1
|
Lin X, Jun-Tian Z. Neuroprotection by D-securinine against neurotoxicity induced by beta-amyloid (25–35). Neurol Res 2013; 26:792-6. [PMID: 15494124 DOI: 10.1179/016164104225014148] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The effects of (+) securinine on behavior and morphological changes after intracerebral ventricle injection of beta-amyloid (25-35) (Abeta(25-35)) in rats were investigated. A single high dose of Abeta(25-35) could impair the spatial cognitive function. The latency of locating the platform was longer in the model group than in the sham-operated group. While chronic administration of D-securinine (40 mg kg(-1)) could significantly shorten the latency. After Morris water maze, the activity of choline acetyltransferase (ChAT) and acetylcholinesterase (AchE) were detected. The results showed that D-securinine could decrease the AchE activity significantly and have no effect on ChAT. Meanwhile, immunohistochemistry analysis revealed that D-securinine could reduce the glial inflammatory responses induced by beta-amyloid protein. These results suggest that the effect of D-securinine in improving the cognitive deficits and neurodegeneration in betaAP(25-35)-treated rats may involve direct and indirect actions on targets. The GABA receptor plays a key role in these therapeutic effects and may be helpful in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Xu Lin
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | | |
Collapse
|
2
|
|
3
|
|
4
|
How does the physiology change with symptom exacerbation and remission in schizophrenia? Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00065122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
|
6
|
|
7
|
|
8
|
|
9
|
A cardinal principle for neuropsychology, with implications for schizophrenia and mania. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00065195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
|
11
|
|
12
|
|
13
|
|
14
|
|
15
|
|
16
|
|
17
|
|
18
|
Abstract
AbstractA model is proposed for integrating the neural and cognitive aspects of the positive symptoms of acute schizophrenia, using evidence from postmortem neuropathology and neurochemistry, clinical and preclinical studies of dopaminergic neurotransmission, anatomical connections between the limbic system and basal ganglia, attentional and other cognitive abnormalities underlying the positive symptoms of schizophrenia, specific animal models of some of these abnormalities, and previous attempts to model the cognitive functions of the septohippocampal system and the motor functions of the basal ganglia. Anatomically, the model emphasises the projections from the septohippocampal system, via the subiculum, and the amygdala to nucleus accumbens, and their interaction with the ascending dopaminergic projection to the accumbens. Psychologically, the model emphasises a failure in acute schizophrenia to integrate stored memories of past regularities of perceptual input with ongoing motor programs in the control of current perception. A number of recent experiments that offer support for the model are briefly described, including anatomical studies of limbic-striatal connections, studies in the rat of the effects of damage to these connections, and of the effects of amphetamine and neuroleptics, on the partial reinforcement extinction effect, latent inhibition and the Kamin blocking effect; and studies of the latter two phenomena in acute and chronic schizophrenics.
Collapse
|
19
|
|
20
|
|
21
|
|
22
|
|
23
|
A realistic model will be much more complex and will consider longitudinal neuropsychodevelopment. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00065286] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
|
25
|
|
26
|
|
27
|
Sarter M, Bruno JP, Parikh V, Martinez V, Kozak R, Richards JB. Forebrain dopaminergic-cholinergic interactions, attentional effort, psychostimulant addiction and schizophrenia. EXS 2006; 98:65-86. [PMID: 17019883 DOI: 10.1007/978-3-7643-7772-4_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Ayala-Grosso C, Tam J, Xanthoudakis S, Bureau Y, Roy S, Nicholson DW, Robertson GS. Effects of fimbria-fornix transection on calpain and choline acetyl transferase activities in the septohippocampal pathway. Neuroscience 2004; 126:927-40. [PMID: 15207327 DOI: 10.1016/j.neuroscience.2004.04.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 03/28/2004] [Accepted: 04/22/2004] [Indexed: 01/09/2023]
Abstract
The ability of fimbria-fornix bilateral axotomy to elicit calpain and caspase-3 activation in the rat septohippocampal pathway was determined using antibodies that selectively recognize either calpain- or caspase-cleaved products of the cytoskeletal protein alphaII-spectrin. Radioenzymatically determined choline acetyl transferase (ChAT) activity was elevated in the septum at day 5, but reduced in the dorsal hippocampus at days 3, 5 and 7, after axotomy. Prominent accumulation of calpain-, but not caspase-3-, cleaved spectrin proteolytic fragments was observed in both the septum and dorsal hippocampus 1-7 days after axotomy. ChAT-positive neuronal cell bodies in the septum also displayed calpain-cleaved spectrin indicating that calpain activation occurred in cholinergic septal neurons as a consequence of transection of the septohippocampal pathway. Calpain-cleaved alphaII-spectrin immunoreactivity was observed in cholinergic fibers coursing through the fimbria-fornix, but not in pyramidal neurons of the dorsal hippocampus, suggesting that degenerating cholinergic nerve terminals were the source of calpain activity in the dorsal hippocampus following axotomy. Accumulation of calpain-cleaved spectrin proteolytic fragments in the dorsal hippocampus and septum at day 5 after axotomy was reduced by i.c.v. administration of two calpain inhibitors. Calpain inhibition partially reduced the elevation of ChAT activity in the septum produced by transection but failed to decrease the loss of ChAT activity in the dorsal hippocampus following axotomy. These findings suggest that calpain activation contributes to the cholinergic cell body response and hippocampal axonal cytoskeletal degradation produced by transection of the septohippocampal pathway.
Collapse
Affiliation(s)
- C Ayala-Grosso
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir-William-Osler, Montreal, Canada H3G 1Y6
| | | | | | | | | | | | | |
Collapse
|
29
|
Riekkinen P, Riekkinen M, Sirviö J, Riekkinen P. Effects of ZK 93426 on muscarinic and nicotinic antagonist or nucleus basalis lesioning-induced electrocortical slowing. Psychopharmacology (Berl) 2001; 111:195-201. [PMID: 7870952 DOI: 10.1007/bf02245523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study investigated the effects of a benzodiazepine receptor antagonist, beta-carboline ZK 93426 (1, 3 and 10 mg/kg, IP), on scopolamine and nucleus basalis (NB) quisqualic acid lesion-induced neocortical electrocortical activity slowing in rats. Scopolamine induced a dose dependent increase in EEG spectral values and slow delta waves (0.3 < 0.9 = 2.7 mg/kg IP). ZK 93426 partially reversed EEG slowing induced by the smallest scopolamine dose (0.3 mg/kg), but had no effect on the EEG changes induced by higher doses. A combination of scopolamine at 0.3 mg/kg and mecamylamine (a centrally active nicotinic antagonist) at 10 mg/kg induced an EEG slowing that was not reversed by ZK 93426. NB lesions markedly decreased cortical choline acetyltransferase (ChAT) activity (-77%) and increased EEG slow waves. ZK 93426 had no effect on the NB lesion-induced slow wave activity increase. The present results support the idea that beta-carboline ZK 93426 may increase cortical cholinergic activity by disinhibiting the NB cholinergic neurons. However, if the activity of "NB to cortex" cholinergic system is greatly decreased by either a marked reduction in NB cell number (in NB-lesioned rats), a near complete cortical post-synaptic muscarinic receptor blockade (large scopolamine dose) or by a combination of nicotinic (decrease acetylcholine release) and muscarinic receptor blockade, the effects of beta-carboline ZK 93426 on EEG slowing may be negligible.
Collapse
Affiliation(s)
- P Riekkinen
- University of Kuopio, Department of Neurology, Finland
| | | | | | | |
Collapse
|
30
|
Sirviö J, Harju M, Riekkinen P, Haapalinna A, Riekkinen PJ. Comparative effects of alpha-2 receptor agents and THA on the performance of adult and aged rats in the delayed non-matching to position task. Psychopharmacology (Berl) 2001; 109:127-33. [PMID: 1365646 DOI: 10.1007/bf02245490] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study investigated the effects of dexmedetomidine (an alpha-2 adrenoceptor agonist), atipamezole (an alpha-2 adrenoceptor antagonist) and tacrine (an inhibitor of acetylcholinesterase) on the performance of adult and aged rats in a delayed non-matching to position task assessing spatial short-term memory. Most of the aged rats were impaired in the pretraining phases and in the acquisition of the non-delayed version of the task. After a substantial training period of the delayed version of the task, both adult and aged rats reached their asymptotic level of performance. Both adult and aged rats showed a decline in the percent correct responses at the longest delays in this task, and a delay independent decrease in the percent correct responses across the delays (0-30 s) was found in the group of aged rats (25-month-old) as compared to the adults (10-month-old). Dexmedetomidine (0.3, 1.0 or 3.0 micrograms/kg), atipamezole (0.03, 0.3 or 3.0 mg/kg) and tacrine (1.0 or 3.0 mg/kg) did not increase the percent correct responses in adult or aged rats. The highest doses of dexmedetomidine and tacrine decreased behavioural activity of rats during this short-term memory testing. Atipamezole (0.03 mg/kg) increased behavioural activity of rats. The results suggest that acute, systemic administrations of alpha-2 drugs or an anticholinesterase do not improve short-term memory in rats.
Collapse
Affiliation(s)
- J Sirviö
- Department of Neurology, University of Kuopio, Finland
| | | | | | | | | |
Collapse
|
31
|
Arnold HM, Fadel J, Sarter M, Bruno JP. Amphetamine-stimulated cortical acetylcholine release: role of the basal forebrain. Brain Res 2001; 894:74-87. [PMID: 11245817 DOI: 10.1016/s0006-8993(00)03328-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Systemic administration of amphetamine results in increases in the release of acetylcholine in the cortex. Basal forebrain mediation of this effect was examined in three experiments using microdialysis in freely-moving rats. Experiment 1 examined whether dopamine receptor activity within the basal forebrain was necessary for amphetamine-induced increase in cortical acetylcholine by examining whether intra-basalis perfusion of dopamine antagonists attenuates this increase. Systemic administration of 2.0 mg/kg amphetamine increased dopamine efflux within the basal forebrain nearly 700% above basal levels. However, the increase in cortical acetylcholine efflux following amphetamine administration was unaffected by intra-basalis perfusions of high concentrations of D1- (100 microM SCH 23390) or D2-like (100 microM sulpiride) dopamine receptor antagonists. Experiments 2 and 3 determined whether glutamatergic or GABAergic local modulation of the excitability of the basal forebrain cholinergic neurons influences the ability of systemic amphetamine to increase cortical acetylcholine efflux. In Experiment 2, perfusion of kynurenate (1.0 mM), a non-selective glutamate receptor antagonist, into the basal forebrain attenuated the increase in cortical acetylcholine produced by amphetamine. Experiment 3 revealed that positive modulation of GABAergic transmission by bilateral intra-basalis infusion of the benzodiazepine receptor agonist chlordiazepoxide (40 microg/hemisphere) also attenuated the amphetamine-stimulated increase in cortical acetylcholine efflux. These data suggest that amphetamine increases cortical acetylcholine release via a complex neuronal network rather than simply increasing basal forebrain D1 or D2 receptor activity.
Collapse
Affiliation(s)
- H M Arnold
- Department of Psychology, 31 Townshend Hall, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
32
|
Beninger RJ, Dringenberg HC, Boegman RJ, Jhamandas K. Cognitive effects of neurotoxic lesions of the nucleus basalis magnocellularis in rats: differential roles for corticopetal versus amygdalopetal projections. Neurotox Res 2001; 3:7-21. [PMID: 15111258 DOI: 10.1007/bf03033227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cholinergic hypothesis states that cholinergic neurons of the basal forebrain nucleus basalis magnocellularis (nbm) that project to cortical and amygdalar targets play an important role in memory. Biochemical studies have shown that these target areas are differentially sensitive to different excitotoxins (e.g., ibotenate vs. quisqualate). This observation might explain the finding from many behavioural studies of memory that different excitotoxins affect memory differentially even though they produce about the same level of depletion of cholinergic markers in the cortex and similar cortical electrophysiological effects. Thus, the magnitude of mnemonic impairment might be related to the extent of damage to cholinergic projections to the amygdala more than to the extent of damage to corticopetal cholinergic projections. This explanation might similarly apply to the observation that the immunotoxin 192 IgG-saporin produces mild effects on memory when injected into the nbm. This is because it damages cholinergic neurons projecting to the cortex but not those projecting to the amygdala. Studies comparing the effects on memory of ibotenic acid vs. quisqualic acid lesions of the nbm are reviewed as are studies of the mnemonic effects of 192 IgG-saporin. Results support the cholinergic hypothesis and suggest that amygdalopetal cholinergic neurons of the nbm play an important role in the control of memory.
Collapse
Affiliation(s)
- R J Beninger
- Departments of Psychology, Psychiatry, and Pharmacology & Toxicology, Queen's University, Kingston K7L 3N6, Canada.
| | | | | | | |
Collapse
|
33
|
Abstract
Single, biocytin filled neurons in combination with immunocytochemistry and retrograde tracing as well as material with traditional double-immunolabeling were used at the light and electron microscopic levels to study the neural circuitry within the basal forebrain. Cholinergic neurons projecting to the frontal cortex exhibited extensive local collaterals terminating on non-cholinergic, (possible GABAergic) neurons within the basal forebrain. Elaborate axon arbors confined to the basal forebrain region also originated from NPY, somatostatin and other non-cholinergic interneurons. It is proposed that putative interneurons together with local collaterals from projection neurons contribute to regional integrative processing in the basal forebrain that may participate in more selective functions, such as attention and cortical plasticity.
Collapse
Affiliation(s)
- L Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA.
| | | |
Collapse
|
34
|
Sarter M, Bruno JP. Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience 2000; 95:933-52. [PMID: 10682701 DOI: 10.1016/s0306-4522(99)00487-x] [Citation(s) in RCA: 270] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Basal forebrain corticopetal neurons participate in the mediation of arousal, specific attentional functions and rapid eye movement sleep-associated dreaming. Recent studies on the afferent regulation of basal forebrain neurons by telencephalic and brainstem inputs have provided the basis for hypotheses which, collectively, propose that the involvement of basal forebrain corticopetal projections in arousal, attention and dreaming can be dissociated on the basis of their regulation via major afferent projections. While the processing underlying sustained, selective and divided attention performance depends on the integrity of the telencephalic afferent regulation of basal forebrain corticopetal neurons, arousal-induced attentional processing (i.e. stimulus detection, selection and processing as a result of a novel, highly salient, aversive or incentive stimuli) is mediated via the ability of brainstem ascending noradrenergic projections to the basal forebrain to activate or "recruit" these telencephalic afferent circuits of the basal forebrain. In rapid eye movement sleep, both the basal forebrain and thalamic cortiocopetal projections are stimulated by cholinergic afferents originating mainly from the pedunculopontine and laterodorsal tegmenta in the brainstem. Rapid eye movement sleep-associated dreaming is described as a form of hyperattentional processing, mediated by increased activity of cortical cholinergic inputs and their cortical interactions with activated thalamic efferents. In this context, long-standing speculations about the similarities between dreaming and psychotic cognition are substantiated by describing the role of an over(re)active cortical cholinergic input system in either condition. Finally, while determination of the afferent regulation of basal forebrain corticopetal neurons in different behavioral/cognitive states assists in defining the general cognitive functions of cortical acetylcholine, this research requires a specification of the precise anatomical organization of basal forebrain afferents and their interactions in the basal forebrain. Furthermore, the present hypotheses remain incomplete because of the paucity of data concerning the regulation and role of basal forebrain non-cholinergic, particularly GABAergic, efferents.
Collapse
Affiliation(s)
- M Sarter
- Department of Psychology, The Ohio State University, Columbus 43210, USA.
| | | |
Collapse
|
35
|
Sarter M, Bruno JP, Turchi J. Basal forebrain afferent projections modulating cortical acetylcholine, attention, and implications for neuropsychiatric disorders. Ann N Y Acad Sci 1999; 877:368-82. [PMID: 10415659 DOI: 10.1111/j.1749-6632.1999.tb09277.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cortical acetylcholine (ACh) mediates the detection, selection, and processing of stimuli and associations, and the allocation of processing resources for these attentional functions. For example, loss of cortical cholinergic inputs impairs the performance of rats in tasks designed to assess sustained or divided attention. Intrabasalis infusions of benzodiazepine receptor (BZR) agonists block increases in cortical ACh efflux and impair attentional abilities. Studies on the regulation of cortical ACh efflux by nucleus accumbens (NAC) dopamine (DA) demonstrate that increases in cortical ACh efflux are attenuated by intra-accumbens administration of D1 and, more potently, D2 receptor antagonists. These and other data support the hypothesis that NAC DA, via GABAergic projections to the basal forebrain, controls the excitability of basal forebrain cholinergic neurons. As increases in NAC DA have been hypothesized to represent a major neuronal mediator of schizophrenia and the compulsive use of addictive drugs, the data predict that the abnormal regulation of cortical ACh release represents a crucial neuronal mechanism mediating the cognitive components of these psychopathological disorders.
Collapse
Affiliation(s)
- M Sarter
- Ohio State University, Department of Psychology, Columbus 43210, USA.
| | | | | |
Collapse
|
36
|
Sarter M, Bruno JP. Abnormal regulation of corticopetal cholinergic neurons and impaired information processing in neuropsychiatric disorders. Trends Neurosci 1999; 22:67-74. [PMID: 10092046 DOI: 10.1016/s0166-2236(98)01289-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cholinergic neurons originating in the basal forebrain innervate all cortical areas and participate in the gating of cortical information processing. Aberrations in the excitability of cortical cholinergic inputs fundamentally alter the processing of sensory stimuli and higher processes, thereby advancing the development of major neuropsychiatric disorders. Cortical cholinergic deafferentation has been considered to be a major neuropathological variable that contributes to the development of age- and dementia-associated impairments in cognition. Conversely, it has been suggested that increases in the excitability of cortical cholinergic inputs mediate the abnormal cognitive processes that escalate into psychotic symptoms and contribute to addictive-drug-seeking behavior, anxiety and phobia. Abnormal regulation of the excitability of cortical cholinergic afferents represents a 'final common pathway' that mediates the manifestation of major neuropsychiatric disorders.
Collapse
Affiliation(s)
- M Sarter
- Dept of Psychology and Neuroscience Program, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
37
|
Abstract
A cholinergically disrupted laboratory animal has been produced by administration of the cholinotoxin ethylcholine aziridinium mustard (AF64A), which produced a dysfunction in the cholinergic forebrain system. After AF64A treatment, a reduction of choline acetyl transferase (ChAT) activity was measured in the hippocampal regions. ChAT activity was preferentially reduced in tissue samples of the dorsal with respect to the ventral hippocampus, and concomitantly with this reduction, a compensatory increase in ChAT activity in the medial septum was found. Tissue gamma-aminobutyric acid (GABA) content in the hippocampal and septal brain areas was not affected by AF64A, indicating a specific effect on the cholinergic septohippocampal projection. The rate of GABA accumulation induced by aminooxyacetic acid administration was higher in the dorsal hippocampus and medial septum of AF64A-treated animals, but not in their ventral hippocampus and lateral septum, where significant changes occurred in ChAT activity. Concomitantly with the changes in GABA metabolism, a significant Bmax increase and Kd reduction of 3H-flunitrazepam binding in the hippocampus of AF64A-treated animals were associated with changes in the ChAT activity. This finding suggests an increase of GABA input on the cholinergic somas of the medial septum and an uncompensated GABAergic interneuron activity in the hippocampus. In this study, we present an adaptive mechanism of homotypic compensatory metabolism by cholinergic somas, and a heterotypic response of the GABAergic septohippocampal projection system, which was elicited by AF64A administration.
Collapse
Affiliation(s)
- C A Ayala-Grosso
- Laboratory of Biochemistry, School of Pharmacy, Universidad Central de Venezuela, Caracas.
| | | |
Collapse
|
38
|
Mason KI, Mallet PE, Jhamandas K, Boegman RJ, Beninger RJ. Nucleus basalis injections of N-methyl-D-aspartate enhance memory of rats in the double Y-maze. Brain Res Bull 1999; 48:65-71. [PMID: 10210169 DOI: 10.1016/s0361-9230(98)00146-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors have been implicated in learning and memory. Many findings show that NMDA receptor antagonists impair memory. Few studies, however, have investigated the role of NMDA receptor agonists in mnemonic function. The present study examined the effects of nucleus basalis magnocellularis (nbm) injections of NMDA on memory. Rats were trained in a two-component double Y-maze task consisting of a spatial discrimination and a delayed alternation. Rats (n = 7) were surgically implanted with bilateral cannulae in the nbm prior to maze training. Once trained, animals received bilateral nbm injections (0.5 microl) of saline (0.9%), NMDA (50, 75, and 100 ng/side), and the benzodiazepine receptor partial inverse agonist N-methyl-beta-carboline-3-carboxamide (FG 7142; 200 ng/side), in a counterbalanced order. During testing, delays (0, 30, 60 s) were introduced. Nbm FG 7142 or NMDA (50 ng/side) produced an improvement in the delayed alternation task. Results support the hypothesis that nbm NMDA receptors are involved in cognitive processes mediating memory.
Collapse
Affiliation(s)
- K I Mason
- Department of Psychology, Queen's University, Kingston, Canada
| | | | | | | | | |
Collapse
|
39
|
Moor E, DeBoer P, Westerink BH. GABA receptors and benzodiazepine binding sites modulate hippocampal acetylcholine release in vivo. Eur J Pharmacol 1998; 359:119-26. [PMID: 9832381 DOI: 10.1016/s0014-2999(98)00642-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, the regulation of acetylcholine release from the ventral hippocampus by gamma-aminobutyric acid (GABA) was investigated in vivo. GABA receptor agonists and antagonists were administered locally in the medial septum and the adjacent vertical limb of the diagonal band of Broca, or in the hippocampus by retrograde dialysis. Acetylcholine release was measured in the ventral hippocampus. In addition, the modulation of acetylcholine release via septal benzodiazepine binding sites was assessed by intraseptal administration of an agonists and an antagonist at the benzodiazepine binding site. Intraseptal administration of the GABA(A) receptor agonist muscimol and the GABA(B) receptor agonist baclofen, but not the agonist of the benzodiazepine binding site midazolam, decreased acetylcholine release in the hippocampus. The GABA(A) receptor antagonist bicuculline and the antagonist of the benzodiazepine binding site flumazenil, but not the GABA(B) receptor antagonist 3-N-(3,4,-dichlorobenzyl) aminopropyl-P-diethoxymethyphosphinic acid (CGP 52432) increased acetylcholine release in the hippocampus upon intraseptal administration. The same GABA receptor ligands were administered in the ventral hippocampus. CGP 52432 induced a small increase in acetylcholine release, whereas baclofen, muscimol and bicuculline did not affect local acetylcholine release. Thus, endogenous GABA causes tonic inhibition of acetylcholine release in the ventral hippocampus via septal GABA(A) receptors and, to a lesser extent, via GABA(B) receptors in the medial septum and hippocampus. The GABAergic inhibition in the medial septum is reduced by antagonists of the benzodiazepine binding site.
Collapse
Affiliation(s)
- E Moor
- University Centre for Pharmacy, Department of Medicinal Chemistry, Groningen, The Netherlands.
| | | | | |
Collapse
|
40
|
Coadministration of galanin antagonist M40 with a muscarinic M1 agonist improves delayed nonmatching to position choice accuracy in rats with cholinergic lesions. J Neurosci 1998. [PMID: 9634573 DOI: 10.1523/jneurosci.18-13-05078.1998] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuropeptide galanin is overexpressed in the basal forebrain in Alzheimer's disease (AD). In rats, galanin inhibits evoked hippocampal acetylcholine release and impairs performance on several memory tasks, including delayed nonmatching to position (DNMTP). Galanin(1-13)-Pro2-(Ala-Leu)2-Ala-NH2 (M40), a peptidergic galanin receptor ligand, has been shown to block galanin-induced impairment on DNMTP in rats. M40 injected alone, however, does not improve DNMTP choice accuracy deficits in rats with selective cholinergic immunotoxic lesions of the basal forebrain. The present experiments used a strategy of combining M40 with an M1 cholinergic agonist in rats lesioned with the cholinergic immunotoxin 192IgG-saporin. Coadministration of intraventricular M40 with intraperitoneal 3-(3-S-n-pentyl-1,2,5-thiadiazol-4-yl)-1,2,5, 6-tetrahydro-1-methylpyridine (TZTP), an M1 agonist, improved choice accuracy significantly more than a threshold dose of TZTP alone. These results suggest that a galanin antagonist may enhance the efficacy of cholinergic treatments for the cognitive deficits of AD.
Collapse
|
41
|
Abe K, Takeyama C, Yoshimura K. Effects of S-8510, a novel benzodiazepine receptor partial inverse agonist, on basal forebrain lesioning-induced dysfunction in rats. Eur J Pharmacol 1998; 347:145-52. [PMID: 9653874 DOI: 10.1016/s0014-2999(98)00099-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We investigated the effects of a novel benzodiazepine partial inverse agonist, S-8510 (2-(3-isoxazolyl)-3,6,7,9-tetrahydroimidazo [4,5-d] pyrano [4,3-b] pyridine monophosphate monohydrate), on the impairment of spatial memory, decreased high-affinity choline uptake and acetylcholine release in basal forebrain-lesioned rats. S-8510 (3 and 5 mg/kg, p.o. 30 min before each training session) significantly ameliorated the basal forebrain-lesion-induced impairment of spatial memory in water maze task. In vivo brain microdialysis studies showed that systemic administration of S-8510 at 3 and 10 mg/kg significantly increased the release of acetylcholine in the front-parietal cortex in basal forebrain-lesioned rats. Further, repeated administration of S-8510 (3 and 10 mg kg(-1) day(-1) for 5 days) reversed the decrease in cortical high-affinity choline uptake induced by basal forebrain lesion. Thus, S-8510 improved the spatial memory impairment induced by lesion of the basal forebrain in rats. In addition, it increased acetylcholine release and high-affinity choline uptake from the cortex, a region closely associated with memory, in basal forebrain-lesioned rats. These results indicate that S-8510 has cognition enhancing and cholinergic-activating effects in the basal forebrain-lesioned rats, suggesting that this agent may be useful for the treatment of mild to moderate senile dementia including Alzheimer's disease.
Collapse
Affiliation(s)
- K Abe
- Department of Pharmacology, Development Research Laboratories, Shionogi, Toyonaka, Osaka, Japan.
| | | | | |
Collapse
|
42
|
Pike BR, Hamm RJ, Temple MD, Buck DL, Lyeth BG. Effect of tetrahydroaminoacridine, a cholinesterase inhibitor, on cognitive performance following experimental brain injury. J Neurotrauma 1997; 14:897-905. [PMID: 9475371 DOI: 10.1089/neu.1997.14.897] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An emerging literature exists in support of deficits in cholinergic neurotransmission days to weeks following experimental traumatic brain injury (TBI). In addition, novel cholinomimetic therapeutics have been demonstrated to improve cognitive outcome following TBI in rats. We examined the effects of repeated postinjury administration of a cholinesterase inhibitor, tetrahydroaminoacridine (THA), on cognitive performance following experimental TBI. Rats were either injured at a moderate level of central fluid percussion TBI (2.1+/-0.1 atm) or were surgically prepared but not delivered a fluid pulse (sham injury). Beginning 24 h after TBI or sham injury, rats were injected (IP) daily for 15 days with an equal volume (1.0 ml/kg) of either 0.0, 1.0, 3.0, or 9.0 mg/kg THA (TBI: n = 8, 8, 10, and 7, respectively, and Sham: n = 5, 7, 8, 7, respectively). Cognitive performance was assessed on Days 11-15 after injury in a Morris water maze (MWM). Analysis of maze latencies over days indicated that chronic administration of THA produced a dose-related impairment in MWM performance in both the injured and sham groups, with the 9.0 mg/kg dose producing the largest deficit. The 1.0 and 3.0 mg/kg doses of THA impaired MWM performance without affecting swimming speeds. Thus, the results of this investigation do not support the use of THA as a cholinomimetic therapeutic for the treatment of cognitive deficits following TBI.
Collapse
Affiliation(s)
- B R Pike
- Department of Psychology, Virginia Commonwealth University, Medical College of Virginia, Richmond 23284-2018, USA
| | | | | | | | | |
Collapse
|
43
|
Pike BR, Hamm RJ. Activating the posttraumatic cholinergic system for the treatment of cognitive impairment following traumatic brain injury. Pharmacol Biochem Behav 1997; 57:785-91. [PMID: 9259007 DOI: 10.1016/s0091-3057(96)00453-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cognitive impairment after traumatic brain injury (TBI) is correlated with decreased cholinergic markers of neuronal viability. The purpose of this experiment was to test the hypothesis that pharmacological activation of the muscarinic cholinergic system during the recovery period after TBI will improve cognitive performance. LU 25-109-T is a partial muscarinic M1 agonist that also acts as an antagonist at presynaptic M2 autoreceptors (thus increasing ACh release). Injured rats were injected subcutaneously daily for 15 days with either 0.0, 3.6, or 15 mumol/kg of LU 25-109-T beginning 24 h after a receiving a moderate (2.1 +/- 0.1 atm) level of central fluid percussion brain injury. Cognitive performance was assessed on days 11-15 postinjury in a Morris water maze (MWM). Injured rats treated with 15 mumol/kg, but not those treated with 3.6 mumol/kg, showed a significant improvement (p < 0.01) in MWM performance as compared with injured vehicle-treated rats. This result supports the hypotheses that a decrease in posttraumatic cholinergic neurotransmission contributes to TBI-induced cognitive deficits and that increasing cholinergic tone during the recovery period following TBI will improve cognitive performance.
Collapse
Affiliation(s)
- B R Pike
- Department of Psychology, Virginia Commonwealth University, Richmond 23284-2018, USA
| | | |
Collapse
|
44
|
Givens B, Sarter M. Modulation of cognitive processes by transsynaptic activation of the basal forebrain. Behav Brain Res 1997; 84:1-22. [PMID: 9079768 DOI: 10.1016/s0166-4328(96)00146-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Each of the neurotransmitter-specific afferents to the basal forebrain (BF) carry different types of information which converge to regulate the activity of cholinergic projections to telencephalic areas. Brainstem monoaminergic and cholinergic inputs are critical for context-dependent arousal. GABAergic afferents are gated by a variety of ascending and descending systems, and in addition provide an intrinsic control of BF output excitability. Corticofugal glutamatergic inputs represent reciprocal connections from sites to which BF afferents project, and carry information about the current level of cortical processing intensity and capacity. Peptidergic inputs arise from hypothalamic sources and locally modulate BF output as a function of motivational and homeostatic processes. The significance of these afferent systems can be studied by examining the behavioral consequences of infusion into the BF of drugs that act on the specific receptor systems. Although traditional analyses suggest that the BF has many behavioral functions that can be subdivided regionally, an analysis of studies employing transsynaptic approaches lead to the conceptualization of the BF as having a uniform function, that of maximizing cortical processing efficiency. The BF is conditionally active during specific episodes of acquisition and processing of behaviorally significant, externally-derived information, and drives cortical targets into a state of readiness by reducing interference and amplifying the processing of relevant stimuli and associations, thus allowing for more efficient processing. This paper describes the transsynaptic approach to studying BF function, reviews the neurobiological and behavioral consequences of altering neurotransmitter-specific inputs to the BF, and explores the functional significance of the BF.
Collapse
Affiliation(s)
- B Givens
- The Ohio State University, Department of Psychology, Columbus 43210, USA
| | | |
Collapse
|
45
|
Sarter M, Bruno JP. Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 23:28-46. [PMID: 9063585 DOI: 10.1016/s0165-0173(96)00009-4] [Citation(s) in RCA: 494] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous efforts aimed at attributing discrete behavioral functions to cortical cholinergic afferents have not resulted in a generally accepted hypothesis about the behavioral functions mediated by this system. Moreover, attempts to develop such a unifying hypothesis have been presumed to be unproductive considering the widespread innervation of the cortex by basal forebrain cholinergic neurons. In contrast to previous descriptions of the role of cortical acetylcholine (ACh) in specific behavioral phenomena (e.g., mediation of the behavioral effects of reward loss) or mnemonic entities (e.g., working or reference memory), cortical ACh is hypothesized to modulate the general efficacy of the cortical processing of sensory or associational information. Specifically, cortical cholinergic inputs mediate the subjects' abilities to detect and select stimuli and associations for extended processing and to allocate the appropriate processing resources to these functions. In addition to evidence from electrophysiological and behavioral studies on the role of cortical ACh in sensory information processing and attention, this hypothesis is consistent with proposed functions of the limbic and paralimbic networks in regulating the activity of the basal forebrain cholinergic neurons. Finally, while the proposed hypothesis implies that changes in activity in cortical ACh simultaneously occur throughout the cortex, the selectivity and precision of the functions of cholinergic function is due to its coordinated interactions with the activity of converging sensory or associational inputs. Finally, the dynamic, escalating consequences of alterations in the activity of cortical ACh (hypo- and hyperactivity) on cognitive functions are evaluated.
Collapse
Affiliation(s)
- M Sarter
- Department of Psychology, Ohio State University, Columbus 43210, USA.
| | | |
Collapse
|
46
|
Heimer L, Harlan RE, Alheid GF, Garcia MM, de Olmos J. Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience 1997; 76:957-1006. [PMID: 9027863 DOI: 10.1016/s0306-4522(96)00405-8] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Comparative neuroanatomical investigations in primates and non-primates have helped disentangle the anatomy of the basal forebrain region known as the substantia innominata. The most striking aspect of this region is its subdivision into two major parts. This reflects the fundamental organizational scheme for this portion of the forebrain. According to this scheme, two major subcortical telencephalic structures, i.e. the striatopallidal complex and extended amygdala, form large diagonally oriented bands. The rostroventral extension of the pallidum accounts for a large part of the rostral subcommissural substantia innominata, while the sublenticular substantia innominata is primarily occupied by elements of the extended amygdala. Also dispersed across this region is the basal nucleus of Meynert, which is part of a more or less continuous collection of cholinergic and non-cholinergic corticopetal and thalamopetal cells, which stretches from the septum diagonal band rostrally to the caudal globus pallidus. The basal nucleus of Meynert is especially prominent in the primate, where it is sometimes inappropriately applied as a synonym for the substantia innominata, thereby tacitly ignoring the remaining components. In most mammals, the extended amygdala presents itself as a ring of neurons encircling the internal capsule and basal ganglia. The extended amygdala may be further subdivided, i.e. into the central extended amygdala (related to the central amygdaloid nucleus) and the medial extended amygdala (related to the medial amygdaloid nucleus), which generally form separate corridors both in the sublenticular region and along the supracapsular course of the stria terminalis. The extended amygdala is directly continuous with the caudomedial shell of the accumbens, and to some extent appears to merge with it. Together the accumbens shell and extended amygdala form an extensive forebrain continuum, which establishes specific neuronal circuits with the medial prefrontal-orbitofrontal cortex and medial temporal lobe. This continuum is particularly characterized by a prominent system of long intrinsic association fibers, and a variety of highly differentiated downstream projections to the hypothalamus and brainstem. The various components of the extended amygdala, together with the shell of the accumbens, are ideally structured to generate endocrine, autonomic and somatomotor aspects of emotional and motivational states. Behavioral observations support this proposition and demonstrate the relevance of these structures to a variety of functions, ranging from the various elements of the reproductive cycle to drug-seeking behavior. The neurochemical and connectional features common to the accumbens shell and the extended amygdala are especially relevant to understanding the etiology and treatment of neuropsychiatric disorders. This is discussed in general terms, and also in specific relation to the neurodevelopmental theory of schizophrenia and to the neurosurgical treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- L Heimer
- Department of Otolaryngology, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | | | |
Collapse
|
47
|
Sarter M, Bruno JP. Trans-synaptic stimulation of cortical acetylcholine and enhancement of attentional functions: a rational approach for the development of cognition enhancers. Behav Brain Res 1997; 83:7-14. [PMID: 9062654 DOI: 10.1016/s0166-4328(97)86039-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Activation and restoration of cholinergic function remain major foci in the development of pharmacological approaches toward the treatment of cognitive dysfunctions associated with aging and dementia. Our research has been guided by the hypothesis that (re)activation of cortical cholinergic inputs is achieved as a result of trans-synaptic disinhibition of basal forebrain cholinergic neurons. This approach depends on the ability of benzodiazepine receptor (BZR) inverse agonists to reduce the potency of GABA to block neuronal excitation. BZR inverse agonists were found to augment cortical ACh efflux through interaction with cognition-associated activation of this system. Cortical cholinergic inputs have been implicated in the processing of behaviorally significant stimuli, i.e., attentional functions. Using a recently developed and validated task for the measurement of sustained attention, or vigilance, administration of BZR inverse agonists were found to selectively increase the number of false alarms in intact animals. However, in animals with a 50-70%, but not > 90%, loss of the cortical cholinergic inputs, treatment with BZR inverse agonists alleviated the lesion-induced impairment in sustained attention and enhanced activated cortical ACh efflux. A rational development of cognitive enhancers will benefit from experiments in which cognitive and neuropharmacological variables are assessed simultaneously, thus allowing the analysis of interactions between cognition-associated neuronal activity and the neuronal and cognitive effects of putative cognition enhancers.
Collapse
Affiliation(s)
- M Sarter
- Department of Psychology, Ohio State University, Columbus 43210, USA.
| | | |
Collapse
|
48
|
Robbins TW, McAlonan G, Muir JL, Everitt BJ. Cognitive enhancers in theory and practice: studies of the cholinergic hypothesis of cognitive deficits in Alzheimer's disease. Behav Brain Res 1997; 83:15-23. [PMID: 9062655 DOI: 10.1016/s0166-4328(97)86040-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The current status of the cholinergic hypothesis of cognitive dysfunction in Alzheimer's disease is reviewed in the context of recent attempts to alleviate specific cognitive impairments produced in rats by excitotoxic lesions of basal forebrain neurons by treatment with cholinergic agents. AMPA-induced lesions of the nucleus basalis region in rats produce profound and relatively specific reductions in neocortical markers of cholinergic function but fail to affect performance in many tests of memory and learning in rats. However, such lesions produce specific deficits in responding accurately in a test of visual attentional performance, which are reversed dose-dependently by treatment with systemic physostigmine or nicotine. Analogous improvements have been reported in a clinical trial of the anticholinesterase tacrine in patients with Alzheimer's disease. By contrast, AMPA-induced lesions of the medial septum produce profound reductions in hippocampal acetylcholine and accompanying delay-dependent deficits in a delayed non-matching-to-position procedure which measures spatial working memory in rats. This impairment is shown to be reversed to some extent by treatment with low doses of physostigmine. The results are discussed in terms of the multivariate nature of the neurochemical pathology of Alzheimer's disease and attendant limitations in the use of the cholinergic strategy. The cognitive costs, as well as benefits, of cognitive enhancers are discussed, as well as the need to broaden our therapeutic approach to other neurotransmitter systems and other neurodegenerative disorders.
Collapse
Affiliation(s)
- T W Robbins
- Department of Experimental Psychology, University of Cambridge, UK.
| | | | | | | |
Collapse
|
49
|
Abstract
The organization and possible functions of basal forebrain and pontine cholinergic systems are reviewed. Whereas the basal forebrain cholinergic neuronal projections likely subserve a common electrophysiological function, e.g. to boost signal-to-noise ratios in cortical target areas, this function has different effects on psychological processes dependent upon the neural network operations within these various cortical domains. Evidence is presented that (a) the nucleus basalis-neocortical cholinergic system contributes greatly to visual attentional function, but not to mnemonic processes per se; (b) the septohippocampal projection is involved in the modulation of short-term spatial (working) memory processes, perhaps by prolonging the neural representation of external stimuli within the hippocampus; and (c) the diagonal band-cingulate cortex cholinergic projection impacts on the ability to utilize response rules through conditional discrimination. We also suggest that nucleus basalis-amygdala cholinergic projections have a role in the retention of affective conditioning while brainstem cholinergic projections to the thalamus and midbrain dopamine neurons affect basic arousal processes (e.g. sleep-wake cycle) and behavioral activation, respectively. The possibilities and limitations of therapeutic interventions with procholinergic drugs in patients with Alzheimer's disease and other neurodegenerative disorders in which basal forebrain cholinergic neurons degenerate are also discussed.
Collapse
Affiliation(s)
- B J Everitt
- Department of Experimental Psychology, University of Cambridge, United Kingdom
| | | |
Collapse
|
50
|
Trans-synaptic stimulation of cortical acetylcholine release after partial 192 IgG-saporin-induced loss of cortical cholinergic afferents. J Neurosci 1996. [PMID: 8815935 DOI: 10.1523/jneurosci.16-20-06592.1996] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Environmental and pharmacological stimulation of cortical acetylcholine (ACh) efflux was determined in rats sustaining partial deafferentation of cortical cholinergic inputs. Rats were bilaterally infused with the selective cholinotoxin 192 IgG-saporin (0.005 microgram/0.5 microliter/site) into the frontoparietal cortex. In the first experiment, animals were pretrained to associate the onset of darkness with presentation of a palatable fruit cereal reward. The ability of this stimulus to enhance frontoparietal ACh efflux alone, and with the benzodiazepine receptor (BZR) weak inverse agonist ZK 93,426 (1.0 or 5.0 mg/kg, i.p.), was determined in lesioned and sham-lesioned rats. Intracortical infusions of 192 IgG-saporin reduced basal cortical ACh efflux by 47% of sham-lesioned values, consistent with reductions in the density of AChE-positive fibers. In spite of this deafferentation, ZK 93,426 produced a transient potentiation of the cortical ACh efflux induced by the darkness/cereal stimulus similar to that observed in control animals. In the second experiment, the ability of the more efficacious BZR partial inverse agonist FG 7142 (8.0 mg/kg, i.p.) to enhance basal cortical ACh efflux was compared in lesioned and sham-lesioned rats. Again, lesioned rats exhibited an increase comparable to control animals after FG 7142. This drug-induced stimulation of cortical ACh efflux was comparably and completely blocked in both groups by co-perfusion with tetrodotoxin (1.0 microM). These results suggest similarities in the modulation of cortical ACh efflux in intact and partially deafferented rats and indicate the potential of BZR inverse agonists for restoring transmission in animals with partial loss of cortical cholinergic inputs.
Collapse
|