1
|
Strong A, March ME, Cardinale CJ, Kim SE, Merves J, Whitworth H, Raffini L, Larosa C, Copelovitch L, Hou C, Slater D, Vaccaro C, Watson D, Zackai EH, Billheimer J, Hakonarson H. A novel MBTPS2 variant associated with BRESHECK syndrome impairs sterol-regulated transcription and the endoplasmic reticulum stress response. Am J Med Genet A 2021; 188:463-472. [PMID: 34655156 PMCID: PMC9293288 DOI: 10.1002/ajmg.a.62537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 11/11/2022]
Abstract
Ichthyosis follicularis, atrichia, and photophobia syndrome (IFAP syndrome) is a rare, X-linked disorder caused by pathogenic variants in membrane-bound transcription factor protease, site 2 (MBTPS2). Pathogenic MBTPS2 variants also cause BRESHECK syndrome, characterized by the IFAP triad plus intellectual disability and multiple congenital anomalies. Here we present a patient with ichthyosis, sparse hair, pulmonic stenosis, kidney dysplasia, hypospadias, growth failure, thrombocytopenia, anemia, bone marrow fibrosis, and chronic diarrhea found by research-based exome sequencing to harbor a novel, maternally inherited MBTPS2 missense variant (c.766 G>A; (p.Val256Leu)). In vitro modeling supports variant pathogenicity, with impaired cell growth in cholesterol-depleted media, attenuated activation of the sterol regulatory element-binding protein pathway, and failure to activate the endoplasmic reticulum stress response pathway. Our case expands both the genetic and phenotypic spectrum of BRESHECK syndrome to include a novel MBTPS2 variant and cytopenias, bone marrow fibrosis, and chronic diarrhea.
Collapse
Affiliation(s)
- Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michael E March
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christopher J Cardinale
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sophia E Kim
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jamie Merves
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hilary Whitworth
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Leslie Raffini
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christopher Larosa
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lawrence Copelovitch
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cuiping Hou
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Diana Slater
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Courtney Vaccaro
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Deborah Watson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey Billheimer
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Steck TL, Tabei SMA, Lange Y. A basic model for cell cholesterol homeostasis. Traffic 2021; 22:471-481. [PMID: 34528339 DOI: 10.1111/tra.12816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
Cells manage their cholesterol by negative feedback using a battery of sterol-responsive proteins. How these activities are coordinated so as to specify the abundance and distribution of the sterol is unclear. We present a simple mathematical model that addresses this question. It assumes that almost all of the cholesterol is associated with phospholipids in stoichiometric complexes. A small fraction of the sterol is uncomplexed and thermodynamically active. It equilibrates among the organelles, setting their sterol level according to the affinity of their phospholipids. The activity of the homeostatic proteins in the cytoplasmic membranes is then set by their fractional saturation with uncomplexed cholesterol in competition with the phospholipids. The high-affinity phospholipids in the plasma membrane (PM) are filled to near stoichiometric equivalence, giving it most of the cell sterol. Notably, the affinity of the phospholipids in the endomembranes (EMs) is lower by orders of magnitude than that of the phospholipids in the PM. Thus, the small amount of sterol in the EMs rests far below stoichiometric capacity. Simulations match a variety of experimental data. The model captures the essence of cell cholesterol homeostasis, makes coherent a diverse set of experimental findings, provides a surprising prediction and suggests new experiments.
Collapse
Affiliation(s)
- Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls, Iowa, USA
| | - Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
3
|
Caengprasath N, Theerapanon T, Porntaveetus T, Shotelersuk V. MBTPS2, a membrane bound protease, underlying several distinct skin and bone disorders. J Transl Med 2021; 19:114. [PMID: 33743732 PMCID: PMC7981912 DOI: 10.1186/s12967-021-02779-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
The MBTPS2 gene on the X-chromosome encodes the membrane-bound transcription factor protease, site-2 (MBTPS2) or site-2 protease (S2P) which cleaves and activates several signaling and regulatory proteins from the membrane. The MBTPS2 is critical for a myriad of cellular processes, ranging from the regulation of cholesterol homeostasis to unfolded protein responses. While its functional role has become much clearer in the recent years, how mutations in the MBTPS2 gene lead to several human disorders with different phenotypes including Ichthyosis Follicularis, Atrichia and Photophobia syndrome (IFAP) with or without BRESHECK syndrome, Keratosis Follicularis Spinulosa Decalvans (KFSD), Olmsted syndrome, and Osteogenesis Imperfecta type XIX remains obscure. This review presents the biological role of MBTPS2 in development, summarizes its mutations and implicated disorders, and discusses outstanding unanswered questions.
Collapse
Affiliation(s)
- Natarin Caengprasath
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Thanakorn Theerapanon
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
4
|
Beard HA, Barniol-Xicota M, Yang J, Verhelst SHL. Discovery of Cellular Roles of Intramembrane Proteases. ACS Chem Biol 2019; 14:2372-2388. [PMID: 31287658 DOI: 10.1021/acschembio.9b00404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intramembrane proteases (IMPs) are localized within lipid bilayers of membranes-either the cell membrane or membranes of various organelles. Cleavage of substrates often results in release from the membrane, leading to a downstream biological effect. This mechanism allows different signaling events to happen through intramembrane proteolysis. Over the years, various mechanistically distinct families of IMPs have been discovered, but the research progress has generally been slower than for soluble proteases due to the challenges associated with membrane proteins. In this review we summarize how each mechanistic family of IMPs was discovered, which chemical tools are available for the study of IMPs, and which techniques have been developed for the discovery of IMP substrates. Finally, we discuss the various roles in cellular physiology of some of these IMPs.
Collapse
Affiliation(s)
- Hester A. Beard
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Marta Barniol-Xicota
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Jian Yang
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Steven H. L. Verhelst
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
- Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| |
Collapse
|
5
|
Maiwald A, Bauer O, Gimpl G. Synthesis and characterization of a novel rhodamine labeled cholesterol reporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1099-1113. [PMID: 28257814 DOI: 10.1016/j.bbamem.2017.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 11/18/2022]
Abstract
We introduce the novel fluorescent cholesterol probe RChol in which a sulforhodamine group is linked to the sixth carbon atom of the steroid backbone of cholesterol. The same position has recently been selected to generate the fluorescent reporter 6-dansyl-cholestanol (DChol) and the photoreactive 6-azi-cholestanol. In comparison with DChol, RChol is brighter, much more photostable, and requires less energy for excitation, i.e. favorable conditions for microscopical imaging. RChol easily incorporates into methyl-β-cyclodextrin forming a water-soluble inclusion complex that acts as an efficient sterol donor for cells and membranes. Like cholesterol, RChol possesses a free 3'OH group, a prerequisite to undergo intracellular esterification. RChol was also able to support the growth of cholesterol auxotrophic cells and can therefore substitute for cholesterol as a major component of the plasma membrane. According to subcellular fractionation, slight amounts of RChol (~12%) were determined in low-density Triton-insoluble fractions whereas the majority of RChol was localized in non-rafts fractions. In phase-separated giant unilamellar vesicles, RChol preferentially partitions in liquid-disordered membrane domains. Intracellular RChol was transferred to extracellular sterol acceptors such as high density lipoproteins in a dose-dependent manner. Unlike DChol, RChol was not delivered to the cholesterol storage pathway. Instead, it translocated to endosomes/lysosomes with some transient contacts to peroxisomes. Thus, RChol is considered as a useful probe to study the endosomal/lysosomal pathway of cholesterol.
Collapse
Affiliation(s)
- Alexander Maiwald
- Institute of Pharmacy and Biochemistry, Gutenberg-University Mainz, Johann-Joachim Becherweg 30, D-55128 Mainz, Germany
| | - Olivia Bauer
- Institute of Pharmacy and Biochemistry, Gutenberg-University Mainz, Johann-Joachim Becherweg 30, D-55128 Mainz, Germany
| | - Gerald Gimpl
- Institute of Pharmacy and Biochemistry, Gutenberg-University Mainz, Johann-Joachim Becherweg 30, D-55128 Mainz, Germany.
| |
Collapse
|
6
|
Site-2 protease responds to oxidative stress and regulates oxidative injury in mammalian cells. Sci Rep 2014; 4:6268. [PMID: 25183265 PMCID: PMC4152756 DOI: 10.1038/srep06268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/28/2014] [Indexed: 12/24/2022] Open
Abstract
Site-2 protease (S2P) is a membrane-embedded protease that site-specifically cleaves intramembrane transcription factors, a necessary step for their maturation. S2P is well known to regulate cholesterol biosynthesis and endoplasmic reticulum stress in mammalian cells. In this study, we hypothesized that S2P could be responsible for the regulation of cellular oxidative injury under oxidative stress. Wild type Chinese hamster ovary (WT CHO) cells and their mutant M19 cells with defective S2P gene were exposed to different oxidative stress conditions. Results showed that oxidative stress significantly up-regulated S2P expression in WT CHO cells. Notably, M19 cells had remarkably higher level of superoxide and elevated rates of cell death than WT CHO cells. The vulnerability to oxidative stress was reversed by the transfection of S2P gene but not rescued by exogenous supplement of cholesterol, oleate, and mevalonate, indicating that lack of S2P gene leads cells to be more vulnerable to oxidative stress. Furthermore, compared with WT CHO cells, M19 cells had higher nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and lower paraoxonase-2 expression. Taken together, these results suggest that S2P can be a protease responding to oxidative stress and has the function of regulating cellular oxidative injury.
Collapse
|
7
|
Shao W, Espenshade PJ. Sterol regulatory element-binding protein (SREBP) cleavage regulates Golgi-to-endoplasmic reticulum recycling of SREBP cleavage-activating protein (SCAP). J Biol Chem 2014; 289:7547-57. [PMID: 24478315 DOI: 10.1074/jbc.m113.545699] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sterol regulatory element-binding protein (SREBP) transcription factors are central regulators of cellular lipogenesis. Release of membrane-bound SREBP requires SREBP cleavage-activating protein (SCAP) to escort SREBP from the endoplasmic reticulum (ER) to the Golgi for cleavage by site-1 and site-2 proteases. SCAP then recycles to the ER for additional rounds of SREBP binding and transport. Mechanisms regulating ER-to-Golgi transport of SCAP-SREBP are understood in molecular detail, but little is known about SCAP recycling. Here, we have demonstrated that SCAP Golgi-to-ER transport requires cleavage of SREBP at site-1. Reductions in SREBP cleavage lead to SCAP degradation in lysosomes, providing additional negative feedback control to the SREBP pathway. Current models suggest that SREBP plays a passive role prior to cleavage. However, we show that SREBP actively prevents premature recycling of SCAP-SREBP until initiation of SREBP cleavage. SREBP regulates SCAP in human cells and yeast, indicating that this is an ancient regulatory mechanism.
Collapse
Affiliation(s)
- Wei Shao
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
8
|
Rawson RB. The site-2 protease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2801-7. [PMID: 23571157 DOI: 10.1016/j.bbamem.2013.03.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/06/2013] [Accepted: 03/25/2013] [Indexed: 12/19/2022]
Abstract
The site-2 protease (S2P) is an unusually-hydrophobic integral membrane protease. It cleaves its substrates, which are membrane-bound transcription factors, within membrane-spanning helices. Although structural information for S2P from animals is lacking, the available data suggest that cleavage may occur at or within the lipid bilayer. In mammalian cells, S2P is essential owing to its activation of the sterol regulatory element binding proteins (SREBPs); in the absence of exogenous lipid, cells lacking S2P cannot survive. S2P is also important in the endoplasmic reticulum (ER) stress response, activating several different membrane-bound transcription factors. Human patients harboring reduction-of-function mutations in S2P exhibit an array of pathologies ranging from skin defects to neurological abnormalities. Surprisingly, Drosophila melanogaster lacking S2P are viable and fertile. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
|
9
|
Bornholdt D, Atkinson TP, Bouadjar B, Catteau B, Cox H, De Silva D, Fischer J, Gunasekera CN, Hadj-Rabia S, Happle R, Holder-Espinasse M, Kaminski E, König A, Mégarbané A, Mégarbané H, Neidel U, Oeffner F, Oji V, Theos A, Traupe H, Vahlquist A, van Bon BW, Virtanen M, Grzeschik KH. Genotype-phenotype correlations emerging from the identification of missense mutations in MBTPS2. Hum Mutat 2013; 34:587-94. [PMID: 23316014 DOI: 10.1002/humu.22275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/20/2012] [Indexed: 11/09/2022]
Abstract
Missense mutations affecting membrane-bound transcription factor protease site 2 (MBTPS2) have been associated with Ichthyosis Follicularis with Atrichia and Photophobia (IFAP) syndrome with or without BRESHECK syndrome, with keratosis follicularis spinulosa decalvans, and Olmsted syndrome. This metalloprotease activates, by intramembranous trimming in conjunction with the protease MBTPS1, regulatory factors involved in sterol control of transcription and in cellular stress response. In this study, 11 different MBTPS2 missense mutations detected in patients from 13 unrelated families were correlated with the clinical phenotype, with their effect on cellular growth in media without lipids, and their potential role for sterol control of transcription. Seven variants were novel [c.774C>G (p.I258M); c.758G>C (p.G253A); c.686T>C (p.F229S); c.1427T>C (p.L476S); c.1430A>T (p.D477V); c.1499G>A (p.G500D); c.1538T>C (p.L513P)], four had previously been reported in unrelated sibships [c.261G>A (p.M87I); c.1286G>A (p.R429H); c.1424T>C (p.F475S); c.1523A>G (p.N508S)]. In the enzyme, the mutations cluster in transmembrane domains. Amino-acid exchanges near the active site are more detrimental to functionality of the enzyme and, clinically, associated with more severe phenotypes. In male patients, a genotype-phenotype correlation begins to emerge, linking the site of the mutation in MBTPS2 with the clinical outcome described as IFAP syndrome with or without BRESHECK syndrome, keratosis follicularis spinulosa decalvans, X-linked, Olmsted syndrome, or possibly further X-linked traits with an oculocutaneous component.
Collapse
|
10
|
Akay C, Lindl KA, Shyam N, Nabet B, Goenaga-Vazquez Y, Ruzbarsky J, Wang Y, Kolson DL, Jordan-Sciutto KL. Activation status of integrated stress response pathways in neurones and astrocytes of HIV-associated neurocognitive disorders (HAND) cortex. Neuropathol Appl Neurobiol 2012; 38:175-200. [PMID: 21883374 PMCID: PMC3708539 DOI: 10.1111/j.1365-2990.2011.01215.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
C. Akay, K. A. Lindl, N. Shyam, B. Nabet, Y. Goenaga‐Vazquez, J. Ruzbarsky, Y. Wang, D. L. Kolson and K. L. Jordan‐Sciutto (2012) Neuropathology and Applied Neurobiology38, 175–200 Activation status of integrated stress response pathways in neurones and astrocytes of HIV‐associated neurocognitive disorders (HAND) cortex Aims: Combined anti‐retroviral therapy (cART) has led to a reduction in the incidence of HIV‐associated dementia (HAD), a severe motor/cognitive disorder afflicting HIV(+) patients. However, the prevalence of subtler forms of neurocognitive dysfunction, which together with HAD are termed HIV‐associated neurocognitive disorders (HAND), continues to escalate in the post‐cART era. The microgliosis, astrogliosis, dendritic damage, and synaptic and neuronal loss observed in autopsy cases suggest an underlying neuroinflammatory process, due to the neurotoxic factors released by HIV‐infected/activated macrophages/microglia in the brain, might underlie the pathogenesis of HAND in the post‐cART era. These factors are known to induce the integrated stress response (ISR) in several neurodegenerative diseases; we have previously shown that BiP, an indicator of general ISR activation, is upregulated in cortical autopsy tissue from HIV‐infected patients. The ISR is composed of three pathways, each with its own initiator protein: PERK, IRE1α and ATF6. Methods: To further elucidate the specific ISR pathways activated in the central nervous system of HAND patients, we examined the protein levels of several ISR proteins, including ATF6, peIF2α and ATF4, in cortical tissue from HIV‐infected patients. Results: The ISR does not respond in an all‐or‐none fashion in HAND, but rather demonstrates a nuanced activation pattern. Specifically, our studies implicate the ATF6 pathway of the ISR as a more likely candidate than the PERK pathway for increases in BiP levels in astrocytes. Conclusion: These findings begin to characterize the nature of the ISR response in HAND and provide potential targets for therapeutic intervention in this disease.
Collapse
Affiliation(s)
- C Akay
- Department of Pathology, School of Dental Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ito D, Yagi T, Ikawa M, Suzuki N. Characterization of inclusion bodies with cytoprotective properties formed by seipinopathy-linked mutant seipin. Hum Mol Genet 2011; 21:635-46. [DOI: 10.1093/hmg/ddr497] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
12
|
Abstract
Arenaviruses are enveloped RNA viruses with a nonlytic life cycle that cause acute and persistent infections. Here, we investigated the role of the host cell's unfolded protein response (UPR) in infection of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). In mammalian cells, the endoplasmic reticulum (ER) chaperone protein GRP78/BiP functions as the principal sensor for the induction of the UPR and interacts with three mediators: kinase/endonuclease inositol-requiring protein 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF6). Acute infection with LCMV resulted in a selective induction of the ATF6-regulated branch of the UPR, whereas pathways controlled by PERK and IRE1 were neither activated nor blocked. Expression of individual LCMV proteins revealed that the viral glycoprotein precursor (GPC), but not that of other viral proteins, was responsible for the induction of ATF6. Rapid downregulation of the viral GPC during transition from acute to persistent LCMV infection restored basal levels of UPR signaling. To address a possible role of ATF6 signaling in LCMV infection, we used cells deficient in site 2 protease (S2P), a metalloprotease required for the activation of ATF6. Cells deficient in S2P showed significantly lower levels of production of infectious virus during acute but not persistent infection, indicating a requirement for ATF6-mediated signaling for optimal virus multiplication. In summary, acute LCMV infection seems to selectively induce the ATF6-regulated branch of the UPR that is likely beneficial for virus replication and cell viability, but it avoids induction of PERK and IRE1, whose activation may be detrimental for virus and the host cell.
Collapse
|
13
|
Abstract
Bilayer synthesis during membrane biogenesis involves the concerted assembly of multiple lipid species, requiring coordination of the level of lipid synthesis, uptake, turnover, and subcellular distribution. In this review, we discuss some of the salient conclusions regarding the coordination of lipid synthesis that have emerged from work in mammalian and yeast cells. The principal instruments of global control are a small number of transcription factors that target a wide range of genes encoding enzymes that operate in a given metabolic pathway. Critical in mammalian cells are sterol regulatory element binding proteins (SREBPs) that stimulate expression of genes for the uptake and synthesis of cholesterol and fatty acids. From work with Saccharomyces cerevisiae, much has been learned about glycerophospholipid and ergosterol regulation through Ino2p/Ino4p and Upc2p transcription factors, respectively. Lipid supply is fine-tuned through a multitude of negative feedback circuits initiated by both end products and intermediates of lipid synthesis pathways. Moreover, there is evidence that the diversity of membrane lipids is maintained through cross-regulatory effects, whereby classes of lipids activate the activity of enzymes operating in another metabolic branch.
Collapse
Affiliation(s)
- Axel Nohturfft
- Molecular and Metabolic Signalling Centre, Division of Basic Medical Sciences, St. George's University of London, London, SW17 0RE United Kingdom.
| | | |
Collapse
|
14
|
Oeffner F, Fischer G, Happle R, König A, Betz RC, Bornholdt D, Neidel U, del Carmen Boente M, Redler S, Romero-Gomez J, Salhi A, Vera-Casaño Á, Weirich C, Grzeschik KH. IFAP syndrome is caused by deficiency in MBTPS2, an intramembrane zinc metalloprotease essential for cholesterol homeostasis and ER stress response. Am J Hum Genet 2009; 84:459-67. [PMID: 19361614 DOI: 10.1016/j.ajhg.2009.03.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/18/2009] [Accepted: 03/19/2009] [Indexed: 10/20/2022] Open
Abstract
Ichthyosis follicularis with atrichia and photophobia (IFAP syndrome) is a rare X-linked, oculocutaneous human disorder. Here, we assign the IFAP locus to the 5.4 Mb region between DXS989 and DXS8019 on Xp22.11-p22.13 and provide evidence that missense mutations exchanging highly conserved amino acids of membrane-bound transcription factor protease, site 2 (MBTPS2) are associated with this phenotype. MBTPS2, a membrane-embedded zinc metalloprotease, activates signaling proteins involved in sterol control of transcription and ER stress response. Wild-type MBTPS2 was able to complement the protease deficiency in Chinese hamster M19 cells as shown by induction of an SRE-regulated reporter gene in transient transfection experiments and by growth of stably transfected cells in media devoid of cholesterol and lipids. These functions were impaired in five mutations as detected in unrelated patients. The degree of diminished activity correlated with clinical severity as noted in male patients. Our findings indicate that the phenotypic expression of IFAP syndrome is quantitatively related to a reduced function of a key cellular regulatory system affecting cholesterol homeostasis and ability to cope with ER stress.
Collapse
|
15
|
Hölttä-Vuori M, Uronen RL, Repakova J, Salonen E, Vattulainen I, Panula P, Li Z, Bittman R, Ikonen E. BODIPY-cholesterol: a new tool to visualize sterol trafficking in living cells and organisms. Traffic 2008; 9:1839-49. [PMID: 18647169 DOI: 10.1111/j.1600-0854.2008.00801.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Analysis of sterol distribution and transport in living cells has been hampered by the lack of bright, photostable fluorescent sterol derivatives that closely resemble cholesterol. In this study, we employed atomistic simulations and experiments to characterize a cholesterol compound with fluorescent boron dipyrromethene difluoride linked to sterol carbon-24 (BODIPY-cholesterol). This probe packed in the membrane and behaved similarly to cholesterol both in normal and in cholesterol-storage disease cells and with trace amounts allowed the visualization of sterol movement in living systems. Upon injection into the yolk sac, BODIPY-cholesterol did not disturb zebrafish development and was targeted to sterol-enriched brain regions in live fish. We conclude that this new probe closely mimics the membrane partitioning and trafficking of cholesterol and, because of its excellent fluorescent properties, enables the direct monitoring of sterol movement by time-lapse imaging using trace amounts of the probe. This is, to our knowledge, the first cholesterol probe that fulfills these prerequisites.
Collapse
Affiliation(s)
- Maarit Hölttä-Vuori
- Institute of Biomedicine/Anatomy, Haartmaninkatu 8, University of Helsinki, Helsinki 00014, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lange Y, Ory DS, Ye J, Lanier MH, Hsu FF, Steck TL. Effectors of rapid homeostatic responses of endoplasmic reticulum cholesterol and 3-hydroxy-3-methylglutaryl-CoA reductase. J Biol Chem 2007; 283:1445-1455. [PMID: 18024962 DOI: 10.1074/jbc.m706967200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cholesterol content of the endoplasmic reticulum (ER) and the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) imbedded therein respond homeostatically within minutes to changes in the level of plasma membrane cholesterol. We have now examined the roles of sterol regulatory element-binding protein (SREBP)-dependent gene expression, side chain oxysterol biosynthesis, and cholesterol precursors in the short term regulation of ER cholesterol levels and HMGR activity. We found that SREBP-dependent gene expression is not required for the response to changes in cell cholesterol of either the pool of ER cholesterol or the rate of cholesterol esterification. It was also found that the acute proteolytic inactivation of HMGR triggered by cholesterol loading required the conversion of cholesterol to 27-hydroxycholesterol. High levels of exogenous 24,25-dihydrolanosterol drove the inactivation of HMGR; lanosterol did not. However, purging endogenous 24,25-dihydrolanosterol, lanosterol, and other biosynthetic sterol intermediates by treating cells with NB-598 did not greatly affect either the setting of their ER cholesterol pool or the inactivation of their HMGR. In summary, neither SREBP-regulated genes nor 27-hydroxycholesterol is involved in setting the ER cholesterol pool. On the other hand, 27-hydroxycholesterol, rather than cholesterol itself or biosynthetic precursors of cholesterol, stimulates the rapid inactivation of HMGR in response to high levels of cholesterol.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois 60612.
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jin Ye
- Department of Pathology, Rush University Medical Center, Chicago, Illinois 60612
| | - Michael H Lanier
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Fong-Fu Hsu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
17
|
Bergeron E, Vincent MJ, Nichol ST. Crimean-Congo hemorrhagic fever virus glycoprotein processing by the endoprotease SKI-1/S1P is critical for virus infectivity. J Virol 2007; 81:13271-6. [PMID: 17898072 PMCID: PMC2169102 DOI: 10.1128/jvi.01647-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) causes severe human disease. The CCHFV medium RNA encodes a polyprotein which is proteolytically processed to yield the glycoprotein precursors PreGn and PreGc, followed by structural glycoproteins Gn and Gc. Subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P) plays a central role in Gn processing. Here we show that CCHFV-infected cells deficient in SKI-1/S1P produce no infectious virus, although PreGn and PreGc accumulated normally in the Golgi apparatus, the site of virus assembly. Only nucleoprotein-containing particles which lacked virus glycoproteins (Gn/Gc or PreGn/PreGc) were secreted. Complementation of SKI-1/S1P-deficient cells with a SKI-1/S1P expression vector restored release of infectious virus (>10(6) PFU/ml), confirming that SKI-1/S1P processing is required for incorporation of viral glycoproteins. SKI-1/S1P may represent a promising antiviral target.
Collapse
Affiliation(s)
- Eric Bergeron
- Special Pathogens Branch, Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-borne and Enteric Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | |
Collapse
|
18
|
Wong J, Quinn C, Brown A. SREBP-2 positively regulates transcription of the cholesterol efflux gene, ABCA1, by generating oxysterol ligands for LXR. Biochem J 2006; 400:485-91. [PMID: 16901265 PMCID: PMC1698594 DOI: 10.1042/bj20060914] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cholesterol accumulation and removal are regulated by two different transcription factors. SREBP-2 (sterol-regulatory-element-binding protein-2) is best known to up-regulate genes involved in cholesterol biosynthesis and uptake, whereas LXR (liver X receptor) is best known for up-regulating cholesterol efflux genes. An important cholesterol efflux gene that is regulated by LXR is the ATP-binding cassette transporter, ABCA1 (ATP-binding cassette transporter-A1). We have previously shown that statin treatment down-regulated ABCA1 expression in human macrophages, probably by inhibiting synthesis of the LXR ligand 24(S),25-epoxycholesterol. However, it was subsequently reported that ABCA1 expression is down-regulated by SREBP-2 through binding of SREBP-2 to an E-box element in ABCA1's proximal promoter. As statin treatment induces SREBP-2 activation, this may provide an alternative explanation for the statin-mediated down-regulation of ABCA1. In the present study, we employed a set of CHO (Chinese-hamster ovary) mutant cell lines to investigate the role of SREBP-2 in the regulation of ABCA1. We observed increased ABCA1 mRNA levels in SREBP-2-overexpressing cells and decreased levels in cells lacking a functional SREBP-2 pathway, which were restored when the SREBP-2 pathway was reinstated. Moreover, ABCA1 gene expression was positively associated with synthesis of 24(S),25-epoxycholesterol in these cell lines. In studies using a human ABCA1 promoter reporter assay, mutation of the E-box motif had a similar response as the wild-type construct to either statin treatment or addition of 24(S),25-epoxycholesterol. By contrast, these responses were completely ablated when the DR4 element to which LXR binds was mutated. These results support the idea that 24(S),25-epoxycholesterol and statin treatment influence ABCA1 transcription via supply of an LXR ligand and not through an SREBP-2/E-box-related mechanism. In addition, our results indicate a critical role of SREBP-2 as a positive regulator of ABCA1 gene expression by enabling the generation of oxysterol ligands for LXR.
Collapse
Affiliation(s)
- Jenny Wong
- *School of Biotechnology and Biomolecular Sciences, Biosciences Building D26, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Carmel M. Quinn
- †Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- ‡Centre for Vascular Research, Department of Haematology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Andrew J. Brown
- *School of Biotechnology and Biomolecular Sciences, Biosciences Building D26, The University of New South Wales, Sydney, NSW 2052, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
19
|
Yoshida H, Nadanaka S, Sato R, Mori K. XBP1 is critical to protect cells from endoplasmic reticulum stress: evidence from Site-2 protease-deficient Chinese hamster ovary cells. Cell Struct Funct 2006; 31:117-25. [PMID: 17110785 DOI: 10.1247/csf.06016] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
XBP1 is a transcription factor downstream of IRE1, a transmembrane protein in the endoplasmic reticulum (ER) which functions as a sensor and transducer of ER stress. XBP1 mRNA is constitutively expressed at a low level as an intron-containing precursor mRNA (unspliced mRNA), which is subject to IRE1-mediated splicing reaction upon ER stress to produce the active form of XBP1, pXBP1(S). Because the XBP1 promoter carries a perfect ER stress-response element, namely, the cis-acting element responsible for the induction of ER chaperones, and XBP1 mRNA is induced in response to ER stress with a time course similar to that of ER chaperone mRNAs, it is conjectured that transcription factor ATF6, activated immediately upon ER stress, induces the transcription of not only ER chaperone genes but also of XBP1 gene, such that pXBP1(S) produced by the splicing of an increased level of XBP1 mRNA escapes from proteasome-mediated degradation. Here, we examined this notion by determining the induction of XBP1 mRNA and pXBP1(S) in mutant Chinese hamster ovary (M19) cells deficient in Site-2 protease, which executes the last step of ER stress-induced activation of ATF6. We found that the induction of XBP1 mRNA and pXBP1(S) was greatly reduced in M19 cells as compared with wild-type cells, leading to a marked reduction in the extent of induction of XBP1-target gene. M19 cells were much more sensitive to ER stress than wild-type cells. Importantly, overexpression of XBP1 unspliced mRNA in M19 cells reversed all of these phenotypes. We concluded that ATF6-mediated induction of XBP1 mRNA is important to the production of pXBP1(S), activation of XBP1-target genes, and protection of cells from ER stress.
Collapse
Affiliation(s)
- Hiderou Yoshida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
20
|
Sugii S, Lin S, Ohgami N, Ohashi M, Chang CCY, Chang TY. Roles of endogenously synthesized sterols in the endocytic pathway. J Biol Chem 2006; 281:23191-206. [PMID: 16737966 DOI: 10.1074/jbc.m603215200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect(s) of endogenously synthesized cholesterol (endo-CHOL) on the endosomal system in mammalian cells has not been examined. Here we treated Chinese hamster ovary cell lines with lovastatin (a hydroxymethylglutaryl-CoA reductase inhibitor) and mevalonate (a precursor for isoprenoids) to block endo-CHOL synthesis and then examined its effects on the fate of cholesterol liberated from low density lipoprotein (LDL-CHOL). The results showed that blocking endo-CHOL synthesis for 2 h or longer does not impair the hydrolysis of cholesteryl esters but partially impairs the transport of LDL-CHOL to the plasma membrane. Blocking endo-CHOL synthesis for 2 h or longer also alters the localization patterns of the late endosomes/lysosomes and retards their motility, as monitored by time-lapse microscopy. LDL-CHOL overcomes the effect of blocking endo-CHOL synthesis on endosomal localization patterns and on endosomal motility. Overexpressing Rab9, a key late endosomal small GTPase, relieves the endosomal cholesterol accumulation in Niemann-Pick type C1 cells but does not revert the reduced endosomal motility caused by blocking endo-CHOL synthesis. Our results suggested that endo-CHOL contributes to the cholesterol content of late endosomes and controls its motility, in a manner independent of NPC1. These results also supported the concept that endosomal motility plays an important role in controlling cholesterol trafficking activities.
Collapse
Affiliation(s)
- Shigeki Sugii
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
21
|
Nadanaka S, Yoshida H, Sato R, Mori K. Analysis of ATF6 Activation in Site-2 Protease-deficient Chinese Hamster Ovary Cells. Cell Struct Funct 2006; 31:109-16. [PMID: 17110786 DOI: 10.1247/csf.06015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mammalian transcription factor ATF6 is constitutively synthesized as a type II transmembrane protein embedded in the endoplasmic reticulum (ER). It is activated when unfolded proteins are accumulated in the ER under ER stress through a process called regulated intramembrane proteolysis (Rip), in which ATF6 is transported from the ER to the Golgi apparatus where it undergoes sequential cleavage by Site-1 and Site-2 proteases. The cytosolic transcription factor domain of ATF6 liberated from the Golgi membrane enters the nucleus where it activates transcription of ER-localized molecular chaperones and folding enzymes, leading to the maintenance of the homeostasis of the ER. Here, we analyzed M19 cells, a mutant of Chinese hamster ovary cells deficient in Site-2 protease. It was previously shown that M19 cells are defective in the induction of mRNA encoding the major ER chaperone BiP. In M19 cells, ATF6 was not converted from the membrane-bound precursor form to the cleaved and nuclear form as expected. Moreover, some of the ATF6 was constitutively relocated to the Golgi apparatus, where it was cleaved by Site-1 protease, and remained associated with the Golgi apparatus, indicating that the ER of M19 cells was constitutively stressed. Consistent with this notion, the two other ER stress response mediators, IRE1 and PERK, were also constitutively activated in M19 cells. M19 cells showed inefficient secretion of a model protein. These results suggest that Rip-mediated activation of ATF6 is important for the homeostasis of the ER in not only ER-stressed but also unstressed cells.
Collapse
Affiliation(s)
- Satomi Nadanaka
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
22
|
Xu F, Rychnovsky SD, Belani JD, Hobbs HH, Cohen JC, Rawson RB. Dual roles for cholesterol in mammalian cells. Proc Natl Acad Sci U S A 2005; 102:14551-6. [PMID: 16199524 PMCID: PMC1239893 DOI: 10.1073/pnas.0503590102] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural features of sterols required to support mammalian cell growth have not been fully defined. Here, we use mutant CHO cells that synthesize only small amounts of cholesterol to test the capacity of various sterols to support growth. Sterols with minor modifications of the side chain (e.g., campesterol, beta-sitosterol, and desmosterol) supported long-term growth of mutant cells, but sterols with more complex modifications of the side chain, the sterol nucleus, or the 3-hydroxy group did not. After 60 days in culture, the exogenous sterol comprised >90% of cellular sterols. Inactivation of residual endogenous synthesis with the squalene epoxidase inhibitor NB-598 prevented growth in beta-sitosterol and greatly reduced growth in campesterol. Growth of cells cultured in beta-sitosterol and NB-598 was restored by adding small amounts of cholesterol to the medium. Surprisingly, enantiomeric cholesterol also supported cell growth, even in the presence of NB-598. Thus, sterols fulfill two roles in mammalian cells: (i) a bulk membrane requirement in which phytosterols can substitute for cholesterol and (ii) other processes that specifically require small amounts of cholesterol but are not enantioselective.
Collapse
Affiliation(s)
- Fang Xu
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
23
|
Ito D, Walker JR, Thompson CS, Moroz I, Lin W, Veselits ML, Hakim AM, Fienberg AA, Thinakaran G. Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties. Mol Cell Biol 2004; 24:9456-69. [PMID: 15485913 PMCID: PMC522226 DOI: 10.1128/mcb.24.21.9456-9469.2004] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) induces a highly conserved homeostatic response in all eukaryotic cells, termed the unfolded-protein response (UPR). Here we describe the characterization of stanniocalcin 2 (STC2), a mammalian homologue of a calcium- and phosphate-regulating hormone first identified in fish, as a novel target of the UPR. Expression of STC2 gene is rapidly upregulated in cultured cells after exposure to tunicamycin and thapsigargin, by ATF4 after activation of the ER-resident kinase PERK. In addition, STC2 expression is also activated in neuronal cells by oxidative stress and hypoxia but not by several cellular stresses unrelated to the UPR. In contrast, expression of another homologue, STC1, is only upregulated by hypoxia independent of PERK or ATF4 expression. In vivo studies revealed that rat cortical neurons rapidly upregulate STC2 after transient middle cerebral artery occlusion. Finally, siRNA-mediated inhibition of STC2 expression renders N2a neuroblastoma cells and HeLa cells significantly more vulnerable to apoptotic cell death after treatment with thapsigargin, and overexpression of STC2 attenuated thapsigargin-induced cell death. Consequently, induced STC2 expression is an essential feature of survival component of the UPR.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Neurobiology, Pharmacology, and Physiology, The University of Chicago, Knapp R212, 924 East 57th St., Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins are members of the basic helix-loop-helix-leucine zipper (bHLH-Zip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP). The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2 is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones, cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.
Collapse
Affiliation(s)
- Lutz-W Weber
- Institute of Toxicology, GSF-National Research Center for Environment and Health, Munich, D-85758 Neuherberg, Germany.
| | | | | |
Collapse
|
25
|
Lee JN, Ye J. Proteolytic activation of sterol regulatory element-binding protein induced by cellular stress through depletion of Insig-1. J Biol Chem 2004; 279:45257-65. [PMID: 15304479 DOI: 10.1074/jbc.m408235200] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insig-1 and Insig-2 are closely related proteins of the endoplasmic reticulum (ER) that block proteolytic activation of sterol regulatory element-binding proteins (SREBPs), membrane-bound transcription factors that activate synthesis of cholesterol and fatty acids in animal cells. When cellular cholesterol levels are high, Insig proteins bind to SREBP cleavage-activating protein, retaining it in the ER and preventing it from escorting SREBPs to the site of proteolytic activation in the Golgi complex. Here we report that hypotonic stress reverses the sterol-mediated inhibition of SREBP proteolytic activation by reducing the level of Insig-1 but not Insig-2. The reduction of Insig-1, a protein with a rapid turnover rate, results from a general inhibition of protein synthesis mediated by hypotonic stress. Insig-2 is not affected by hypotonic stress because of its slower turnover rate. Inhibition of protein synthesis by hypotonic shock has not been reported previously. Thapsigargin, an activator of the ER stress response, also inhibits protein synthesis and activates proteolysis of SREBP. Such activation also correlates with the disappearance of Insig-1. The current study demonstrates that animal cells, in response to either hypotonic shock or ER stress, can bypass the cholesterol inhibition of SREBP processing, an effect that is attributable to the rapid turnover of Insig-1.
Collapse
Affiliation(s)
- Joon No Lee
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046, USA
| | | |
Collapse
|
26
|
Abstract
Animal cells coordinate lipid homeostasis by end-product feedback regulation of transcription. The control occurs through the proteolytic release of transcriptionally active sterol regulatory element binding proteins (SREBPs) from intracellular membranes. This feedback system has unexpected features that are found in all cells. Here, we consider recently discovered components of the regulatory machinery that govern SREBP processing, as well as studies in Drosophila that indicate an ancient role for the SREBP pathway in integrating membrane composition and lipid biosynthesis.
Collapse
Affiliation(s)
- Robert B Rawson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.
| |
Collapse
|
27
|
Ridgway ND, Lagace TA. Regulation of the CDP-choline pathway by sterol regulatory element binding proteins involves transcriptional and post-transcriptional mechanisms. Biochem J 2003; 372:811-9. [PMID: 12659631 PMCID: PMC1223452 DOI: 10.1042/bj20030252] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2003] [Revised: 03/21/2003] [Accepted: 03/26/2003] [Indexed: 11/17/2022]
Abstract
The synthesis of phosphatidylcholine (PtdCho) by the CDP-choline pathway is under the control of the rate-limiting enzyme CTP:phosphocholine cytidylyltransferase (CCT). Sterol regulatory element binding proteins (SREBPs) have been proposed to regulate CCT at the transcriptional level, or via the synthesis of lipid activators or substrates of the CDP-choline pathway. To assess the contributions of these two mechanisms, we examined CCTalpha expression and PtdCho synthesis by the CDP-choline pathway in cholesterol and fatty acid auxotrophic CHO M19 cells inducibly expressing constitutively active nuclear forms of SREBP1a or SREBP2. Induction of either SREBP resulted in increased expression of mRNAs for sterol-regulated genes, elevated fatty acid and cholesterol synthesis (>10-50-fold) and increased PtdCho synthesis (2-fold). CCTalpha mRNA was increased 2-fold by enforced expression of SREBP1a or SREBP2. The resultant increase in CCTalpha protein and activity (2-fold) was restricted primarily to the soluble fraction of cells, and increased CCTalpha activity in vivo was not detected. Inhibition of the synthesis of fatty acids or their CoA esters by cerulenin or triacsin C respectively following SREBP induction effectively blocked the accompanying elevation in PtdCho synthesis. Thus PtdCho synthesis was driven by increased synthesis of fatty acids or a product thereof. These data show that transcriptional activation of CCTalpha is modest relative to that of other SREBP-regulated genes, and that stimulation of PtdCho synthesis by SREBPs in CHO cells is due primarily to increased fatty acid synthesis.
Collapse
Affiliation(s)
- Neale D Ridgway
- Department of Pediatrics, Atlantic Research Center, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3H7.
| | | |
Collapse
|
28
|
Cruz JC, Thomas M, Wong E, Ohgami N, Sugii S, Curphey T, Chang CC, Chang TY. Synthesis and biochemical properties of a new photoactivatable cholesterol analog 7,7-azocholestanol and its linoleate ester in Chinese hamster ovary cell lines. J Lipid Res 2002. [DOI: 10.1194/jlr.m200015-jlr200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Goldstein JL, Rawson RB, Brown MS. Mutant mammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis. Arch Biochem Biophys 2002; 397:139-48. [PMID: 11795864 DOI: 10.1006/abbi.2001.2615] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The tools of somatic cell genetics have been instrumental in unraveling the pathway by which sterol regulatory element-binding proteins (SREBPs) control lipid metabolism in animal cells. SREBPs are membrane-bound transcription factors that enhance the synthesis and uptake of cholesterol and fatty acids. The activities of the SREBPs are controlled by the cholesterol content of cells through feedback inhibition of proteolytic processing. When cells are replete with sterols, SREBPs remain bound to membranes of the endoplasmic reticulum (ER) and are therefore inactive. When cells are depleted of sterols, the SREBPs move to the Golgi complex where two proteases release the active portions of the SREBPs, which then enter the nucleus and activate transcription of target genes. This processing requires three membrane proteins-a sterol-sensing escort protein (SCAP) that transports SREBPs from the ER to the Golgi and two Golgi-located proteases (S1P and S2P) that release SREBPs from membranes. The existence of all three proteins was revealed through analysis of mutant mammalian cells in tissue culture. Their cDNAs and genes were isolated by genetic complementation or by expression cloning. The somatic cell genetic approach described in this article should prove useful for unraveling other complex biochemical pathways in animal cells.
Collapse
Affiliation(s)
- Joseph L Goldstein
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046, USA.
| | | | | |
Collapse
|
30
|
Hirano Y, Yoshida M, Shimizu M, Sato R. Direct demonstration of rapid degradation of nuclear sterol regulatory element-binding proteins by the ubiquitin-proteasome pathway. J Biol Chem 2001; 276:36431-7. [PMID: 11477106 DOI: 10.1074/jbc.m105200200] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) are synthesized as membrane-bound precursors and processed to generate transcriptionally active forms. The active SREBPs translocate to the nucleus, induce the expression of responsive genes, and are degraded very rapidly. Treatment with proteasome inhibitors elevates the amount of the endogenous nuclear SREBPs, but not the precursors, in HeLa cells. Nuclear forms of human SREBP-1a (amino acids 1-487) and SREBP-2 (amino acids 1-481), which are transiently expressed in stable Chinese hamster ovary cell lines (CHO-487 and -481), are also stabilized by proteasome inhibitors, suggesting that the nuclear SREBPs are likely to be substrates for the proteasome-dependent proteolysis. The stabilized nuclear SREBPs actively induce the expression of responsive genes including hydroxymethylglutaryl (HMG)-CoA synthase, fatty acid synthase, and the low density lipoprotein receptor. The rapid turnover of nuclear SREBP-1a is not affected by the intracellular sterol levels, and the half-life is estimated to be approximately 3 h. The nuclear SREBPs are found conjugated with a polyubiquitin chain. When this conjugation is inhibited by overexpression of mutant ubiquitin that is defective in polyubiquitination, the nuclear SREBPs are partly stabilized and induce the expression of the responsive gene, suggesting that the ubiquitin-conjugated SREBPs are substrates for the proteasome. Taken together, these results demonstrate that the ubiquitin-proteasome system degrades SREBPs and that this system controls the expression of SREBP-responsive genes.
Collapse
Affiliation(s)
- Y Hirano
- Department of Applied Biological Chemistry and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
31
|
Ye J, Rawson RB, Komuro R, Chen X, Davé UP, Prywes R, Brown MS, Goldstein JL. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 2000; 6:1355-64. [PMID: 11163209 DOI: 10.1016/s1097-2765(00)00133-7] [Citation(s) in RCA: 1379] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ATF6 is a membrane-bound transcription factor that activates genes in the endoplasmic reticulum (ER) stress response. When unfolded proteins accumulate in the ER, ATF6 is cleaved to release its cytoplasmic domain, which enters the nucleus. Here, we show that ATF6 is processed by Site-1 protease (S1P) and Site-2 protease (S2P), the enzymes that process SREBPs in response to cholesterol deprivation. ATF6 processing was blocked completely in cells lacking S2P and partially in cells lacking S1P. ATF6 processing required the RxxL and asparagine/proline motifs, known requirements for S1P and S2P processing, respectively. Cells lacking S2P failed to induce GRP78, an ATF6 target, in response to ER stress. ATF6 processing did not require SCAP, which is essential for SREBP processing. We conclude that S1P and S2P are required for the ER stress response as well as for lipid synthesis.
Collapse
Affiliation(s)
- J Ye
- Department of Molecular Genetics, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hasty AH, Shimano H, Yahagi N, Amemiya-Kudo M, Perrey S, Yoshikawa T, Osuga J, Okazaki H, Tamura Y, Iizuka Y, Shionoiri F, Ohashi K, Harada K, Gotoda T, Nagai R, Ishibashi S, Yamada N. Sterol regulatory element-binding protein-1 is regulated by glucose at the transcriptional level. J Biol Chem 2000; 275:31069-77. [PMID: 10913129 DOI: 10.1074/jbc.m003335200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vivo studies suggest that sterol regulatory element-binding protein (SREBP)-1 plays a key role in the up-regulation of lipogenic genes in the livers of animals that have consumed excess amounts of carbohydrates. In light of this, we sought to use an established mouse hepatocyte cell line, H2-35, to further define the mechanism by which glucose regulates nuclear SREBP-1 levels. First, we show that these cells transcribe high levels of SREBP-1c that are increased 4-fold upon differentiation from a prehepatocyte to a hepatocyte phenotype, making them an ideal cell culture model for the study of SREBP-1c induction. Second, we demonstrate that the presence of precursor and mature forms of SREBP-1 protein are positively regulated by medium glucose concentrations ranging from 5. 5 to 25 mm and are also regulated by insulin, with the amount of insulin in the fetal bovine serum being sufficient for maximal stimulation of SREBP-1 expression. Third, we show that the increase in SREBP-1 protein is due to an increase in SREBP-1 mRNA. Reporter gene analysis of the SREBP-1c promoter demonstrated a glucose-dependent induction of transcription. In contrast, expression of a fixed amount of the precursor form of SREBP-1c protein showed that glucose does not influence its cleavage. Fourth, we demonstrate that the glucose induction of SREBP could not be reproduced by fructose, xylose, or galactose nor by glucose analogs 2-deoxy glucose and 3-O-methyl glucopyranose. These data provide strong evidence for the induction of SREBP-1c mRNA by glucose leading to increased mature protein in the nucleus, thus providing a potential mechanism for the up-regulation of lipogenic genes by glucose in vivo.
Collapse
Affiliation(s)
- A H Hasty
- Department of Metabolic Diseasese, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mziaut H, Korza G, Ozols J. The N terminus of microsomal delta 9 stearoyl-CoA desaturase contains the sequence determinant for its rapid degradation. Proc Natl Acad Sci U S A 2000; 97:8883-8. [PMID: 10922050 PMCID: PMC16790 DOI: 10.1073/pnas.97.16.8883] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stearoyl-CoA desaturase (SCD) is a key regulator of membrane fluidity, turns over rapidly, and represents a model for selective degradation of short-lived proteins of the endoplasmic reticulum (ER). The mechanism whereby specific ER proteins are targeted for degradation in the midst of stable proteins coexisting in the same membrane is unknown. To investigate the intracellular fate of SCD and to identify the determinants involved in the rapid turnover of SCD, we created chimeras of SCD tagged at the C terminus with the green fluorescent protein (GFP). The fusion proteins were expressed in Chinese hamster ovary cells and exhibited an ER localization. Unlike native GFP, the SCD-GFP construct was unstable and had a half life of a few hours. Truncated fusion proteins consisting of residues 27-358 and 45-358 of SCD linked to the N terminus of GFP were stable. To investigate the general applicability of the N terminus of SCD in the destabilization of proteins, we fused residues 1-33 of SCD to the N terminus of GFP. The resulting chimera was extremely short lived. To investigate the effect of membrane sidedness on the fusion protein degradation, we attached a lumenal targeting signal to the N terminus of SCD 1-33-GFP. The construct was localized to the lumen of ER and was metabolically stable, indicating that SCD degradation signal functions on the cytosolic rather than the lumenal side of the ER. These results demonstrate that the N-terminal segment of some 30 residues of SCD constitutes a motif responsible for the rapid degradation of SCD.
Collapse
Affiliation(s)
- H Mziaut
- Department of Biochemistry, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | | | | |
Collapse
|
34
|
Niwa M, Sidrauski C, Kaufman RJ, Walter P. A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell 1999; 99:691-702. [PMID: 10619423 DOI: 10.1016/s0092-8674(00)81667-0] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The unfolded protein response (UPR) mediates signaling from the endoplasmic reticulum to the nucleus. In yeast, a key regulatory step in the UPR is the spliceosome-independent splicing of HAC1 mRNA encoding a UPR-specific transcription factor, which is initiated by the transmembrane kinase/endoribonuclease Ire1. We show that yeast HAC1 mRNA is correctly spliced in mammalian cells upon UPR induction and that mammalian Ire1 can precisely cleave both splice junctions. Surprisingly, UPR induction leads to proteolytic cleavage of Ire1, releasing fragments containing the kinase and nuclease domains that accumulate in the nucleus. Nuclear localization and UPR induction are reduced in presenilin-1 knockout cells. These results suggest that the salient features of the UPR are conserved among eukaryotic cells and that presenilin-1 controls Ire1 proteolysis in mammalian cells.
Collapse
Affiliation(s)
- M Niwa
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics University of California, School of Medicine, San Francisco 94143-0448, USA
| | | | | | | |
Collapse
|
35
|
Rawson RB, DeBose-Boyd R, Goldstein JL, Brown MS. Failure to Cleave Sterol Regulatory Element-binding Proteins (SREBPs) Causes Cholesterol Auxotrophy in Chinese Hamster Ovary Cells with Genetic Absence of SREBP Cleavage-activating Protein. J Biol Chem 1999; 274:28549-56. [PMID: 10497220 DOI: 10.1074/jbc.274.40.28549] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We describe a line of mutant Chinese hamster ovary cells, designated SRD-13A, that cannot cleave sterol regulatory element-binding proteins (SREBPs) at site 1, due to mutations in the gene encoding SREBP cleavage-activating protein (SCAP). The SRD-13A cells were obtained by two rounds of gamma-irradiation followed first by selection for a deficiency of low density lipoprotein receptors and second for cholesterol auxotrophy. In the SRD-13A cells, the only detectable SCAP allele encodes a truncated nonfunctional protein. In the absence of SCAP, the site 1 protease fails to cleave SREBPs, and their transcriptionally active NH(2)-terminal fragments cannot enter the nucleus. As a result, the cells manifest a marked reduction in the synthesis of cholesterol and its uptake from low density lipoproteins. The SRD-13A cells grow only when cholesterol is added to the culture medium. SREBP cleavage is restored and the cholesterol requirement is abolished when SRD-13A cells are transfected with expression vectors encoding SCAP. These results provide formal proof that SCAP is essential for the cleavage of SREBPs at site 1.
Collapse
Affiliation(s)
- R B Rawson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | |
Collapse
|
36
|
Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A 1999; 96:11041-8. [PMID: 10500120 PMCID: PMC34238 DOI: 10.1073/pnas.96.20.11041] [Citation(s) in RCA: 1011] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The integrity of cell membranes is maintained by a balance between the amount of cholesterol and the amounts of unsaturated and saturated fatty acids in phospholipids. This balance is maintained by membrane-bound transcription factors called sterol regulatory element-binding proteins (SREBPs) that activate genes encoding enzymes of cholesterol and fatty acid biosynthesis. To enhance transcription, the active NH(2)-terminal domains of SREBPs are released from endoplasmic reticulum membranes by two sequential cleavages. The first is catalyzed by Site-1 protease (S1P), a membrane-bound subtilisin-related serine protease that cleaves the hydrophilic loop of SREBP that projects into the endoplasmic reticulum lumen. The second cleavage, at Site-2, requires the action of S2P, a hydrophobic protein that appears to be a zinc metalloprotease. This cleavage is unusual because it occurs within a membrane-spanning domain of SREBP. Sterols block SREBP processing by inhibiting S1P. This response is mediated by SREBP cleavage-activating protein (SCAP), a regulatory protein that activates S1P and also serves as a sterol sensor, losing its activity when sterols overaccumulate in cells. These regulated proteolytic cleavage reactions are ultimately responsible for controlling the level of cholesterol in membranes, cells, and blood.
Collapse
Affiliation(s)
- M S Brown
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235, USA.
| | | |
Collapse
|
37
|
Tahvanainen E, Molin M, Laakso J, Sundvall J, Jauhiainen M, Vaskonen T, Karppanen H. Interrelationships between low density lipoprotein receptor defect, serum fatty acid composition, and serum cholesterol concentration. J Nutr Biochem 1999; 10:360-6. [PMID: 15539311 DOI: 10.1016/s0955-2863(99)00016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/1998] [Accepted: 02/25/1999] [Indexed: 11/23/2022]
Abstract
It is known that, in the general human population, serum fatty acid composition is correlated with serum triacylglycerol and cholesterol concentrations. The goal of the present study was to analyze whether the same is true of individuals who have a low density lipoprotein receptor (LDL-R) defect. Concentrations of 16 different fatty acids, cholesterol, triacylglycerol, and major lipoproteins in serum were determined in eight individuals who had (FH-North Karelia), the most common LDL-R defect in Finland, which causes familial hypercholesterolemia, and in their 30 relatives belonging to a single large pedigree as controls. The average number of double bonds (i.e., degree of desaturation) in serum fatty acids correlated negatively with the concentrations of serum total cholesterol (r = 0.27, P < 0.05) and total triacylglycerol (r = -0.71, P < 0.001) and positively with the number of fish meals per week (r = 0.50, P < 0.01), which was analyzed in all pedigree members jointly. These effects were similar in individuals having LDL-R defect, in which group the correlation coefficients were -0.31 (P = NS), -0.99 (P < 0.001), and 0.79 (P = NS) for serum total cholesterol, triacylglycerol, and weekly fish meals, respectively. Thus, LDL-R defect does not impair the correlation between serum fatty acid composition and serum triacylglycerol concentration. This result is in agreement with dietary studies that have shown that familial hypercholesterolemia patients respond very favorably to dietary therapy.
Collapse
Affiliation(s)
- E Tahvanainen
- Department of Biochemistry, National Public Health Institute, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
38
|
Rawson RB, Cheng D, Brown MS, Goldstein JL. Isolation of cholesterol-requiring mutant Chinese hamster ovary cells with defects in cleavage of sterol regulatory element-binding proteins at site 1. J Biol Chem 1998; 273:28261-9. [PMID: 9774448 DOI: 10.1074/jbc.273.43.28261] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The synthesis and uptake of cholesterol requires transcription factors designated sterol regulatory element-binding proteins (SREBPs). SREBPs are bound to membranes in a hairpin orientation with their transcriptionally active NH2-terminal segments facing the cytosol. The NH2-terminal segments are released from membranes by two-step proteolysis initiated by site 1 protease (S1P), which cleaves in the luminal loop between two membrane-spanning segments. Next, site 2 protease (S2P) releases the NH2-terminal fragment of SREBP. The S2P gene was recently isolated by complementation cloning using Chinese hamster ovary cells that require cholesterol for growth, due to a mutation in the S2P gene. A similar approach cannot be used for S1P because all previous cholesterol auxotrophs manifest defects in S2P, which is encoded by a single copy gene. To circumvent this problem, in the current studies we transfected Chinese hamster ovary cells with the S2P cDNA, assuring multiple copies. We mutagenized the cells, selected for cholesterol auxotrophy, and identified two mutant cell lines (SRD-12A and -12B) that fail to cleave SREBPs at site 1. Complementation analysis demonstrated that the defects in both cell lines are recessive and noncomplementing, indicating a mutation in the same gene. These cells should now be useful for expression cloning of the sterol-regulated S1P gene.
Collapse
Affiliation(s)
- R B Rawson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | |
Collapse
|
39
|
Pai JT, Guryev O, Brown MS, Goldstein JL. Differential stimulation of cholesterol and unsaturated fatty acid biosynthesis in cells expressing individual nuclear sterol regulatory element-binding proteins. J Biol Chem 1998; 273:26138-48. [PMID: 9748295 DOI: 10.1074/jbc.273.40.26138] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Three sterol regulatory element-binding proteins (SREBP-1a, -1c, and -2) stimulate transcription of genes involved in synthesis and receptor-mediated uptake of cholesterol and fatty acids. Here, we explore the individual roles of each SREBP by preparing lines of Chinese hamster ovary (CHO) cells that express graded amounts of nuclear forms of each SREBP (designated nSREBPs) under control of a muristerone-inducible nuclear receptor system. The parental hamster cell line (M19 cells) lacks its own nSREBPs, owing to a deletion in the gene encoding the Site-2 protease, which releases nSREBPs from cell membranes. By varying the concentration of muristerone, we obtained graded expression of individual nSREBPs in the range that restored lipid synthesis to near physiologic levels. The results show that nSREBP-2 produces a higher ratio of synthesis of cholesterol over fatty acids than does nSREBP-1a. This is due in part to a selective ability of low levels of nSREBP-2, but not nSREBP-1a, to activate the promoter for squalene synthase. nSREBP-1a and -2 both activate transcription of the genes encoding stearoyl-CoA desaturase-1 and -2, thereby markedly enhancing the production of monounsaturated fatty acids. nSREBP-1c was inactive in stimulating any transcription at the concentrations achieved in these studies. The current data support the emerging view that the nSREBPs act in complementary ways to modulate the lipid composition of cell membranes.
Collapse
Affiliation(s)
- J T Pai
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | |
Collapse
|
40
|
Sakai J, Rawson RB, Espenshade PJ, Cheng D, Seegmiller AC, Goldstein JL, Brown MS. Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol Cell 1998; 2:505-14. [PMID: 9809072 DOI: 10.1016/s1097-2765(00)80150-1] [Citation(s) in RCA: 303] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The lipid composition of animal cells is controlled by SREBPs, transcription factors released from membranes by sterol-regulated proteolysis. Release is initiated by Site-1 protease (S1P), which cleaves SREBPs in the ER luminal loop between two membrane-spanning regions. To clone S1P, we prepared pCMV-PLAP-BP2, which encodes a fusion protein that contains placental alkaline phosphatase (PLAP) in the ER lumen flanked by cleavage sites for signal peptidase and S1P. In sterol-deprived cells, cleavage by both proteases leads to PLAP secretion. PLAP is not secreted by SRD-12B cells, cholesterol auxotrophs that lack S1P. We transfected SRD-12B cells with pCMV-PLAP-BP2 plus pools of CHO cDNAs and identified a cDNA that restores Site-1 cleavage and PLAP secretion. The cDNA encodes S1P, an intraluminal 1052-amino-acid membrane-bound subtilisin-like protease. We propose that S1P is the sterol-regulated protease that controls lipid metabolism in animal cells.
Collapse
Affiliation(s)
- J Sakai
- Department of Molecular Genetics, University of Texas, Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Tabor DE, Kim JB, Spiegelman BM, Edwards PA. Transcriptional activation of the stearoyl-CoA desaturase 2 gene by sterol regulatory element-binding protein/adipocyte determination and differentiation factor 1. J Biol Chem 1998; 273:22052-8. [PMID: 9705348 DOI: 10.1074/jbc.273.34.22052] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify genes that are transcriptionally activated by sterol regulatory element-binding proteins (SREBPs), we utilized mRNA differential display and mutant cells that express either high or low levels of transcriptionally active SREBP. This approach identified stearoyl-CoA desaturase 2 (SCD2) as a new SREBP-regulated gene. Cells were transiently transfected with reporter genes under the control of different fragments of the mouse SCD2 promoter. Constructs containing >199 base pairs of the SCD2 proximal promoter were activated following incubation of cells in sterol-depleted medium or as a result of co-expression of SREBP-1a, SREBP-2, or rat adipocyte determination and differentiation factor 1 (ADD1). Electromobility shift assays and DNase I footprint analysis demonstrated that recombinant SREBP-1a bound to a novel cis element (5'-AGCAGATTGTG-3') in the proximal promoter of the SCD2 gene. The finding that the endogenous SCD2 mRNA levels were induced when wild-type Chinese hamster ovary fibroblasts were incubated in sterol-deficient medium is consistent with a role for SREBP in regulating transcription of the gene. These studies identify SCD2 as a new member of the family of genes that are transcriptionally regulated in response to changing levels of nuclear SREBP/ADD1. In addition, the sterol regulatory element in the SCD2 promoter is distinct from all previously characterized motifs that confer SREBP- and ADD1-dependent transcriptional activation.
Collapse
Affiliation(s)
- D E Tabor
- Department of Biological Chemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
42
|
Duncan EA, Davé UP, Sakai J, Goldstein JL, Brown MS. Second-site cleavage in sterol regulatory element-binding protein occurs at transmembrane junction as determined by cysteine panning. J Biol Chem 1998; 273:17801-9. [PMID: 9651382 DOI: 10.1074/jbc.273.28.17801] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In response to sterol deprivation, two sequential proteolytic cleavages release the NH2-terminal fragments of sterol regulatory element-binding proteins (SREBPs) from cell membranes. The fragments translocate to the nucleus where they activate genes involved in cholesterol and fatty acid metabolism. The SREBPs are bound to membranes in a hairpin fashion. The NH2-terminal and COOH-terminal domains face the cytoplasm, separated by two membrane spanning segments and a short lumenal loop. The first cleavage occurs at Site-1 in the lumenal loop. The NH2-terminal fragment is then released by cleavage at Site-2, which is believed to lie within the first transmembrane segment. Here, we use a novel cysteine panning method to identify the second cleavage site (Site-2) in human SREBP-2 as the Leu484-Cys485 bond that lies at the junction between the cytoplasmic NH2-terminal fragment and the first transmembrane segment. We transfected cells with cDNAs encoding fusion proteins with single cysteine residues at positions to the NH2-terminal and COOH-terminal sides of cysteine 485. The NH2-terminal fragments were tested for susceptibility to modification with Nalpha-(3-maleimidylpropionyl)biocytin, which attaches a biotin group to cysteine sulfhydryls. Cysteines to the NH2-terminal side of cysteine 485 were retained on the NH2-terminal fragment, but cysteines to the COOH-terminal side of leucine 484 were lost. Leucine 484 is three residues to the COOH-terminal side of the tetrapeptide Asp-Arg-Ser-Arg, which immediately precedes the first transmembrane segment and is required for Site-2 cleavage.
Collapse
Affiliation(s)
- E A Duncan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | |
Collapse
|
43
|
Ross SL, Martin F, Simonet L, Jacobsen F, Deshpande R, Vassar R, Bennett B, Luo Y, Wooden S, Hu S, Citron M, Burgess TL. Amyloid precursor protein processing in sterol regulatory element-binding protein site 2 protease-deficient Chinese hamster ovary cells. J Biol Chem 1998; 273:15309-12. [PMID: 9624107 DOI: 10.1074/jbc.273.25.15309] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid peptides of 39-43 amino acids (Abeta) are the major constituents of amyloid plaques present in the brains of Alzheimer's (AD) patients. Proteolytic processing of the amyloid precursor protein (APP) by the yet unidentified beta- and gamma-secretases leads to the generation of the amyloidogenic Abeta peptides. Recent data suggest that all of the known mutations leading to early onset familial AD alter the processing of APP such that increased amounts of the 42-amino acid form of Abeta are generated by a gamma-secretase activity. Identification of the beta- and/or gamma-secretases is a major goal of current AD research, as they are prime targets for therapeutic intervention in AD. It has been suggested that the sterol regulatory element-binding protein site 2 protease (S2P) may be identical to the long sought gamma-secretase. We have directly tested this hypothesis using over-expression of the S2P cDNA in cells expressing APP and by characterizing APP processing in mutant Chinese hamster ovary cells that are deficient in S2P activity and expression. The data demonstrate that S2P does not play an essential role in the generation or secretion of Abeta peptides from cells, thus it is unlikely to be a gamma-secretase.
Collapse
Affiliation(s)
- S L Ross
- Department of Mammalian Cell Molecular Biology, Amgen Inc., Thousand Oaks, California 91320-1789, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Manni ME, Cescato R, Paganetti PA. Lack of beta-amyloid production in M19 cells deficient in site 2 processing of the sterol regulatory element binding proteins. FEBS Lett 1998; 427:367-70. [PMID: 9637259 DOI: 10.1016/s0014-5793(98)00469-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The processing of the amyloid precursor protein (APP) and the sterol regulatory element binding protein show remarkable analogies. Following a first lumenal cleavage, both proteins undergo a cleavage within the transmembrane domain by enzymatic activities named gamma-secretase and S2P, respectively. We analyzed the processing of APP in the mutant Chinese hamster ovary (CHO) cell line M19 which lacks the S2P gene encoding for a putative metalloprotease. In these cells, we were not able to detect any beta-amyloid production from endogenous or transiently overexpressed APP, although the transport of APP along the secretory pathway, its processing by alpha- and beta-secretase, as well as its secretion were normal. This strongly suggests that the gamma-secretase cleavage in M19 cells is severely impaired.
Collapse
Affiliation(s)
- M E Manni
- Novartis Pharma Ltd., Basel, Switzerland
| | | | | |
Collapse
|
45
|
Rawson RB, Zelenski NG, Nijhawan D, Ye J, Sakai J, Hasan MT, Chang TY, Brown MS, Goldstein JL. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol Cell 1997; 1:47-57. [PMID: 9659902 DOI: 10.1016/s1097-2765(00)80006-4] [Citation(s) in RCA: 366] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report the cloning of a gene, S2P, that encodes a putative metalloprotease required for intramembrane proteolysis of sterol-regulatory element-binding proteins (SREBPs) at Site-2. SREBPs are membrane-bound transcription factors that activate genes regulating cholesterol metabolism. The active NH2-terminal domains of SREBPs are released from membranes by sequential cleavage at two sites: Site-1, within the lumen of the endoplasmic reticulum; and Site-2, within a transmembrane segment. The human S2P gene was cloned by complementation of mutant CHO cells that cannot cleave SREBPs at Site-2 and are cholesterol auxotrophs. S2P defines a new family of polytopic membrane proteins that contain an HEXXH sequence characteristic of zinc metalloproteases. Mutation of the putative zinc-binding residues abolishes S2P activity. S2P encodes an unusual metalloprotease that cleaves proteins within transmembrane segments.
Collapse
Affiliation(s)
- R B Rawson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89:331-40. [PMID: 9150132 DOI: 10.1016/s0092-8674(00)80213-5] [Citation(s) in RCA: 2820] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M S Brown
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | |
Collapse
|
47
|
Sakai J, Duncan EA, Rawson RB, Hua X, Brown MS, Goldstein JL. Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell 1996; 85:1037-46. [PMID: 8674110 DOI: 10.1016/s0092-8674(00)81304-5] [Citation(s) in RCA: 414] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sterol regulatory element binding proteins (SREBPs) are transcription factors attached to the endoplasmic reticulum. The NH2-segment, which activates transcription, is connected to membranes by a hairpin anchor formed by two transmembrane sequences and a short lumenal loop. Using H-Ras-SREBP-2 fusion proteins, we show that the NH2-segment is released from membranes by two sequential cleavages. The first, regulated by sterols, occurs in the lumenal loop. The second, not regulated by sterols, occurs within the first transmembrane domain. The liberated NH2-segment enters the nucleus and activates genes controlling cholesterol synthesis and uptake. Certain mutant Chinese hamster ovary cells are auxotrophic for cholesterol because they fail to carry out the second cleavage; the NH2-segment remains membrane-bound and transcription is not activated.
Collapse
Affiliation(s)
- J Sakai
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | |
Collapse
|
48
|
Hasan MT, Chang TY. Somatic cell genetic analysis of two classes of CHO cell mutants expressing opposite phenotypes in sterol-dependent regulation of cholesterol metabolism. SOMATIC CELL AND MOLECULAR GENETICS 1994; 20:481-91. [PMID: 7892647 DOI: 10.1007/bf02255839] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two different classes of hamster cell mutants (25RA cells and M1 cells) express opposite phenotypes in sterol dependent regulation. In 25RA cells, sterols added in growth medium fail to cause down-regulation of sterol synthesis rate and low density lipoprotein (LDL) receptor activity, while in M1 cells, removal of lipids from growth medium fail to cause up-regulation of sterol synthesis rate and LDL receptor activity. Cell hybridization analysis showed that the 25RA phenotype is semidominant, while the M1 phenotype is recessive. Using 25RA as the parental cells, we isolated eight independent mutant cells (DM cells) and showed that all of them belong to the same genetic complementation group as the M1 mutant, indicating that the normal (unmutated) M1 gene product(s) is required to express the 25RA phenotype. We next performed gene transfer experiments using hamster cell genomic DNAs containing the functional human M1 gene as the donor, and the double mutant cell DM7 as the recipient. The resultant transfectant cells express the 25RA cell phenotype (instead of the wild-type cell phenotype). This result, along with the results obtained from cell hybridization analysis, shows that the 25RA and M1 cell phenotypes are caused by mutations at two different genes.
Collapse
Affiliation(s)
- M T Hasan
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3844
| | | |
Collapse
|