIV-1 gene expression and reduced MRC1 promoter activity. Our study identified PU.1 as a central player in transcriptional control, regulating a complex interplay between viral and host gene expression in HIV-infected macrophages. IMPORTANCE HIV-1 replication in primary human cells depends on the activity of virus-encoded proteins but also involves cellular factors that can either promote (viral dependency factors) or inhibit (host restriction factors) virus replication. In previous work, we identified human MRC1 as a macrophage-specific host restriction factor that inhibits the detachment of viral particles from infected cells. Here, we report that HIV-1 counteracts this effect of MRC1 by imposing a transcriptional block on cellular MRC1 gene expression. The transcriptional inhibition of the MRC1 gene is accomplished by Tat, an HIV-1 factor whose best-described function actually is the enhancement of HIV-1 gene expression. Thus, HIV-1 has evolved to use the same protein for (i) activation of its own gene expression while (ii) inhibiting expression of MRC1 and other host factors.
Collapse
|
4
|
P-TEFb as A Promising Therapeutic Target. Molecules 2020; 25:molecules25040838. [PMID: 32075058 PMCID: PMC7070488 DOI: 10.3390/molecules25040838] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) was first identified as a general factor that stimulates transcription elongation by RNA polymerase II (RNAPII), but soon afterwards it turned out to be an essential cellular co-factor of human immunodeficiency virus (HIV) transcription mediated by viral Tat proteins. Studies on the mechanisms of Tat-dependent HIV transcription have led to radical advances in our knowledge regarding the mechanism of eukaryotic transcription, including the discoveries that P-TEFb-mediated elongation control of cellular transcription is a main regulatory step of gene expression in eukaryotes, and deregulation of P-TEFb activity plays critical roles in many human diseases and conditions in addition to HIV/AIDS. P-TEFb is now recognized as an attractive and promising therapeutic target for inflammation/autoimmune diseases, cardiac hypertrophy, cancer, infectious diseases, etc. In this review article, I will summarize our knowledge about basic P-TEFb functions, the regulatory mechanism of P-TEFb-dependent transcription, P-TEFb’s involvement in biological processes and diseases, and current approaches to manipulating P-TEFb functions for the treatment of these diseases.
Collapse
|
5
|
Rustanti L, Jin H, Lor M, Lin MH, Rawle DJ, Harrich D. A mutant Tat protein inhibits infection of human cells by strains from diverse HIV-1 subtypes. Virol J 2017; 14:52. [PMID: 28288662 PMCID: PMC5348743 DOI: 10.1186/s12985-017-0705-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/10/2017] [Indexed: 11/10/2022] Open
Abstract
Background Nullbasic is a mutant HIV-1 Tat protein that inhibits HIV-1 replication via three independent mechanisms that disrupts 1) reverse transcription of the viral RNA genome into a DNA copy, 2) HIV-1 Rev protein function required for viral mRNA transport from the nucleus to the cytoplasm and 3) HIV-1 mRNA transcription by RNA Polymerase II. The Nullbasic protein is derived from the subtype B strain HIV-1BH10 and has only been tested against other HIV-1 subtype B strains. However, subtype B strains only account for ~10% of HIV-1 infections globally and HIV-1 Tat sequences vary between subtypes especially for subtype C, which is responsible for ~50% HIV-1 infection worldwide. These differences could influence the ability of Tat to interact with RNA and cellular proteins and thus could affect the antiviral activity of Nullbasic. Therefore, Nullbasic was tested against representative HIV-1 strains from subtypes C, D and A/D recombinant to determine if it can inhibit their replication. Methods Nullbasic was delivered to human cells using a self-inactivating (SIN) γ-retroviral system. We evaluated Nullbasic-mCherry (NB-mCh) fusion protein activity against the HIV-1 strains in TZM-bl cell lines for inhibition of transactivation and virus replication. We also examined antiviral activity of Nullbasic-ZsGreen1 (NB-ZSG1) fusion protein against the same strains in primary CD4+ T cells. The Nullbasic expression was monitored by western blot and flow cytometry. The effects of Nullbasic on primary CD4+ T cells cytotoxicity, proliferation and apoptosis were also examined. Results The results show that Nullbasic inhibits Tat-mediated transactivation and virus replication of all the HIV-1 strains tested in TZM-bl cells. Importantly, Nullbasic inhibits replication of the HIV-1 strains in primary CD4+ T cells without affecting cell proliferation, cytotoxicity or level of apoptotic cells. Conclusion A SIN-based γ-retroviral vector used to express Nullbasic fusion proteins improved protein expression particularly in primary CD4+ T cells. Nullbasic has antiviral activity against all strains from the subtypes tested although small differences in viral inhibition were observed. Further improvement of in γ-retroviral vector stable expression of Nullbasic expression may have utility in a future gene therapy approach applicable to genetically diverse HIV-1 strains. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0705-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lina Rustanti
- School of Medicine, the University of Queensland, Herston, QLD, 4029, Australia.,Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.,National Institute of Health Research and Development, the Ministry of Health of Republic of Indonesia, Jalan Percetakan Negara 29, Central Jakarta, 10560, Indonesia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Mary Lor
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Min Hsuan Lin
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, 33302, Taiwan
| | - Daniel J Rawle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.,School of Chemistry and Molecular Biosciences, the University of Queensland, St. Lucia, QLD, 4072, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.
| |
Collapse
|
6
|
Boudier C, Humbert N, Chaminade F, Chen Y, de Rocquigny H, Godet J, Mauffret O, Fossé P, Mély Y. Dynamic interactions of the HIV-1 Tat with nucleic acids are critical for Tat activity in reverse transcription. Nucleic Acids Res 2013; 42:1065-78. [PMID: 24153111 PMCID: PMC3902927 DOI: 10.1093/nar/gkt934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The HIV-1 transactivator of transcription (Tat) protein is thought to stimulate reverse transcription (RTion). The Tat protein and, more specifically, its (44–61) domain were recently shown to promote the annealing of complementary DNA sequences representing the HIV-1 transactivation response element TAR, named dTAR and cTAR, that plays a key role in RTion. Moreover, the kinetic mechanism of the basic Tat(44–61) peptide in this annealing further revealed that this peptide constitutes a representative nucleic acid annealer. To further understand the structure–activity relationships of this highly conserved domain, we investigated by electrophoresis and fluorescence approaches the binding and annealing properties of various Tat(44–61) mutants. Our data showed that the Tyr47 and basic residues of the Tat(44–61) domain were instrumental for binding to cTAR through stacking and electrostatic interactions, respectively, and promoting its annealing with dTAR. Furthermore, the annealing efficiency of the mutants clearly correlates with their ability to rapidly associate and dissociate the complementary oligonucleotides and to promote RTion. Thus, transient and dynamic nucleic acid interactions likely constitute a key mechanistic component of annealers and the role of Tat in the late steps of RTion. Finally, our data suggest that Lys50 and Lys51 acetylation regulates Tat activity in RTion.
Collapse
Affiliation(s)
- Christian Boudier
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, Illkirch 67401, France and Laboratoire de Biologie et Pharmacologie Appliquée, UMR-CNRS 8113, Ecole Normale Supérieure de Cachan, Cachan 94235, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rich EA, Orenstein JM, Jeang KT. A macrophage-tropic HIV-1 that expresses green fluorescent protein and infects alveolar and blood monocyte-derived macrophages. J Biomed Sci 2002. [DOI: 10.1007/bf02255001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Nekhai S, Zhou M, Fernandez A, Lane WS, Lamb NJC, Brady J, Kumar A. HIV-1 Tat-associated RNA polymerase C-terminal domain kinase, CDK2, phosphorylates CDK7 and stimulates Tat-mediated transcription. Biochem J 2002; 364:649-57. [PMID: 12049628 PMCID: PMC1222613 DOI: 10.1042/bj20011191] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HIV-1 gene expression is regulated by a viral transactivator protein (Tat) which induces transcriptional elongation of HIV-1 long tandem repeat (LTR). This induction requires hyperphosphorylation of the C-terminal domain (CTD) repeats of RNA polymerase II (Pol II). To achieve CTD hyperphosphorylation, Tat stimulates CTD kinases associated with general transcription factors of the promoter complex, specifically TFIIH-associated CDK7 and positive transcription factor b-associated CDK9 (cyclin-dependent kinase 9). Other studies indicate that Tat may bind an additional CTD kinase that regulates the target-specific phosphorylation of RNA Pol II CTD. We previously reported that Tat-associated T-cell-derived kinase (TTK), purified from human primary T-cells, stimulates Tat-dependent transcription of HIV-1 LTR in vivo [Nekhai, Shukla, Fernandez, Kumar and Lamb (2000) Virology 266, 246-256]. In the work presented here, we characterized the components of TTK by biochemical fractionation and the function of TTK in transcription assays in vitro. TTK uniquely co-purified with CDK2 and not with either CDK9 or CDK7. Tat induced the TTK-associated CDK2 kinase to phosphorylate CTD, specifically at Ser-2 residues. The TTK fraction restored Tat-mediated transcription activation of HIV-1 LTR in a HeLa nuclear extract immunodepleted of CDK9, but not in the HeLa nuclear extract double-depleted of CDK9 and CDK7. Direct microinjection of the TTK fraction augmented Tat transactivation of HIV-1 LTR in human primary HS68 fibroblasts. The results argue that TTK-associated CDK2 may function to maintain target-specific phosphorylation of RNA Pol II that is essential for Tat transactivation of HIV-1 promoter. They are also consistent with the observed cell-cycle-specific induction of viral gene transactivation.
Collapse
Affiliation(s)
- Sergei Nekhai
- Department of Biochemistry and Molecular Biology, The George Washington University, School of Medicine, 2300 Eye Street N.W., Washington, DC 20037, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- M Stevenson
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
10
|
Richman L, Meylan PRA, Munoz M, Pinaud S, Mirkovitch J. An adenovirus-based fluorescent reporter vector to identify and isolate HIV-infected cells. J Virol Methods 2002; 99:9-21. [PMID: 11684299 DOI: 10.1016/s0166-0934(01)00375-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A procedure is described that allows the simple identification and sorting of live human cells that transcribe actively the HIV virus, based on the detection of GFP fluorescence in cells. Using adenoviral vectors for gene transfer, an expression cassette including the HIV-1 LTR driving the reporter gene GFP was introduced into cells that expressed stably either the Tat transcriptional activator, or an inactive mutant of Tat. Both northern and fluorescence-activated cell sorting (FACS) analysis indicate that cells containing the functional Tat protein presented levels of GFP mRNA and GFP fluorescence several orders of magnitude higher than control cells. Correspondingly, cells infected with HIV-1 showed similar enhanced reporter gene activation. HIV-1-infected cells of the lymphocytic line Jurkat were easily identified by fluorescence-activated cell sorting (FACS) as they displayed a much higher green fluorescence after transduction with the reporter adenoviral vector. This procedure could also be applied on primary human cells as blood monocyte-derived macrophages exposed to the adenoviral LTR-GFP reporter presented a much higher fluorescence when infected with HIV-1 compared with HIV-uninfected cells. The vector described has the advantages of labelling cells independently of their proliferation status and that analysis can be carried on intact cells which can be isolated subsequently by fluorescence-activated cell sorting (FACS) for further culture. This work suggests that adenoviral vectors carrying a virus-specific transcriptional control element controlling the expressions of a fluorescent protein will be useful in the identification and isolation of cells transcribing actively the viral template, and to be of use for drug screening and susceptibility assays.
Collapse
Affiliation(s)
- Larry Richman
- Swiss Institute for Experimental Cancer Research (ISREC), Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Daher A, Longuet M, Dorin D, Bois F, Segeral E, Bannwarth S, Battisti PL, Purcell DF, Benarous R, Vaquero C, Meurs EF, Gatignol A. Two dimerization domains in the trans-activation response RNA-binding protein (TRBP) individually reverse the protein kinase R inhibition of HIV-1 long terminal repeat expression. J Biol Chem 2001; 276:33899-905. [PMID: 11438532 DOI: 10.1074/jbc.m103584200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trans-activation response (TAR) RNA-binding protein (TRBP) is a cellular protein that binds to the human immunodeficiency virus-1 (HIV-1) TAR element RNA. It has two double-stranded RNA binding domains (dsRBDs), but only one is functional for TAR binding. TRBP interacts with the interferon-induced protein kinase R (PKR) and inhibits its activity. We used the yeast two-hybrid assay to map the interaction sites between the two proteins. We show that TRBP and PKR-N (178 first amino acids of PKR) interact with PKR wild type and inhibit the PKR-induced yeast growth defect in this assay. We characterized two independent PKR-binding sites in TRBP. These sites are located in each dsRBD in TRBP, indicating that PKR-TRBP interaction does not require the RNA binding activity present only in dsRBD2. TRBP and its fragments that interact with PKR reverse the PKR-induced suppression of HIV-1 long terminal repeat expression. In addition, TRBP activates the HIV-1 long terminal repeat expression to a larger extent than the addition of each domain. These data suggest that TRBP activates gene expression in PKR-dependent and PKR-independent manners.
Collapse
Affiliation(s)
- A Daher
- Molecular Oncology Group/McGill AIDS Centre, Lady Davis Institute for Medical Research, 3755 Côte Ste Catherine, Montréal H3T 1E2, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tong N, Sanchez JF, Maggirwar SB, Ramirez SH, Guo H, Dewhurst S, Gelbard HA. Activation of glycogen synthase kinase 3 beta (GSK-3beta) by platelet activating factor mediates migration and cell death in cerebellar granule neurons. Eur J Neurosci 2001; 13:1913-22. [PMID: 11403684 DOI: 10.1046/j.0953-816x.2001.01572.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Children with vertically acquired HIV-1 can present with a rapidly progressive encephalopathy and neuronal apoptosis in the first 12-18 months of life. Furthermore, abnormal prenatal platelet activating factor (PAF) signalling may result in lissencephaly, a disorder of neuronal migration. PAF, produced from human immunodeficiency virus type 1 (HIV-1) -infected brain-resident macrophages, induces neuronal apoptosis in cultured cerebellar granule neurons (CGNs) in part by activating glycogen synthase kinase 3 beta (GSK-3beta). However, PAF can also inhibit migration of CGNs that are dispersed and allowed to reaggregate. Therefore, we investigated the biological effects following activation of GSK-3beta by PAF, and whether these effects were dependent on the culture conditions of the CGNs. We show here that activation of neuronal GSK-3beta by PAF is receptor-specific, with similar kinetics of activation in both monolayer cultures of CGNs that have ceased to migrate and reaggregate cultures of CGNs that are actively migrating. However, PAF receptor activation in reaggregated CGNs inhibits neuronal migration and induces approximately half the level of neuronal apoptosis compared with PAF-treated CGN cultures that have ceased to migrate. PAF-mediated inhibition of neuronal migration in reaggregated CGNs or induction of apoptosis in CGNs that have ceased to migrate can be reversed by either PAF receptor antagonists, or the GSK-3beta inhibitors lithium or valproic acid, in a dose-dependent manner. Abnormal PAF signalling that results in GSK-3beta overactivation may represent a common mechanism for pathological defects in neuronal migration in the prenatal period and neuronal apoptosis in the postnatal period.
Collapse
Affiliation(s)
- N Tong
- Center for Ageing and Developmental Biology, Aab Biomedical Institute, University of Rochester Medical Center, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Berkhout B. Multiple biological roles associated with the repeat (R) region of the HIV-1 RNA genome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:29-73. [PMID: 10987088 DOI: 10.1016/s1054-3589(00)48003-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- B Berkhout
- Department of Human Retrovirology, University of Amsterdam, The Netherlands
| |
Collapse
|
14
|
Van Lint C. Role of chromatin in HIV-1 transcriptional regulation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:121-60. [PMID: 10987090 DOI: 10.1016/s1054-3589(00)48005-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- C Van Lint
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
15
|
Gatignol A, Jeang KT. Tat as a transcriptional activator and a potential therapeutic target for HIV-1. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:209-27. [PMID: 10987092 DOI: 10.1016/s1054-3589(00)48007-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- A Gatignol
- U529 INSERM, Institut Cochin de Génétique Moléculaire, Paris, France
| | | |
Collapse
|
16
|
Chen H, He J, Fong S, Wilcox G, Wood C. Jembrana disease virus Tat can regulate human immunodeficiency virus (HIV) long terminal repeat-directed gene expression and can substitute for HIV Tat in viral replication. J Virol 2000; 74:2703-13. [PMID: 10684286 PMCID: PMC111760 DOI: 10.1128/jvi.74.6.2703-2713.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Jembrana disease virus (JDV) is a bovine lentivirus genetically similar to bovine immunodeficiency virus; it causes an acute and sometimes fatal disease in infected animals. This virus carries a very potent Tat that can strongly activate not only its own long terminal repeat (LTR) but also the human immunodeficiency virus (HIV) LTR. In contrast, HIV Tat cannot reciprocally activate the JDV LTR (H. Chen, G. E. Wilcox, G. Kertayadnya, and C. Wood, J. Virol. 73:658-666, 1999). This indicates that in transactivation JDV Tat may utilize a mechanism similar to but not the same as that of the HIV Tat. To further study the similarity of JDV and HIV tat in transactivation, we first tested the responses of a series of HIV LTR mutants to the JDV Tat. Cross-transactivation of HIV LTR by JDV Tat was impaired by mutations that disrupted the HIV type 1 transactivation response element (TAR) RNA stem-loop structure. Our results demonstrated that JDV Tat, like HIV Tat, transactivated the HIV LTR at least partially in a TAR-dependent manner. However, the sequence in the loop region of TAR was not as critical for the function of JDV Tat as it was for HIV Tat. The competitive inhibition of Tat-induced transactivation by the truncated JDV or HIV Tat, which consisted only of the activation domain, suggested that similar cellular factors were involved in both JDV and HIV Tat-induced transactivation. Based on the one-round transfection assay with HIV tat mutant proviruses, the cotransfected JDV tat plasmid can functionally complement the HIV tat defect. To further characterize the effect of JDV Tat on HIV, a stable chimeric HIV carrying the JDV tat gene was generated. This chimeric HIV replicated in a T-cell line, C8166, and in peripheral blood mononuclear cells, which suggested that JDV Tat can functionally substitute for HIV Tat. Further characterization of this chimeric virus will help to elucidate how JDV Tat functions and to explain the differences between HIV and JDV Tat transactivation.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Binding, Competitive
- Cattle
- Cells, Cultured
- Gene Expression
- Gene Expression Regulation, Viral
- Gene Products, tat/classification
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- Genetic Complementation Test
- HIV Long Terminal Repeat
- HIV-1/genetics
- HIV-1/physiology
- Humans
- Lentiviruses, Bovine/genetics
- Leukocytes, Mononuclear/cytology
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- Proviruses/genetics
- RNA, Viral
- Transcriptional Activation
- Virus Replication/physiology
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- H Chen
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | | | | | | | | |
Collapse
|
17
|
Taube R, Fujinaga K, Wimmer J, Barboric M, Peterlin BM. Tat transactivation: a model for the regulation of eukaryotic transcriptional elongation. Virology 1999; 264:245-53. [PMID: 10562489 DOI: 10.1006/viro.1999.9944] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- R Taube
- Department of Medicine, University of California, San Francisco, San Francisco, California, 94143-0703, USA
| | | | | | | | | |
Collapse
|
18
|
Maggirwar SB, Tong N, Ramirez S, Gelbard HA, Dewhurst S. HIV-1 Tat-mediated activation of glycogen synthase kinase-3beta contributes to Tat-mediated neurotoxicity. J Neurochem 1999; 73:578-86. [PMID: 10428053 DOI: 10.1046/j.1471-4159.1999.0730578.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat induces neuronal apoptosis. To examine the mechanism(s) that contribute to this process, we studied Tat's effects on glycogen synthase kinase-3beta (GSK-3beta), an enzyme that has been implicated in the regulation of apoptosis. Addition of Tat to rat cerebellar granule neurons resulted in an increase in GSK-3beta activity, which was not associated with a change in protein expression and could be abolished by the addition of an inhibitor of GSK-3beta (lithium). Lithium also enhanced neuronal survival following exposure to Tat. Coprecipitation experiments revealed that Tat can associate with GSK-3beta, but direct addition of Tat to purified GSK-3beta had no effect on enzyme activity, suggesting that Tat's effects might be mediated indirectly. As the activation of platelet activating factor (PAF) receptors is critical for the induction of neuronal death by several candidate HIV-1 neurotoxins, we determined whether PAF can also activate GSK-3beta. Application of PAF to neuronal cultures activated GSK-3beta, and coincubation with lithium ameliorated PAF-induced neuronal apoptosis. These findings are consistent with the existence of one or more pathways that can lead to GSK-3beta activation in neurons, and they suggest that the dysregulation of this enzyme could contribute to HIV-induced neuronal apoptosis.
Collapse
Affiliation(s)
- S B Maggirwar
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York 14642, USA
| | | | | | | | | |
Collapse
|
19
|
Boykins RA, Mahieux R, Shankavaram UT, Gho YS, Lee SF, Hewlett IK, Wahl LM, Kleinman HK, Brady JN, Yamada KM, Dhawan S. Cutting Edge: A Short Polypeptide Domain of HIV-1-Tat Protein Mediates Pathogenesis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
HIV-1 encodes the transactivating protein Tat, which is essential for virus replication and progression of HIV disease. However, Tat has multiple domains, and consequently the molecular mechanisms by which it acts remain unclear. In this report, we provide evidence that cellular activation by Tat involves a short core domain, Tat21–40, containing only 20 aa including seven cysteine residues highly conserved in most HIV-1 subtypes. Effective induction by Tat21–40 of both NF-κB-mediated HIV replication and TAR-dependent transactivation of HIV-long terminal repeat indicates that this short sequence is sufficient to promote HIV infection. Moreover, Tat21–40 possesses potent angiogenic activity, further underscoring its role in HIV pathogenesis. These data provide the first demonstration that a 20-residue core domain sequence of Tat is sufficient to transactivate, induce HIV replication, and trigger angiogenesis. This short peptide sequence provides a potential novel therapeutic target for disrupting the functions of Tat and inhibiting progression of HIV disease.
Collapse
Affiliation(s)
| | - Renaud Mahieux
- ‡Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | | | - Yong Song Gho
- ¶Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Sherwin F. Lee
- †Immunopathogenesis Section, Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Indira K. Hewlett
- †Immunopathogenesis Section, Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | | | - Hynda K. Kleinman
- ¶Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - John N. Brady
- ‡Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Kenneth M. Yamada
- ¶Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Subhash Dhawan
- †Immunopathogenesis Section, Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| |
Collapse
|
20
|
Rana TM, Jeang KT. Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch Biochem Biophys 1999; 365:175-85. [PMID: 10328810 DOI: 10.1006/abbi.1999.1206] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV-1 trans-activator of transcription (Tat) is an unusual transcriptional activator in being an RNA-binding protein rather than a DNA-binding protein. Recent findings have greatly advanced our understanding of the transcriptional function(s) of this protein. Here we review how Tat interacts with trans-activation responsive RNA and how this interaction contributes to transcription. We discuss the biological implications of recent studies showing an association of Tat with cellular kinases(s) and protein acetylases. Evidence for nontranscriptional activities of the Tat protein is also summarized.
Collapse
Affiliation(s)
- T M Rana
- Department of Pharmacology, Robert Wood Johnson (Rutgers) Medical School, 675 Hoes Lane, Piscataway, New Jersey, 08854, USA
| | | |
Collapse
|
21
|
Wang Z, Morris GF, Reed JC, Kelly GD, Morris CB. Activation of Bcl-2 promoter-directed gene expression by the human immunodeficiency virus type-1 Tat protein. Virology 1999; 257:502-10. [PMID: 10329560 DOI: 10.1006/viro.1999.9688] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat transcriptionally activates expression from a number of viral and cellular promoters. Recent studies demonstrate the ability of Tat to differentially modulate cellular responses to apoptotic signaling. The antiapoptotic effects of Tat appear to correlate with increased expression of Bcl-2, a cellular protein that enhances cellular survival. Here, endogenous expression of HIV-1 Tat in HeLa and Jurkat cells elevates levels of Bcl-2. Transient expression assays performed in HeLa cells demonstrate that Tat directly or indirectly enhances Bcl-2 promoter-directed gene expression by more than 10-fold. Analyses of Tat mutants demonstrate that two noncontiguous regions in the N- and C-termini of Tat mediate maximal transactivation of the Bcl-2 promoter. The requirement for C-terminal sequences contrasts with transactivation of the HIV-1 long terminal repeat in which the N-terminal 57 amino acids are required but downstream residues are not. Bcl-2 promoter analyses suggest that sequences required for Tat responsiveness are located upstream of P1 and between the P1 and P2 promoter units. Results from these studies reveal effects of HIV-1 Tat on Bcl-2 expression and provide a putative mechanism by which endogenously expressed Tat affects cellular survival through the up-regulation of Bcl-2.
Collapse
Affiliation(s)
- Z Wang
- Department of Pathology and Laboratory Medicine, Tulane Cancer Center, New Orleans, Louisiana, 70112, USA
| | | | | | | | | |
Collapse
|
22
|
Helga-Maria C, Hammarskjöld ML, Rekosh D. An intact TAR element and cytoplasmic localization are necessary for efficient packaging of human immunodeficiency virus type 1 genomic RNA. J Virol 1999; 73:4127-35. [PMID: 10196309 PMCID: PMC104192 DOI: 10.1128/jvi.73.5.4127-4135.1999] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1998] [Accepted: 02/01/1999] [Indexed: 12/13/2022] Open
Abstract
Although most reports defining the human immunodeficiency virus type 1 (HIV-1) genomic RNA packaging signal have focused on the region downstream of the major 5' splice site, others have suggested that sequences upstream of the splice site may also play an important role. In this study we have directly examined the role played by the HIV-1 TAR region in RNA packaging. For these experiments we used a proviral expression system that is largely independent of Tat for transcriptional activation. This allowed us to create constructs that efficiently expressed RNAs carrying mutations in TAR and to determine the ability of these RNAs to be packaged. Our results indicate that loss of sequences in TAR significantly reduce the ability of a viral RNA to be packaged. The requirement for TAR sequences in RNA packaging was further examined by using a series of missense mutations positioned throughout the entire TAR structure. TAR mutations previously shown to influence Tat transactivation, such as G31U in the upper loop region or UCU to AAG in the bulge (nucleotides [nt] 22 to 24), failed to have any effect on RNA packaging. Mutations which disrupted the portion of the TAR stem immediately below the bulge also had little effect. In contrast, dramatic effects on RNA packaging were observed with constructs containing mutations in the lower portion of the TAR stem. Point mutations which altered nt 5 to 9, 10 to 15, 44 to 49, or 50 to 54 all reduced RNA packaging 11- to 25-fold. However, compensatory double mutations which restored the stem structure were able to restore packaging. These results indicate that an intact lower stem structure, rather than a specific sequence, is required for RNA packaging. Our results also showed that RNA molecules retained within the nucleus cannot be packaged, unless they are transported to the cytoplasm by either Rev/Rev response element or the Mason-Pfizer monkey virus constitutive transport element.
Collapse
Affiliation(s)
- C Helga-Maria
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
23
|
Verhoef K, Berkhout B. A second-site mutation that restores replication of a Tat-defective human immunodeficiency virus. J Virol 1999; 73:2781-9. [PMID: 10074125 PMCID: PMC104035 DOI: 10.1128/jvi.73.4.2781-2789.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We previously constructed a large set of mutants of the human immunodeficiency virus type 1 (HIV-1) regulatory protein Tat with conservative amino acid substitutions in the activation domain. These Tat variants were analyzed in the context of the infectious virus, and several mutants were found to be defective for replication. In an attempt to obtain second-site suppressor mutations that could provide information on the Tat protein structure, some of the replication-impaired viruses were used as a parent for the isolation of revertant viruses with improved replication capacity. Sequence analysis of revertant viruses frequently revealed changes within the tat gene, most often first-site reversions either to the wild-type amino acid or to related amino acids that restore, at least partially, the Tat function and virus replication. Of 30 revertant cultures, we identified only one second-site suppressor mutation. The inactive Y26A mutant yielded the second-site suppressor mutation Y47N that partially restored trans-activation activity and virus replication. Surprisingly, when the suppressor mutation was introduced in the wild-type Tat background, it also improved the trans-activation function of this protein about twofold. We conclude that the gain of function measured for the Y47N change is not specific for the Y26A mutant, arguing against a direct interaction of Tat amino acids 26 and 47 in the three-dimensional fold of this protein. Other revertant viruses did not contain any additional Tat changes, and some viruses revealed putative second-site Tat mutations that did not significantly improve Tat function and virus replication. We reason that these mutations were introduced by chance through founder effects or by linkage to suppressor mutations elsewhere in the virus genome. In conclusion, the forced evolution of mutant HIV-1 genomes, which is an efficient approach for the analysis of RNA regulatory motifs, seems less suited for the analysis of the structure of this small transcription factor, although protein variants with interesting properties can be generated.
Collapse
Affiliation(s)
- K Verhoef
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
24
|
Trinh DP, Brown KM, Jeang KT. Epithelin/granulin growth factors: extracellular cofactors for HIV-1 and HIV-2 Tat proteins. Biochem Biophys Res Commun 1999; 256:299-306. [PMID: 10079180 DOI: 10.1006/bbrc.1999.0317] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epithelin/granulin growth factor is synthesized as a 593 amino acid precursor protein that contains 7.5 imperfectly conserved repeats of approximately 57 amino acids. Processed epithelin/granulin peptides have been isolated from vertebrate/invertebrate species and are growth factors implicated in epithelial and haemic cell function. Here they are identified as Human Immunodeficiency Virus (HIV) Tat binding proteins using the yeast two-hybrid assay. Intracellularly in yeast, mutation of selected cysteines in an epithelin/granulin dimeric repeat caused loss of binding to Tat exon 1. In vitro binding of HIV-1 and HIV-2 Tat to epithelin/granulin dimeric and monomeric repeats was also observed by GST-glutathione bead "pulldown" assays. Because Tat is actively secreted from HIV-infected cells and has been shown to serve as a mitogenic factor for angiogenesis and for Kaposi-like cells, our observations suggest that epithelin/granulin growth factors may function as biologically important extracellular Tat co-factors.
Collapse
Affiliation(s)
- D P Trinh
- Department of Biological Sciences, George Washington University, 332 Lisner Hall, 2023 G Street N.W., Washington, DC 20052, USA
| | | | | |
Collapse
|
25
|
Verhoef K, Sanders RW, Fontaine V, Kitajima S, Berkhout B. Evolution of the human immunodeficiency virus type 1 long terminal repeat promoter by conversion of an NF-kappaB enhancer element into a GABP binding site. J Virol 1999; 73:1331-40. [PMID: 9882338 PMCID: PMC103957 DOI: 10.1128/jvi.73.2.1331-1340.1999] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) transcription is regulated by the viral Tat protein and cellular factors, of which the concentration and activity may depend on the cell type. Viral long terminal repeat (LTR) promoter sequences are therefore optimized to suit the specific nuclear environment of the target host cell. In long-term cultures of a Tat-defective, poorly replicating HIV-1 mutant, we selected for a faster-replicating virus with a 1-nucleotide deletion in the upstream copy of two highly conserved NF-kappaB binding sites. The variant enhancer sequence demonstrated a severe loss of NF-kappaB binding in protein binding assays. Interestingly, we observed a new binding activity that is specific for the variant NF-kappaB sequence and is present in the nuclear extract of unstimulated cells that lack NF-kappaB. These results suggest that inactivation of the NF-kappaB site coincides with binding of another transcription factor. Fine mapping of the sequence requirements for binding of this factor revealed a core sequence similar to that of Ets binding sites, and supershift assays with antibodies demonstrated the involvement of the GABP transcription factor. Transient transfection experiments with LTR-chloramphenicol acetyltransferase constructs indicated that the variant LTR promoter is specifically inhibited by GABP in the absence of Tat, but this promoter was dramatically more responsive to Tat than the wild-type LTR. Introduction of this GABP site into the LAI virus yielded a specific gain of fitness in SupT1 cells, which contain little NF-kappaB protein. These results suggest that GABP potentiates Tat-mediated activation of LTR transcription and viral replication in some cell types. Conversion of an NF-kappaB into a GABP binding site is likely to have occurred also during the worldwide spread of HIV-1, as we noticed the same LTR modification in subtype E isolates from Thailand. This typical LTR promoter configuration may provide these viruses with unique biological properties.
Collapse
Affiliation(s)
- K Verhoef
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|