1
|
ZHU JINGJING, VAN DE VEN WIM, VERMORKEN ALPHONS. Polyphenols with indirect proprotein convertase inhibitory activity. Int J Oncol 2013; 43:947-55. [DOI: 10.3892/ijo.2013.2009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/30/2013] [Indexed: 11/06/2022] Open
|
2
|
Curcumin affects proprotein convertase activity: elucidation of the molecular and subcellular mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1924-35. [PMID: 23583304 DOI: 10.1016/j.bbamcr.2013.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 03/02/2013] [Accepted: 04/02/2013] [Indexed: 11/22/2022]
Abstract
Proprotein convertases (PCs) form a group of serine endoproteases that are essential for the activation of proproteins into their active form. Some PCs have been proposed to be potential therapeutic targets for cancer intervention because elevated PC activity has been observed in many different cancer types and because many of the PC substrates, such as pro-IGF-1R, pro-TGF-beta, pro-VEGF, are involved in signaling pathways related to tumor development. Curcumin, reported to possess anticancer activity, also affects many of these pathways. We therefore investigated the effect of curcumin on PC activity. Our results show that curcumin inhibits PC activity in a cell lysate-based assay but not in vitro. PC zymogen maturation in the endoplasmic reticulum appears to be inhibited by curcumin. Treating cells with thapsigargin or cyclopiazonic acid, two structurally unrelated inhibitors of the sarco- and endoplasmic reticulum Ca(2+)ATPase (SERCA), also hampered both the PC zymogen maturation and the PC activity. Importantly, curcumin, like the SERCA inhibitors, impaired ATP-driven (45)Ca(2+) uptake in the endoplasmic reticulum. These results indicate that curcumin likely restrains PC activity by inhibiting SERCA-mediated Ca(2+)-uptake activity. Experiments in three colon cancer cell lines confirm that curcumin inhibits both the (45)Ca(2+) uptake and PC activity, notably the processing of pro-IGF-1R. Both curcumin and thapsigargin inhibit the anchorage-independent growth of these three colon carcinoma cell lines. In conclusion, our findings indicate that curcumin inhibits PC zymogen maturation and consequently PC activity and that its inhibitory effect on Ca(2+) uptake into the ER allows and is sufficient to explain this phenomenon.
Collapse
|
3
|
Preininger A, Schlokat U, Mohr G, Himmelspach M, Stichler V, Kyd-Rebenburg A, Plaimauer B, Turecek PL, Schwarz HP, Wernhart W, Fischer BE, Dorner F. Strategies for recombinant Furin employment in a biotechnological process: complete target protein precursor cleavage. Cytotechnology 2011; 30:1-16. [PMID: 19003349 DOI: 10.1023/a:1008030407679] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coagulation factors, amongst many other proteins, often require posttranslational endoproteolytic processing for maturation. Upon high yield expression of recombinant forms of these proteins, processing frequently becomes severely limiting, resulting in a hampered function of the protein. In this report, the human endoprotease Furin was used to achieve complete propeptide removal from recombinant von Willebrand Factor (rvWF) precursors in CHO cells. At expression beyond 200 ng rvWF/106 cells x day, processing became insufficient. Stable co- and overexpression of full length Furin resulted in complete precursor cleavage in cell clones expressing 2 mug rvWF/106 cells x day. Rather than occuring intracellularly, processing was found to be mediated by a naturally secreted form of rFurin, present in 100 fold higher concentrations than endogenous Furin and accumulating in the cell culture supernatant. Attempts to increase rFurin yield by amplification, in order to ensure complete rvWF precursor processing at expression rates beyond 2 mug rvWF/106 cells x day, failed. Truncation of the trans-membrane domain resulted in immediate secretion of rFurin and approximately 10 fold higher concentrations in the conditioned medium. In cases where these high rFurin concentrations are not sufficient to ensure complete processing, an in vitro downstream processing procedure has to be established. Secreted affinity epitope-tagged rFurin derivatives were constructed, the fate of which, at expression, was dependent on the size of the C-terminal truncation and the type of the heterologous epitope added. A suitable candidate was purified by a one step affinity procedure, and successfully used for in vitro processing. This allows complete proteolytic processing of large amounts of precursor molecules by comparably small quantities of rFurin. Complete precursor cleavage of a target protein at expression rates of up to approximately 200 ng, 2 mug, and 20 mug, as well as beyond 20 mug/106 cells x day can thus be anticipated to be accomplished by endogenous Furin, additional expression of full length rFurin, co-expression of truncated and hence secreted rFurin, and a protein-chemical in vitro procedure, respectively.
Collapse
Affiliation(s)
- A Preininger
- IMMUNO Division of BAXTER, Biomedical Research Center, Uferstrasse 15, 2304, Orth/Donau, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Kutz WE, Wang LW, Bader HL, Majors AK, Iwata K, Traboulsi EI, Sakai LY, Keene DR, Apte SS. ADAMTS10 protein interacts with fibrillin-1 and promotes its deposition in extracellular matrix of cultured fibroblasts. J Biol Chem 2011; 286:17156-67. [PMID: 21402694 DOI: 10.1074/jbc.m111.231571] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autosomal recessive and autosomal dominant forms of Weill-Marchesani syndrome, an inherited connective tissue disorder, are caused by mutations in ADAMTS10 (encoding a secreted metalloprotease) and FBN1 (encoding fibrillin-1, which forms tissue microfibrils), respectively, yet they are clinically indistinguishable. This genetic connection prompted investigation of a potential functional relationship between ADAMTS10 and fibrillin-1. Specifically, fibrillin-1 was investigated as a potential ADAMTS10 binding partner and substrate, and the role of ADAMTS10 in influencing microfibril biogenesis was addressed. Using ligand affinity blotting and surface plasmon resonance, recombinant ADAMTS10 was found to bind to fibrillin-1 with a high degree of specificity and with high affinity. Two sites of ADAMTS10 binding to fibrillin-1 were identified, one toward the N terminus and another in the C-terminal half of fibrillin-1. Confocal microscopy and immunoelectron microscopy localized ADAMTS10 to fibrillin-1-containing microfibrils in human tissues. Furin-activated ADAMTS10 could cleave fibrillin-1, but innate resistance of ADAMTS10 zymogen to propeptide excision by furin was observed, suggesting that, unless activated, ADAMTS10 is an inefficient fibrillinase. To investigate the role of ADAMTS10 in microfibril biogenesis, fetal bovine nuchal ligament cells were cultured in the presence or absence of ADAMTS10. Exogenously added ADAMTS10 led to accelerated fibrillin-1 microfibril biogenesis. Conversely, fibroblasts obtained from a Weill-Marchesani syndrome patient with ADAMTS10 mutations deposited fibrillin-1 microfibrils sparsely compared with unaffected control cells. Taken together, these findings suggest that ADAMTS10 participates in microfibril biogenesis rather than in fibrillin-1 turnover.
Collapse
Affiliation(s)
- Wendy E Kutz
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
McCulloch DR, Wylie JD, Longpre JM, Leduc R, Apte SS. 10mM glucosamine prevents activation of proADAMTS5 (aggrecanase-2) in transfected cells by interference with post-translational modification of furin. Osteoarthritis Cartilage 2010; 18:455-63. [PMID: 19909832 PMCID: PMC2826559 DOI: 10.1016/j.joca.2009.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 10/19/2009] [Accepted: 10/26/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Glucosamine has been previously shown to suppress cartilage aggrecan catabolism in explant cultures. We determined the effect of glucosamine on ADAMTS5 (a disintegrin-like and metalloprotease domain (reprolysin type) with thrombospondin type-1 motifs 5), a major aggrecanase in osteoarthritis, and investigated a potential mechanism underlying the observed effects. DESIGN HEK293F and CHO-K1 cells transiently transfected with ADAMTS5 cDNA were treated with glucosamine or the related hexosamine mannosamine. Glucosamine effects on FURIN transcription were determined by quantitative RT-PCR. Effects on furin-mediated processing of ADAMTS5 zymogen, and aggrecan processing by glucosamine-treated cells, were determined by western blotting. Post-translational modification of furin and N-glycan deficient furin mutants generated by site-directed mutagenesis was analyzed by western blotting, and the mutants were evaluated for their ADAMTS5 processing ability in furin-deficient CHO-RPE.40 cells. RESULTS Ten mM glucosamine and 5-10mM mannosamine reduced excision of the ADAMTS5 propeptide, indicating interference with the propeptide excision mechanism, although mannosamine compromised cell viability at these doses. Although glucosamine had no effect on furin mRNA levels, western blot of furin from glucosamine-treated cells suggested altered post-translational modification. Glucosamine treatment led to decreased glycosylation of cellular furin, with reduced furin autoactivation as the consequence. Recombinant furin treated with peptide N-glycanase F had reduced activity against a synthetic peptide substrate. Indeed, site-directed mutagenesis of two furin N-glycosylation sites, Asn(387) and Asn(440), abrogated furin activation and this mutant was unable to rescue ADAMTS5 processing in furin-deficient cells. CONCLUSIONS Ten mM glucosamine reduces excision of the ADAMTS5 propeptide via interference with post-translational modification of furin and leads to reduced aggrecanase activity of ADAMTS5.
Collapse
Affiliation(s)
- Daniel R. McCulloch
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio USA, School of Medicine, Deakin University, Geelong, Victoria 3217 Australia
| | - James D. Wylie
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio USA
| | - Jean-Michel Longpre
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Richard Leduc
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Suneel S. Apte
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio USA,Corresponding Author:Suneel S. Apte, Department of Biomedical Engineering, ND20-Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA, Tel: 216 445 3278; Fax: 216 444 9198;
| |
Collapse
|
6
|
Cano-Monreal GL, Williams JC, Heidner HW. An arthropod enzyme, Dfurin1, and a vertebrate furin homolog display distinct cleavage site sequence preferences for a shared viral proprotein substrate. JOURNAL OF INSECT SCIENCE (ONLINE) 2010; 10:29. [PMID: 20578951 PMCID: PMC3014772 DOI: 10.1673/031.010.2901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 09/16/2008] [Indexed: 05/29/2023]
Abstract
Alphaviruses replicate in vertebrate and arthropod cells and utilize a cellular enzyme called furin to process the PE2 glycoprotein precursor during virus replication in both cell types. Furin cleaves PE2 at a site immediately following a highly conserved four residue cleavage signal. Prior studies demonstrated that the amino acid immediately adjacent to the cleavage site influenced PE2 cleavage differently in vertebrate and mosquito cells (HW Heidner et al. 1996 . Journal of Virology 70: 2069-2073.). This finding was tentatively attributed to potential differences in the substrate specificities of the vertebrate and arthropod furin enzymes or to differences in the carbohydrate processing phenotypes of arthropod and vertebrate cells. To further address this issue, we evaluated Sindbis virus replication and PE2 cleavage in the Chinese hamster, Cricetulus griseus Milne-Edwards (Rodentia: Cricetidae) ovary cells (CHO-K1) and in a CHO-K1-derived furin-negative cell line (RPE.40) engineered to stably express the Dfurin1 enzyme of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Expression of Dfurin1 enhanced Sindbis virus titers in RPE.40 cells by a factor of 10(2)-10(3), and this increase correlated with efficient cleavage of PE2. The PE2-cleavage phenotypes of viruses containing different amino acid substitutions adjacent to the furin cleavage site were compared in mosquito (C6/36), CHO-K1, and Dfurin1-expressing RPE.40 cells. This analysis confirmed that the substrate specificities of Dfurin1 and the putative mosquito furin homolog present in C6/36 cells are similar and suggested that the alternative PE2 cleavage phenotypes observed in vertebrate and arthropod cells were due to differences in substrate specificity between the arthropod and vertebrate furin enzymes and not to differences in host cell glycoprotein processing pathways.
Collapse
Affiliation(s)
- Gina L. Cano-Monreal
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249-0662
| | - Jacqueline C. Williams
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249-0662
| | - Hans W. Heidner
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249-0662
| |
Collapse
|
7
|
Longpré JM, McCulloch DR, Koo BH, Alexander JP, Apte SS, Leduc R. Characterization of proADAMTS5 processing by proprotein convertases. Int J Biochem Cell Biol 2008; 41:1116-26. [PMID: 18992360 DOI: 10.1016/j.biocel.2008.10.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/23/2008] [Accepted: 10/10/2008] [Indexed: 11/16/2022]
Abstract
ADAMTS5 (aggrecanase-2), a key metalloprotease mediating cartilage destruction in arthritis, is synthesized as a zymogen, proADAMTS5. We report a detailed characterization of the propeptide excision mechanism and demonstrate that it is a major regulatory step with unusual characteristics. Using furin-deficient cells and a furin inhibitor, we found that proADAMTS5 was processed by proprotein convertases, specifically furin and PC7, but not PC6B. Mutagenesis of three sites containing basic residues within the ADAMTS5 propeptide (RRR(46), RRR(69) and RRRRR(261)) suggested that proADAMTS5 processing occurs after Arg(261). That furin processing was essential for ADAMTS5 activity was illustrated using the known ADAMTS5 substrate aggrecan, as well as a new substrate, versican, an important regulatory proteoglycan during mammalian development. When compared to other ADAMTS proteases, proADAMTS5 processing has several distinct features. In contrast to ADAMTS1, whose furin processing products were clearly present intracellularly, cleaved ADAMTS5 propeptide and mature ADAMTS5 were found exclusively in the conditioned medium. Despite attempts to enhance detection of intracellular proADAMTS5 processing, such as by immunoprecipitation of total ADAMTS5, overexpression of furin, and secretion blockade by monensin, neither processed ADAMTS5 propeptide nor the mature enzyme were found intracellularly, which was strongly suggestive of extracellular processing. Extracellular ADAMTS5 processing was further supported by activation of proADAMTS5 added exogenously to HEK293 cells stably expressing furin. Unlike proADAMTS9, which is processed by furin at the cell-surface, to which it is bound, ADAMTS5 does not bind the cell-surface. Thus, the propeptide processing mechanism of ADAMTS5 has several points of distinction from those of other ADAMTS proteases, which may have considerable significance in the context of osteoarthritis.
Collapse
Affiliation(s)
- Jean-Michel Longpré
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Que. J1H 5N4, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Koo BH, Longpré JM, Somerville RPT, Alexander JP, Leduc R, Apte SS. Cell-surface Processing of Pro-ADAMTS9 by Furin. J Biol Chem 2006; 281:12485-94. [PMID: 16537537 DOI: 10.1074/jbc.m511083200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Processing of polypeptide precursors by proprotein convertases (PCs) such as furin typically occurs within the trans-Golgi network. Here, we show in a variety of cell types that the propeptide of ADAMTS9 is not excised intracellularly. Pulse-chase analysis in HEK293F cells indicated that the intact zymogen was secreted to the cell surface and was subsequently processed there before release into the medium. The processing occurred via a furin-dependent mechanism as shown using PC inhibitors, lack of processing in furin-deficient cells, and rescue by furin in these cells. Moreover, down-regulation of furin by small interference RNA reduced ADAMTS9 processing in HEK293F cells. PC5A could also process pro-ADAMTS9, but similarly to furin, processed forms were absent intracellularly. Cell-surface, furin-dependent processing of pro-ADAMTS9 creates a precedent for extracellular maturation of endogenously produced secreted proproteins. It also indicates the existence of a variety of mechanisms for processing of ADAMTS proteases.
Collapse
Affiliation(s)
- Bon-Hun Koo
- Department of Biomedical Engineering and Orthopaedic Research Center, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Proprotein convertases (PCs) are a family of serine endoproteases that proteolytically activate many precursor proteins within various secretory pathway compartments. Loss-of-function studies have demonstrated a critical role for these proteases in embryonic patterning and adult homeostasis, yet little is known about how substrate selectivity is achieved. We have identified Xenopus orthologs of three PCs: furin, PC6, and PC4. In addition to previously described isoforms of PC6 and furin, four novel splice isoforms of PC6, which are predicted to encode constitutively secreted proteases, and a putative transmembrane isoform of PC4 were identified. Furin and PC6 are expressed in dynamic, tissue-specific patterns throughout embryogenesis, whereas PC4 transcripts are restricted primarily to germ cells and brain in adult frogs.
Collapse
Affiliation(s)
- Sylvia Nelsen
- Department of Molecular and Medical Genetics, Oregon Health and Science University, School of Medicine, Portland, Oregon 97239-3098, USA
| | | | | | | |
Collapse
|
10
|
Longpré JM, Leduc R. Identification of Prodomain Determinants Involved in ADAMTS-1 Biosynthesis. J Biol Chem 2004; 279:33237-45. [PMID: 15184385 DOI: 10.1074/jbc.m313151200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metalloprotease ADAMTS-1 (a disintegrin and metalloprotease with thrombospondin type I motif), similarly to other members of the ADAMTS family, is initially synthesized as a zymogen, proADAMTS-1, that undergoes proteolytic processing at the prodomain/catalytic domain junction by serine proteinases of the furin-like family of proprotein convertases. The goals of this study were to identify residues of the prodomain that play an essential role in ADAMTS-1 processing and to determine the identity of the convertase required for zymogen processing. To gain insight into the putative roles of specific prodomain residues in ADAMTS-1 biosynthesis, we performed biosynthetic labeling experiments in transiently transfected human embryonic kidney 293 cells expressing wild-type and prodomain mutants of proADAMTS-1. Cells expressing wild-type ADAMTS-1 initially produced a 110-kDa zymogen form that was later converted to an 87-kDa form, which was also detected in the media. Although convertases such as PACE4 and PC6B processed proADAMTS-1, we found that furin was the most efficient enzyme at producing the mature ADAMTS-1 87-kDa moiety. Site-directed mutagenesis of the two putative furin recognition sequences found within the ADAMTS-1 prodomain (RRNR173 and RKKR235) revealed that Arg235 was the sole processing site. Use of the Golgi disturbing agent, Brefeldin A, and monensin suggests that the cleavage of proADAMTS-1 takes place in the Golgi apparatus prior to its secretion. Conserved residues within the prodomain of other ADAMTS members hinted that they might act as maturation determinants. Replacement with alanine of selected residues Cys106, Tyr108, Gly110, Cys125, and Cys181 and residues encompassing the 137-144 sequence significantly affected the biosynthetic profile of the enzyme. Our results suggest that conserved residues other than the furin cleavage site in the prodomain of ADAMTS-1 are involved in its biosynthesis.
Collapse
Affiliation(s)
- Jean-Michel Longpré
- Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | |
Collapse
|
11
|
Komiyama T, VanderLugt B, Fugère M, Day R, Kaufman RJ, Fuller RS. Optimization of protease-inhibitor interactions by randomizing adventitious contacts. Proc Natl Acad Sci U S A 2003; 100:8205-10. [PMID: 12832612 PMCID: PMC166207 DOI: 10.1073/pnas.1032865100] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polypeptide protease inhibitors are often found to inhibit targets with which they did not coevolve, as in the case of high-affinity inhibition of bacterial subtilisin by the leech inhibitor eglin c. Two kinds of contacts exist in such complexes: (i) reactive site loop-active site contacts and (ii) interactions outside of these that form the broader enzyme-inhibitor interface. We hypothesized that the second class of "adventitious" contacts could be optimized to generate significant increases in affinity for a target enzyme or discrimination of an inhibitor for closely related target proteases. We began with a modified eglin c, Arg-42-Arg-45-eglin, in which the reactive site loop had been optimized for subtilisin-related processing proteases of the Kex2/furin family. We randomized 10 potential adventitious contact residues and screened for inhibition of soluble human furin. Substitutions at one of these sites, Y49, were also screened against yeast Kex2 and human PC7. These screens identified not only variants that exhibited increased affinity (up to 20-fold), but also species that exhibited enhanced selectivity, that is, increased discrimination between the target enzymes (up to 41-fold for furin versus PC7 and 20-fold for PC7 versus furin). One variant, Asp-49-Arg-42-Arg-45-eglin, exhibited a Ki of 310 pM for furin and blocked furin-dependent processing of von Willebrand factor in COS-1 cells when added to the culture medium of the cells. The exploitation of adventitious contact sites may provide a versatile technique for developing potent, selective inhibitors for newly discovered proteases and could in principle be applied to optimize numerous protein-protein interactions.
Collapse
Affiliation(s)
- Tomoko Komiyama
- Department of Biological Chemistry,
Howard Hughes Medical Institute, University of
Michigan Medical School, Ann Arbor, MI 48109; and
Institut de Pharmacologie se Sherbrooke,
Universite de Sherbrooke, QC, Canada J1H 5N4
| | - Bryan VanderLugt
- Department of Biological Chemistry,
Howard Hughes Medical Institute, University of
Michigan Medical School, Ann Arbor, MI 48109; and
Institut de Pharmacologie se Sherbrooke,
Universite de Sherbrooke, QC, Canada J1H 5N4
| | - Martin Fugère
- Department of Biological Chemistry,
Howard Hughes Medical Institute, University of
Michigan Medical School, Ann Arbor, MI 48109; and
Institut de Pharmacologie se Sherbrooke,
Universite de Sherbrooke, QC, Canada J1H 5N4
| | - Robert Day
- Department of Biological Chemistry,
Howard Hughes Medical Institute, University of
Michigan Medical School, Ann Arbor, MI 48109; and
Institut de Pharmacologie se Sherbrooke,
Universite de Sherbrooke, QC, Canada J1H 5N4
| | - Randal J. Kaufman
- Department of Biological Chemistry,
Howard Hughes Medical Institute, University of
Michigan Medical School, Ann Arbor, MI 48109; and
Institut de Pharmacologie se Sherbrooke,
Universite de Sherbrooke, QC, Canada J1H 5N4
| | - Robert S. Fuller
- Department of Biological Chemistry,
Howard Hughes Medical Institute, University of
Michigan Medical School, Ann Arbor, MI 48109; and
Institut de Pharmacologie se Sherbrooke,
Universite de Sherbrooke, QC, Canada J1H 5N4
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Taylor NA, Van De Ven WJM, Creemers JWM. Curbing activation: proprotein convertases in homeostasis and pathology. FASEB J 2003; 17:1215-27. [PMID: 12832286 DOI: 10.1096/fj.02-0831rev] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The proprotein convertases (PCs) are a seven-member family of endoproteases that activate proproteins by cleavage at basic motifs. Expression patterns for individual PCs vary widely, and all cells express several members. The list of substrates activated by PCs has grown to include neuropeptides, peptide hormones, growth and differentiation factors, receptors, enzymes, adhesion molecules, blood coagulation factors, plasma proteins, viral coat proteins, and bacterial toxins. It has become clear that the PC family plays a crucial role in a variety of physiological processes and is involved in the pathology of diseases such as cancer, viral infection, and Alzheimer's disease. Recent studies using PC inhibitors have demonstrated their potential as therapeutic targets. Despite the avalanche of in vitro data, the physiological role of individual PCs has remained largely elusive. Recently, however, knockout mouse models have been developed for furin, PC1, PC2, PC4, PC6B, LPC, and PACE4, and human patients with PC1 deficiency have been identified. The phenotypes range from undetectable to early embryonic lethality. The major lesson learned from these studies is that specific PC-substrate pairs do exist, but that there is substantial redundancy for the majority of substrates. To some extent, redundancy may be cell type and even species dependent.
Collapse
Affiliation(s)
- Neil A Taylor
- Laboratory of Molecular Oncology, Department for Human Genetics, University of Leuven and Flanders Interuniversity Institute for Biotechnology, Gasthuisberg O/N 6, Herestraat 49, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
13
|
Somerville RPT, Longpre JM, Jungers KA, Engle JM, Ross M, Evanko S, Wight TN, Leduc R, Apte SS. Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1. J Biol Chem 2003; 278:9503-13. [PMID: 12514189 DOI: 10.1074/jbc.m211009200] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrate that in humans, two metalloproteases, ADAMTS-9 (1935 amino acids) and ADAMTS-20 (1911 amino acids) are orthologs of GON-1, an ADAMTS protease required for gonadal morphogenesis in Caenorhabditis elegans. ADAMTS-9 and ADAMTS-20 have an identical modular structure, are distinct in possessing 15 TSRs and a unique C-terminal domain, and have a similar gene structure, suggesting that they comprise a new subfamily of human ADAMTS proteases. ADAMTS20 is very sparingly expressed, although it is detectable in epithelial cells of the breast and lung. However, ADAMTS9 is highly expressed in embryonic and adult tissues, and therefore we characterized the ADAMTS-9 protein further. Although the ADAMTS-9 zymogen has many proprotein convertase processing sites, pulse-chase analysis, site-directed mutagenesis, and amino acid sequencing demonstrated that maturation to the active form occurs by selective proprotein convertase (e.g. furin) cleavage of the Arg(287)-Phe(288) bond. Although lacking a transmembrane sequence, ADAMTS-9 is retained near the cell surface as well as in the ECM of transiently transfected COS-1 and 293 cells. COS-1 cells transfected with ADAMTS9 (but not vector-transfected cells) proteolytically cleaved bovine versican and aggrecan core proteins at the Glu(441)-Ala(442) bond of versican V1 and the Glu(1771)-Ala(1772) bond of aggrecan, respectively. In contrast, the ADAMTS-9 catalytic domain alone was neither localized to the cell surface nor able to confer these proteolytic activities on cells, demonstrating that the ancillary domains of ADAMTS-9, including the TSRs, are required both for specific extracellular localization and for its versicanase and aggrecanase activities.
Collapse
Affiliation(s)
- Robert P T Somerville
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rockwell NC, Krysan DJ, Komiyama T, Fuller RS. Precursor processing by kex2/furin proteases. Chem Rev 2002; 102:4525-48. [PMID: 12475200 DOI: 10.1021/cr010168i] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nathan C Rockwell
- Department of Biological Chemistry, University of Michigan Medical Center, Room 5413 Med Sci I, 1301 East Catherine, Ann Arbor Michigan 48109, USA
| | | | | | | |
Collapse
|
15
|
Kim SH, Creemers JWM, Chu S, Thinakaran G, Sisodia SS. Proteolytic processing of familial British dementia-associated BRI variants: evidence for enhanced intracellular accumulation of amyloidogenic peptides. J Biol Chem 2002; 277:1872-7. [PMID: 11709554 DOI: 10.1074/jbc.m108739200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Different mutations in the BRI(2) gene cause rare neurodegenerative conditions, termed familial British dementia (FBD) and familial Danish dementia (FDD). The mutant genes encode BRI-L and BRI-D, the precursors of fibrillogenic ABri and ADan peptides, respectively. We previously reported that furin processes both BRI-L and its wild type counterpart, BRI, resulting in the secretion of C-terminal peptides; elevated levels of peptides were generated from BRI-L. In the present study, we show that inducible expression of alpha1-antitrypsin Portland, a furin inhibitor, inhibits the endoproteolysis of BRI and BRI-L in a dose-dependent manner. Moreover, comparison of the activities of several proprotein convertases reveals that furin is most efficient in endoproteolysis of BRI and BRI-L; PACE4, PC6A, PC6B, and LPC show much lower activities. Interestingly, LPC also exhibits enhanced cleavage of BRI-L compared with BRI. Finally, we demonstrate that BRI-D is also processed by furin and, like BRI-L, the cleavage of BRI-D is more efficient than that of BRI. Interestingly, while the ABri peptide is detected both intracellularly and in the medium, the ADan peptide accumulates predominantly in intracellular compartments. We propose that intracellular accumulation of amyloidogenic ADan or ABri peptides results in the neuronal damage leading to FDD and FBD, respectively.
Collapse
Affiliation(s)
- Seong-Hun Kim
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Merlos-Suárez A, Ruiz-Paz S, Baselga J, Arribas J. Metalloprotease-dependent protransforming growth factor-alpha ectodomain shedding in the absence of tumor necrosis factor-alpha-converting enzyme. J Biol Chem 2001; 276:48510-7. [PMID: 11600492 DOI: 10.1074/jbc.m103488200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zinc-dependent metalloproteases can mediate the shedding of the extracellular domain of many unrelated transmembrane proteins from the cell surface. In most instances, this process, also known as ectodomain shedding, is regulated via protein kinase C (PKC). The tumor necrosis factor alpha-converting enzyme (TACE) was the first protease involved in regulated protein ectodomain shedding identified. Although TACE belongs to the family of metalloprotease-disintegrins, few members of this family have been shown to participate in regulated ectodomain shedding. In fact, the phenotype of tace-/- cells and that of Chinese hamster ovary cell mutants defective in ectodomain shedding points to the existence of a common PKC-activated ectodomain shedding system, whose proteolytic component is TACE, that acts on a variety of transmembrane proteins. Examples of these proteins include the Alzheimer's disease-related protein beta-amyloid precursor protein (betaAPP) and the transmembrane growth factors protransforming growth factor-alpha (pro-TGF-alpha) and, as shown in this report, proheparin-binding epidermal growth factor-like growth factor (pro-HB-EGF). Here we show that the mercurial compound 4-aminophenylmercuric acetate (APMA), frequently used to activate in vitro recombinant matrix metalloproteases, is an activator of the shedding of betaAPP, pro-HB-EGF, and pro-TGF-alpha. Treatment of tace-/- cells or Chinese hamster ovary shedding-defective mutants with APMA activates the cleavage of pro-TGF-alpha but not that of pro-HB-EGF or betaAPP, indicating that APMA activates TACE and also a previously unacknowledged proteolytic activity specific for pro-TGF-alpha. Characterization of this proteolytic activity indicates that it acts on pro-TGF-alpha located at the cell surface and that it is a metalloprotease active in cells defective in furin activity. In summary, treatment of shedding-defective cell lines with APMA unveils the existence of a metalloprotease activity alternative to TACE with the ability to specifically shed the ectodomain of pro-TGF-alpha.
Collapse
Affiliation(s)
- A Merlos-Suárez
- Laboratori de Recerca Oncològica, Servei d'Oncologia Mèdica, Hospital Universitari Vall d'Hebron, Psg. Vall d'Hebron 119-129, Barcelona 08035, Spain
| | | | | | | |
Collapse
|
18
|
Pinnix I, Council JE, Roseberry B, Onstead L, Mallender W, Sucic J, Sambamurti K. Convertases other than furin cleave beta-secretase to its mature form. FASEB J 2001; 15:1810-2. [PMID: 11481238 DOI: 10.1096/fj.00-0891fje] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- I Pinnix
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Chan M, Bennick A. Proteolytic processing of a human salivary proline-rich protein precursor by proprotein convertases. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3423-31. [PMID: 11422372 DOI: 10.1046/j.1432-1327.2001.02241.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Salivary proline-rich proteins (PRPs) are synthesized as precursors that are cleaved before secretion giving rise to glycosylated PRPs which have lubricating function and basic PRPs which are potent precipitators of dietary tannins. The putative cleavage sites in the precursors for basic and glycosylated PRPs all conform to the sequence RSXR downward arrowS (X can be A, S or P) in agreement with the recognition sequence (RXXR downward arrow) for various proprotein convertases. PRB4S, a proprotein giving rise to a basic PRP (IB-5) as well as a glycosylated PRP (II-1) was synthesized by in vitro transcription-translation. It was cleaved by furin at RSAR downward arrowS(173-178) giving rise to two proteins II-1 and IB-5. Similarly another precursor with the sequence RSAR downward arrowS(173-178) was also cleaved by furin. This together with previous results show that in vitro furin can cleave all RSXR downward arrowS sequences in the proproteins that give rise to glycosylated and basic PRPs. To demonstrate cellular cleavage, a human submandibular cell line (HSG) was transfected with a vector encoding PRB4S. This resulted in secretion of II-1 and IB-5. The degree of cleavage was enhanced by coexpressing furin and PRB4S. No cleavage occurred if the cells expressed a mutant PRB4S, R177Q, where the furin cleavage site had been destroyed. Cleavage was also inhibited if a furin inhibitor was coexpressed with PRB4S. Incubating the cells at 20 degrees C which blocks exit of proteins from the trans-Golgi network demonstrated that cleavage occurs before exit of the proteins from this network. These results show that furin may be responsible for in vivo cleavage of PRP precursors. Transfecting furin-deficient RPE.40 cells with a vector encoding PRB4S also led to secretion of II-1 and IB-5 showing that convertases other than furin can also cleave PRB4S in tissue culture.
Collapse
Affiliation(s)
- M Chan
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | | |
Collapse
|
20
|
Kim SH, Wang R, Gordon DJ, Bass J, Steiner DF, Thinakaran G, Lynn DG, Meredith SC, Sisodia SS. Familial British dementia: expression and metabolism of BRI. Ann N Y Acad Sci 2001; 920:93-9. [PMID: 11193182 DOI: 10.1111/j.1749-6632.2000.tb06909.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vidal et al. (1999. Nature 399: 776-778) discovered that the underlying genetic lesion in familial British dementia (FBD) is a T-A transversion at the termination codon of a membrane protein, termed BRI. The mutation creates an arginine codon; translational read-through generates a novel protein, termed BRI-L, that is extended by 11 amino acids at the carboxyl-terminus. BRI-L is the precursor of the ABri peptide, a component of amyloid deposits in FBD brain. We demonstrate that both BRI and its mutant counterpart are constitutively processed by furin, resulting in the secretion of carboxyl-terminal peptide derivatives that correspond to all, or part of, ABri. Notably, elevated levels of peptides are generated from the mutant BRI precursor, suggesting that subtle conformational alterations at the carboxyl-terminus may influence furin-mediated processing. We have examined BRI/BRI-L processing by other members of the prohormone convertase (PC) family (PACE4, LPC, PC 5/6) and found that these enzymes also process BRI, albeit inefficiently. Moreover, BRI-L processing by the other PC members is severely compromised. Finally, our electron microscopic studies reveal that synthetic ABri peptides assemble into insoluble beta-pleated fibrils. Collectively, our results support the view that enhanced furin-mediated processing of mutant BRI generates amyloidogenic peptides that initiate the pathogenesis of FBD.
Collapse
Affiliation(s)
- S H Kim
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Abbott 316, 947 East 58th Street, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Creemers JW, Ines Dominguez D, Plets E, Serneels L, Taylor NA, Multhaup G, Craessaerts K, Annaert W, De Strooper B. Processing of beta-secretase by furin and other members of the proprotein convertase family. J Biol Chem 2001; 276:4211-7. [PMID: 11071887 DOI: 10.1074/jbc.m006947200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid peptide is the main constituent of the amyloid plaques in brain of Alzheimer's disease patients. This peptide is generated from the amyloid precursor protein by two consecutive cleavages. Cleavage at the N terminus is performed by the recently discovered beta-secretase (Bace). This aspartyl protease contains a propeptide that has to be removed to obtain mature Bace. Furin and other members of the furin family of prohormone convertases are involved in this process. Surprisingly, beta-secretase activity, neither at the classical Asp(1) position nor at the Glu(11) position of amyloid precursor protein, seems to be controlled by this maturation step. Furthermore, we show that Glu(11) cleavage is a function of the expression level of Bace, that it depends on the membrane anchorage of Bace, and that Asp(1) cleavage can be followed by Glu(11) cleavage. Our data suggest that pro-Bace could be active as a beta-secretase in the early biosynthetic compartments of the cell and could be involved in the generation of the intracellular pool of the amyloid peptide. We conclude that modulation of the conversion of pro-Bace to mature Bace is not a relevant drug target to treat Alzheimer's disease.
Collapse
Affiliation(s)
- J W Creemers
- Center for Human Genetics, Molecular Oncology and Neuronal Cell Biology Laboratories, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rodriguez-Manzaneque JC, Milchanowski AB, Dufour EK, Leduc R, Iruela-Arispe ML. Characterization of METH-1/ADAMTS1 processing reveals two distinct active forms. J Biol Chem 2000; 275:33471-9. [PMID: 10944521 DOI: 10.1074/jbc.m002599200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
METH-1/ADAMTS1 is a member of a newly described family of genes that contain metalloprotease, disintegrin, and thrombospondin-like motifs. We have recently shown that METH-1 protein is a potent inhibitor of angiogenesis. Here, we demonstrate that secreted human pro-METH-1 is processed in two consecutive steps to release both p87 and p65 active forms. The p87 form lacks the N-terminal prodomain and p65 results from an additional processing event in the C-terminal end. Generation of p87 was blocked with specific inhibitors of furin, and incubation of pro-METH-1 with purified furin released the p87 fragment but not p65. Generation of p65 required preformation of p87 and was suppressed by inhibitors of matrix metalloproteases. We demonstrate that matrix metalloproteases 2, 8, and 15 were able to release p65 when p87 was used as substrate. This second processing step removes two thrombospondin repeats from the carboxyl-terminal end of p87-METH-1 and alters the affinity of the protein to heparin and endothelial cultures. Furthermore, this deletion was associated with a reduced activity upon suppression of endothelial cell proliferation. We hypothesize that METH-1 processing is relevant for the modulation of the anti-angiogenic properties displayed by the protein.
Collapse
Affiliation(s)
- J C Rodriguez-Manzaneque
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
23
|
Kim SH, Wang R, Gordon DJ, Bass J, Steiner DF, Lynn DG, Thinakaran G, Meredith SC, Sisodia SS. Furin mediates enhanced production of fibrillogenic ABri peptides in familial British dementia. Nat Neurosci 1999; 2:984-8. [PMID: 10526337 DOI: 10.1038/14783] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The genetic lesion underlying familial British dementia (FBD), an autosomal dominant neurodegenerative disorder, is a T-A transversion at the termination codon of the BRI gene. The mutant gene encodes BRI-L, the precursor of ABri peptides that accumulate in amyloid deposits in FBD brain. We now report that both BRI-L and its wild-type counterpart, BRI, were constitutively processed by the proprotein convertase, furin, resulting in the secretion of carboxyl-terminal peptides that encompass all or part of ABri. Elevated levels of peptides were generated from the mutant BRI precursor. Electron microscopic studies revealed that synthetic ABri peptides assembled into irregular, short fibrils. Collectively, our results support the view that enhanced furin-mediated processing of mutant BRI generates fibrillogenic peptides that initiate the pathogenesis of FBD.
Collapse
Affiliation(s)
- S H Kim
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Abbott 316, 947 East 58th Street, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nakayama K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J 1997; 327 ( Pt 3):625-35. [PMID: 9599222 PMCID: PMC1218878 DOI: 10.1042/bj3270625] [Citation(s) in RCA: 627] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Limited endoproteolysis of inactive precursor proteins at sites marked by paired or multiple basic amino acids is a widespread process by which biologically active peptides and proteins are produced within the secretory pathway in eukaryotic cells. The identification of a novel family of endoproteases homologous with bacterial subtilisins and yeast Kex2p has accelerated progress in understanding the complex mechanisms underlying the production of the bioactive materials. Seven distinct proprotein convertases of this family (furin, PC2, PC1/PC3, PC4, PACE4, PC5/PC6, LPC/PC7/PC8/SPC7) have been identified in mammalian species, some having isoforms generated via alternative splicing. The family has been shown to be responsible for conversion of precursors of peptide hormones, neuropeptides, and many other proteins into their biologically active forms. Furin, the first proprotein convertase to be identified, has been most extensively studied. It has been shown to be expressed in all tissues and cell lines examined and to be mainly localized in the trans-Golgi network, although some proportion of the furin molecules cycle between this compartment and the cell surface. This endoprotease is capable of cleaving precursors of a wide variety of proteins, including growth factors, serum proteins, including proteases of the blood-clotting and complement systems, matrix metalloproteinases, receptors, viral-envelope glycoproteins and bacterial exotoxins, typically at sites marked by the consensus Arg-Xaa-(Lys/Arg)-Arg sequence. The present review covers the structure and function of mammalian subtilisin/Kex2p-like proprotein convertases, focusing on furin (EC 3.4.21.85).
Collapse
Affiliation(s)
- K Nakayama
- Institute of Biological Sciences and Gene Experiment Center, University of Tsukuba, Tsukuba Science City, Ibaraki 305, Japan
| |
Collapse
|
25
|
Lusson J, Benjannet S, Hamelin J, Savaria D, Chrétien M, Seidah NG. The integrity of the RRGDL sequence of the proprotein convertase PC1 is critical for its zymogen and C-terminal processing and for its cellular trafficking. Biochem J 1997; 326 ( Pt 3):737-44. [PMID: 9307023 PMCID: PMC1218728 DOI: 10.1042/bj3260737] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In order to define the functional importance of the conserved RRGDL motif in the P-domain of the mammalian proprotein convertases(PCs) we generated and cellularly expressed three mutant PC1 vaccinia-virus (VV) recombinants: ARGDL-PC1, RAGDL-PC1 and RRGEL-PC1. Functionally, these mutants caused a decreased level of processing of pro-opiomelanocortin (POMC) into beta-lipotropic pituitary hormone (beta-LPH), especially in the constitutively secreting BSC40 cells. Pulse-chase analyses demonstrated that, in part, this effect was due to both an increased degradation of the mutant PC1s within the endoplasmic reticulum and to a diminished level of zymogen processing in the same compartment. In addition, within cells containing secretory granules such as PC12 and GH4C1 cells, such mutations prevented the C-terminal auto-processing of PC1 into the fully mature 66 kDa form stored in the secretory granules of regulated cells. Since the 66 kDa PC1 is the most active form of the enzyme, it is proposed that the RRGDL sequence is critical for the generation of maximal intracellular PC1 activity. In regulated cells, co-expression of POMC with PC1 or its mutants together with the general PC inhibitor alpha1-antitrypsin Portland (alpha1-PDX), which acts primarily within the constitutive secretory pathway, demonstrated that the latter completely inhibited the formation of beta-LPH by PC1 mutants, whereas it only partially inhibited the ability of wild-type PC1 to process POMC. This suggests that RRGDL mutations prevent PC1 from entering secretory granules and hence the formation of the 66 kDa PC1, and result in the mis-sorting of PC1 mutants towards the constitutive secretory pathway. This conclusion was further supported by immunocytochemical data demonstrating that RRGDL mutants exhibit an intracellular localization pattern different from that of the granule-associated wild-type PC1,but similar to that of the Golgi-localized convertase PC5-B.
Collapse
Affiliation(s)
- J Lusson
- J.A. DeSève Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada H2W 1R7
| | | | | | | | | | | |
Collapse
|
26
|
Duguay SJ, Milewski WM, Young BD, Nakayama K, Steiner DF. Processing of wild-type and mutant proinsulin-like growth factor-IA by subtilisin-related proprotein convertases. J Biol Chem 1997; 272:6663-70. [PMID: 9045697 DOI: 10.1074/jbc.272.10.6663] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Insulin-like growth factor I (IGF-I) is required for normal embryonic development and postnatal growth. Like most hormones and growth factors, IGF-I is synthesized as a proprotein that is converted to the mature form by endoproteolysis. Processing of pro-IGF-I to mature IGF-I occurs by cleavage within the unique pentabasic processing motif Lys-X-X-Lys-X-X-Arg71-X-X-Arg-X-X-Arg77. We have previously shown that human embryonic kidney 293 cells process pro-IGF-IA at Arg71 to generate IGF-I-(1-70) and at Arg77 to produce IGF-I-(1-76). Cleavage at each of these sites requires upstream basic residues, indicating that subtilisin-related proprotein convertases (SPCs) may be involved. In order to investigate the identity of the endogenous enzymes involved in maturation of pro-IGF-IA, we have expressed wild-type and mutant pro-IGF-IA in 293 cells and in the furin-deficient Chinese hamster ovary cell line, RPE.40. We have also co-expressed these constructs with SPCs that are thought to play a role in processing precursor proteins in the constitutive pathway: furin, PACE4, PC6A, PC6B, and LPC. The results show that furin is most active at cleaving wild-type and mutant pro-IGF-IA and can cleave these precursors at multiple sites within the pentabasic motif. PC6A and LPC are less active than furin but cleave only at Arg71. PACE4 and PC6B have very little activity on pro-IGF-IA precursors. Wild-type pro-IGF-IA was correctly processed to mature IGF-I in 10 of 10 cell lines that were tested. Since furin, PC6A, and LPC are known to have a broad pattern of tissue distribution and we have demonstrated expression of LPC in RPE.40 cells, our results suggest that these SPCs may be responsible for the endogenous pro-IGF-IA processing activity observed in a wide variety of cell lines.
Collapse
Affiliation(s)
- S J Duguay
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA. stdu.midway.uchicago.edu
| | | | | | | | | |
Collapse
|
27
|
Inocencio NM, Sucic JF, Moehring JM, Spence MJ, Moehring TJ. Endoprotease activities other than furin and PACE4 with a role in processing of HIV-I gp160 glycoproteins in CHO-K1 cells. J Biol Chem 1997; 272:1344-8. [PMID: 8995442 DOI: 10.1074/jbc.272.2.1344] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We addressed the question of whether furin is the endoprotease primarily responsible for processing the human immunodeficiency virus type I (HIV-I) envelope protein gp160 in mammalian cells. The furin-deficient Chinese hamster ovary (CHO)-K1 strain RPE.40 processed gp160 as efficiently as wild-type CHO-K1 cells in vivo. Although furin can process gp160 in vitro, this processing is probably not physiologically relevent, because it occurs with very low efficiency. PACE4, a furin homologue, allowed processing of gp160 when both were expressed in RPE.40 cells. Further, PACE4 participated in the activation of a calcium-independent protease activity in RPE.40 cells, which efficiently processed the gp160 precursor in vitro. This calcium-independent protease activity was not found in another furin-deficient cell strain, 7.P15, selected from the monkey kidney cell line COS-7.
Collapse
Affiliation(s)
- N M Inocencio
- Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, University of Vermont, Burlington 05405, USA
| | | | | | | | | |
Collapse
|