1
|
Mzedawee HRH, Kowsar R, Moradi-Hajidavaloo R, Shiasi-Sardoabi R, Sadeghi K, Nasr-Esfahani MH, Hajian M. Heat shock interferes with the amino acid metabolism of bovine cumulus-oocyte complexes in vitro: a multistep analysis. Amino Acids 2024; 56:2. [PMID: 38285159 PMCID: PMC10824825 DOI: 10.1007/s00726-023-03370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/27/2023] [Indexed: 01/30/2024]
Abstract
By affecting the ovarian pool of follicles and their enclosed oocytes, heat stress has an impact on dairy cow fertility. This study aimed to determine how heat shock (HS) during in vitro maturation affected the ability of the bovine cumulus-oocyte complexes (COCs) to develop, as well as their metabolism of amino acids (AAs). In this study, COCs were in vitro matured for 23 h at 38.5 °C (control; n = 322), 39.5 °C (mild HS (MHS); n = 290), or 40.5 °C (severe HS (SHS); n = 245). In comparison to the control group, the MHS and SHS groups significantly decreased the percentage of metaphase-II oocytes, as well as cumulus cell expansion and viability. The SHS decreased the rates of cleavage and blastocyst formation in comparison to the control and MHS. Compared to the control and MHS-COCs, the SHS-COCs produced significantly more phenylalanine, threonine, valine, arginine, alanine, glutamic acid, and citrulline while depleting less leucine, glutamine, and serine. Data showed that SHS-COCs had the highest appearance and turnover of all AAs and essential AAs. Heat shock was positively correlated with the appearance of glutamic acid, glutamine, isoleucine, alanine, serine, valine, phenylalanine, and asparagine. Network analysis identified the relationship between HS and alanine or glutamic acid, as well as the relationship between blastocyst and cleavage rates and ornithine. The findings imply that SHS may have an impact on the quality and metabolism of AAs in COCs. Moreover, the use of a multistep analysis could simply identify the AAs most closely linked to HS and the developmental competence of bovine COCs.
Collapse
Affiliation(s)
| | - Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | - Reza Moradi-Hajidavaloo
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Roya Shiasi-Sardoabi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Khaled Sadeghi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
2
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
3
|
Olcay IO, Akcay B, Bahceci M, Arici A, Boynukalin K, Yakicier C, Ozpinar A, Basar M. Noninvasive amino acid turnover predicts human embryo aneuploidy. Gynecol Endocrinol 2022; 38:461-466. [PMID: 35481385 DOI: 10.1080/09513590.2022.2068520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Assisted reproduction technology has two significant problems: low success rates and multiple pregnancies. Because of these problems, the priority in IVF clinics is to develop a potential diagnostic test that can be used to select the embryos with the ultimate developmental competence. Aneuploidy screening as embryo selection criteria will ensure that the transferred embryos are euploid and high implantation rate. We hypothesize that aneuploidy in human preimplantation embryos could be discriminated by their amino acid metabolism profile in the spent culture media. Preimplantation genetic testing for aneuploidy results and spent embryo culture medium amino acid content were analyzed for 58 couples. The next-generation sequencing technique was used and coupled with TE biopsy. Forty euploid and 71 aneuploid blastocysts were evaluated. Embryos were cultured individually until day 5 or 6 of embryo development. Spent culture medium was collected after finishing the culture. There was no statistical difference between D3 and D5 embryo morphology between euploid and aneuploid embryos (p > .05). Eight amino acids, including SER, GLY, HIS, ARG, THR, ALA, PRO, and TYR, were detected in the culture medium from the blank control group, euploid group, and aneuploid group. Only TYR amino acid concentration was found significantly higher in the aneuploid group compared to the euploid group (p < .003). Tyrosine amino acid levels equal to and above 76.38 µmol/L could be considered aneuploid. Aneuploid embryos demonstrate altered amino acid turnover in vitro relative to euploid counterparts. A noninvasive method of amino acid profiling will be of value as a tool for routine preimplantation embryo selection among all patient groups.
Collapse
Affiliation(s)
- I Orcun Olcay
- Bahceci Umut Assisted Reproduction Center, IVF Laboratory, Istanbul, Turkey
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Dept. Medical Biochemistry, Istanbul, Turkey
| | - Berkay Akcay
- Bahceci Umut Assisted Reproduction Center, IVF Laboratory, Istanbul, Turkey
| | | | - Aydin Arici
- Department of Obstetrics & Gynecology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Cengiz Yakicier
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Dept. Medical Biochemistry, Istanbul, Turkey
| | - Aysel Ozpinar
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Dept. Medical Biochemistry, Istanbul, Turkey
| | - Murat Basar
- Bahceci Umut Assisted Reproduction Center, IVF Laboratory, Istanbul, Turkey
- Medical Faculty, Department of Histology & Embryology, Biruni University, Istanbul, Turkey
| |
Collapse
|
4
|
Keshet R, Erez A. Arginine and the metabolic regulation of nitric oxide synthesis in cancer. Dis Model Mech 2018; 11:11/8/dmm033332. [PMID: 30082427 PMCID: PMC6124554 DOI: 10.1242/dmm.033332] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nitric oxide (NO) is a signaling molecule that plays important roles in diverse biological processes and thus its dysregulation is involved in the pathogenesis of various disorders. In cancer, NO has broad and sometimes dichotomous roles; it is involved in cancer initiation and progression, but also restricts cancer proliferation and invasion, and contributes to the anti-tumor immune response. The importance of NO in a range of cellular processes is exemplified by its tight spatial and dosage control at multiple levels, including via its transcriptional, post-translational and metabolic regulation. In this Review, we focus on the regulation of NO via the synthesis and availability of its precursor, arginine, and discuss the implications of this metabolic regulation for cancer biology and therapy. Despite the established contribution of NO to cancer pathogenesis, the implementation of NO-related cancer therapeutics remains limited, likely due to the challenge of targeting and inducing its protective functions in a cell- and dosage-specific manner. A better understanding of how arginine regulates the production of NO in cancer might thus support the development of anti-cancer drugs that target this key metabolic pathway, and other metabolic pathways involved in NO production.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Abstract
The strategy of clinically targeting cancerous cells at their most vulnerable state during mitosis has instigated numerous studies into the mitotic cell death (MCD) pathway. As the hallmark of cancer revolves around cell-cycle deregulation, it is not surprising that antimitotic therapies are effective against the abnormal proliferation of transformed cells. Moreover, these antimitotic drugs are also highly selective and sensitive. Despite the robust rate of discovery and the development of mitosis-selective inhibitors, the unpredictable complexities of the human body's response to these drugs still herald the biggest challenge towards clinical success. Undoubtedly, the need to bridge the gap between promising preclinical trials and effective translational bedside treatment prompts further investigations towards mapping out the mechanistic pathways of MCD, understanding how these drugs work as medicine in the body and more comprehensive target validations. In this review, current antimitotic agents are summarized with particular emphasis on the evaluation of their clinical efficacy as well as their limitations. In addition, we discuss the basis behind the lack of activity of these inhibitors in human trials and the potential and future directions of mitotic anticancer strategies.
Collapse
|
6
|
Picton HM, Elder K, Houghton FD, Hawkhead JA, Rutherford AJ, Hogg JE, Leese HJ, Harris SE. Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Mol Hum Reprod 2010; 16:557-69. [PMID: 20571076 PMCID: PMC2907220 DOI: 10.1093/molehr/gaq040] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/21/2010] [Accepted: 05/18/2010] [Indexed: 01/11/2023] Open
Abstract
This study investigated the relationship between human preimplantation embryo metabolism and aneuploidy rates during development in vitro. One hundred and eighty-eight fresh and cryopreserved embryos from 59 patients (33.9 +/- 0.6 years) were cultured for 2-5 days. The turnover of 18 amino acids was measured in spent media by high-performance liquid chromatography. Embryos were either fixed for interphase fluorescent in situ hybridization analysis of chromosomes 13, 18, 19, 21, X or Y, or were assayed for mitochondrial activity. Amino acid turnover was different (P < 0.05) between stage-matched fresh and cryopreserved embryos due to blastomere loss following warming. The proportion of embryos with aneuploid cells increased as cell division progressed from pronucleate- (23%) to late cleavage stages (50-70%). Asparagine, glycine and valine turnover was significantly different between uniformly genetically normal and uniformly abnormal embryos on Days 2-3 of culture. By Days 3-4, the profiles of serine, leucine and lysine differed between uniformly euploid versus aneuploid embryos. Gender significantly (P < 0.05) affected the metabolism of tryptophan, leucine and asparagine by cleavage-stage embryos. Pronucleate zygotes had a significantly higher proportion of active:inactive mitochondria compared with cleavage-stage embryos. Furthermore, mitochondrial activity was correlated (P < 0.05) with altered aspartate and glutamine turnover. These results demonstrate the association between the metabolism, cytogenetic composition and health of human embryos in vitro.
Collapse
Affiliation(s)
- Helen M Picton
- Division of Reproduction and Early Development, Leeds Institute for Genetics, Health and Therapeutics, University of Leeds, Leeds, UK.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Evaluation of the role of nitric oxide in acid sensing ion channel mediated cell death. Nitric Oxide 2010; 22:213-9. [PMID: 20045740 DOI: 10.1016/j.niox.2009.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 12/24/2009] [Accepted: 12/29/2009] [Indexed: 11/22/2022]
Abstract
Acid sensing ion channels (ASICs) are widely expressed in central and peripheral nervous system. They are involved in a variety of physiological and pathophysiological processes: synaptic transmission, learning and memory, pain perception, ischemia, etc. During ischemia, metabolic acidosis causes the drop of extracellular pH (pHe) which in turn activates ASICs. Activation of calcium permeable ASIC1a has been implicated in neuronal death. ASICs are modulated by several redox reagents, divalent cations and nitric oxide (NO). Although NO potentiates ASIC mediated currents, the physiological significance of such modulation has not been studied in detail. We have evaluated the role of endogenous NO in cell death at different pH, mediated by the activation of ASICs. At pH 6.1, death rates of ASIC1 expressing Neuro2A (N2A) cells are significantly higher in comparison to the cells that do not express ASICs. Amiloride, a blocker of ASICs protects the cell from acid-injury. Sodium nitroprusside, a potent NO donor not only increases the ASIC mediated currents but also increases cell death at low pH. L-Arg, the precursor of NO also potentiates ASICs in a pH dependent manner. L-Arg-induced NO production and potentiation of ASICs were observed at pHs 7.4, 7.2, 7.0 and 6.8. Lowering the pH below 6.8 did not result in significant production of NO or potentiation of ASICs upon L-Arg stimulation. Our results suggest that potentiation of ASICs by NO and subsequent cell death in vivo depends on the severity of acidosis. During mild and moderate acidosis, NO promotes cell death by potentiating ASICs, whereas this potentiation subsides in severe acidosis due to inhibition of NO synthase.
Collapse
|
8
|
Graboń W, Mielczarek-Puta M, Chrzanowska A, Barańczyk-Kuźma A. l-Arginine as a factor increasing arginase significance in diagnosis of primary and metastatic colorectal cancer. Clin Biochem 2009; 42:353-7. [DOI: 10.1016/j.clinbiochem.2008.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 11/13/2008] [Accepted: 11/28/2008] [Indexed: 10/21/2022]
|
9
|
Gupta N, Miyauchi S, Martindale RG, Herdman AV, Podolsky R, Miyake K, Mager S, Prasad PD, Ganapathy ME, Ganapathy V. Upregulation of the amino acid transporter ATB0,+ (SLC6A14) in colorectal cancer and metastasis in humans. Biochim Biophys Acta Mol Basis Dis 2005; 1741:215-23. [PMID: 15905073 DOI: 10.1016/j.bbadis.2005.04.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2005] [Revised: 04/06/2005] [Accepted: 04/13/2005] [Indexed: 11/26/2022]
Abstract
ATB(0,+) (SLC6A14) is a Na(+)/Cl(-)-coupled arginine transporter expressed at low levels in normal colon. Arginine is an essential amino acid for tumor cells. Arginine is also the substrate for nitric oxide synthases (NOSs). Since arginine and arginine-derived nitric oxide (NO) play a critical role in cancer, we examined the expression of ATB(0,+) in colorectal cancer. Paired normal and cancer tissues from colectomy specimens of 10 patients with colorectal cancer and from the liver tissue of one patient with hepatic metastasis from a colonic primary were used for the analysis of the levels of ATB(0,+) mRNA, inducible NOS (iNOS) mRNA and the corresponding proteins. Tissues samples from the colon, liver, and lymph nodes of an additional patient with metastatic colon cancer were analyzed for ATB(0,+) protein alone. We also examined the levels of nitrotyrosylated proteins. The ATB(0,+) mRNA increased 22.9+/-3.0-fold in colorectal cancer compared to normal tissue and the increase was evident in each of the 10 cases examined. iNOS mRNA increased 5.2+/-1.1-fold in cancer specimens. The changes in mRNA levels were associated with an increase in ATB(0,+), iNOS, and nitrotyrosylated proteins. The increased expression of ATB(0,+) and iNOS was also demonstrated in liver and lymph node specimens with metastases from colonic primaries. This study strongly suggests that the upregulation of ATB(0,+) may have a pathogenic role in colorectal cancer. Since ATB(0,+) is a versatile transporter not only for arginine but also for several drugs including NOS inhibitors, these findings have significant clinical and therapeutic relevance.
Collapse
Affiliation(s)
- Naren Gupta
- Department of Surgery, Medical College of Georgia, Augusta, GA 30912-2100, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pan M, Choudry HA, Epler MJ, Meng Q, Karinch A, Lin C, Souba W. Arginine transport in catabolic disease states. J Nutr 2004; 134:2826S-2829S; discussion 2853S. [PMID: 15465794 DOI: 10.1093/jn/134.10.2826s] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arginine appears to be a semiessential amino acid in humans during critical illness. Catabolic disease states such as sepsis, injury, and cancer cause an increase in arginine utilization, which exceeds body production, leading to arginine depletion. This is aggravated by the reduced nutrient intake that is associated with critical illness. Arginine depletion may have negative consequences on tissue function under these circumstances. Nutritional regimens containing arginine have been shown to improve nitrogen balance and lymphocyte function, and stimulate arginine transport in the liver. We have studied the effects of stress mediators on arginine transport in vascular endothelium, liver, and gut epithelium. In vascular endothelium, endotoxin stimulates arginine uptake, an effect that is mediated by the cytokine tumor necrosis factor-alpha (TNF-alpha) and by the cyclo-oxygenase pathway. This TNF-alpha stimulation involves the activation of intracellular protein kinase C (PKC). A significant increase in hepatic arginine transport activity also occurs following burn injury and in rats with progressive malignant disease. Surgical removal of the growing tumor results in a normalization of the accelerated hepatic arginine transport within days. Chronic metabolic acidosis and sepsis individually augment intestinal arginine transport in rats and Caco-2 cell culture. PKC and mitogen-activated protein kinases are involved in mediating the sepsis/acidosis stimulation of arginine transport. Understanding the regulation of plasma membrane arginine transport will enhance our knowledge of nutrition and metabolism in seriously ill patients and may lead to the design of improved nutritional support formulas.
Collapse
Affiliation(s)
- Ming Pan
- Department of Surgery at the Penn State College of Medicine and the Hershey Medical Center, Hershey, PA 17033, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Franzius C, Kopka K, van Valen F, Riemann B, Sciuk J, Schober O. 3-[123I]Iodo-L-alpha-methyl tyrosine transport into human fibroblasts and comparison with Ewing's sarcoma cells. Nucl Med Biol 2002; 29:483-90. [PMID: 12031884 DOI: 10.1016/s0969-8051(02)00291-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cellular transport systems and the transport kinetics of [123I]IMT uptake into non-malignant extracranial cells were characterized for the first time. Human fibroblasts were chosen as non-malignant extracranial cells as they are found ubiquitous in the body. [123I]IMT is exclusively transported into fibroblasts via the sodium independent system L. An apparent Michaelis constant K(m) = 116.2 +/- 18.9 microM and a maximum transport velocity V(max) = 191.6 +/- 13.9 pmol x (10(6) cells)(-1) x min(-1) were calculated for the sodium-independent transport. These results were compared with those determined in two malignantly transformed extracranial cell lines, the human Ewing's sarcoma cell lines VH-64 and CADO-ES-1.
Collapse
|
12
|
Zhang XM, Xu Q. Metastatic melanoma cells escape from immunosurveillance through the novel mechanism of releasing nitric oxide to induce dysfunction of immunocytes. Melanoma Res 2001; 11:559-67. [PMID: 11725202 DOI: 10.1097/00008390-200112000-00002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) is known to facilitate tumour metastasis through the promotion of angiogenesis, vascular dilation, platelet aggregation, etc. In the present study we explored its novel role in producing dysfunction of the host immune system in the metastasis of murine metastatic melanoma B16-BL6 cells. A significant reduction in the mixed lymphocyte reaction (MLR) was observed in the spleen cells from B16-BL6-bearing mice, but not in those from mice bearing the parent cell B16. When B16-BL6 cells were added in vitro to the MLR, a significant decrease was also found, even when they were co-cultured with the lymphocytes in two compartments of a Transwell chamber separated by an 8.0 microm filter. The supernatant from cultured B16-BL6 but not B16 cells, which had a greatly increased NO activity, significantly inhibited concanavalin A- and lipopolysaccharide-induced lymphocyte proliferation. A remarkably higher expression of inducible NO synthase (iNOS) was detected in B16-BL6 cells than in B16 cells. Nomega-Nitro-l-arginine (l-NNA), a NO synthase inhibitor and superoxide dismutase, significantly antagonized the above inhibition by B16-BL6 cells, while l-arginine, a NO precursor, and S-nitroso-N-acetyl-d,l-penicillamine, a NO donor, strengthened the inhibition. Furthermore, l-NNA significantly inhibited lung metastasis of B16-BL6 cells, while l-arginine tended to enhance the metastasis. The cytotoxicity of B16-BL6-specific T-cells was significantly decreased by pre-culture with B16-BL6 cells in a Transwell chamber or the culture supernatants of B16-BL6 cells, whereas l-iminoethyl-lysine, a selective inhibitor of iNOS, showed a significant recovery from the disease. These results suggest that NO released by metastatic tumour cells may impair the immune system, which facilitates the escape from immunosurveillance and metastasis of tumour cells.
Collapse
Affiliation(s)
- X M Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, The People's Republic of China
| | | |
Collapse
|
13
|
Cavanaugh PG, Nicolson GL. Partial purification of a liver-derived tumor cell growth inhibitor that differentially inhibits poorly-liver metastasizing cell lines: identification as an active subunit of arginase. Clin Exp Metastasis 2001; 18:509-18. [PMID: 11592308 DOI: 10.1023/a:1011851131504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Organ specific tumor metastasis is thought in part to require the ability of metastatic cells to respond to target-organ-associated growth factors or to avoid the effects of target organ associated growth inhibitors. We previously found that murine and rat liver-conditioned media inhibited the growth of the poorly-liver metastasizing murine RAW117-P large-cell lymphoma cells more than their highly liver-metastasizing RAW117-H10 counterparts. Using a six step chromatographic procedure, the major RAW117-P cell proliferation inhibitor from a rat liver extract was purified. The factor displayed a Mr of approximately 35,000 and an isoelectric point > 8.5. This material inhibited the growth of many cells at high concentration; however, in dose-response studies it displayed a higher IC50 for highly-liver metastatic murine RAW117-H10 lymphoma and human KM12SM colon carcinoma cells than for their poorly-liver metastatic counterparts. Attempts to identify the growth inhibitor led to the supplementation of tissue culture inhibitor assays with various components, including excess amino acids, and this was found to completely abrogate the factor's activity. Specifically, the addition of excess arginine resulted in the complete cellular recovery from inhibitor exposure. This tentatively identified the liver growth inhibitor as the enzyme arginase, a Mr approximately 10,000 multisubunit protein. A microtiter plate-based assay for arginase was developed and the purification repeated using human liver as a source of activity and the human KM12C colon carcinoma line as a target. The growth inhibitory and arginase activities were found to co-purify, identifying the factor as arginase. Highly-metastatic cells displayed no ability to preferentially inactivate or inhibit the activity of arginase, but they did they display slightly greater amounts of intracellular arginine. The liver is a major site of arginase localization as the enzyme is required for the functioning of the urea cycle. The results indicate that certain liver-colonizing tumor cells can escape, to a degree, the proliferation-damping effects of arginine depletion.
Collapse
Affiliation(s)
- P G Cavanaugh
- Institute for Molecular Medicine, Huntington Beach, California 92649, USA.
| | | |
Collapse
|
14
|
Zhang X, Xu Q, Saiki I. Quercetin inhibits the invasion and mobility of murine melanoma B16-BL6 cells through inducing apoptosis via decreasing Bcl-2 expression. Clin Exp Metastasis 2001; 18:415-21. [PMID: 11467774 DOI: 10.1023/a:1010960615370] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Quercetin has been known to have anti-tumor and anti-oxidation activities. In the present study, we have investigated its in vitro anti-metastatic activity. Quercetin inhibited the invasion and mobility of murine melanoma B16-BL6 cells in a dose-dependent manner but did not affect their adhesion to either laminin, fibronectin, or type VI collagen. Moreover, quercetin significantly inhibited the proliferation of B16-BL6 cells only in the case of time incubation longer than 48 h. Quercetin dose-dependently decreased the cell rates in S and G2-M phases of cell cycle. The effect of quercetin to cause a remarkable apoptosis of B16-BL6 cells was also demonstrated by flow cytometric assay as well as DNA fragmentation with a typical 180-bp ladder band in agarose electrophoresis and a quantitative analysis. Furthermore, quercetin markedly inhibited the expression of anti-apoptotic protein Bcl-2 but hardly influenced Bcl-XL. These results suggest that the inhibition of quercetin on invasiveness and migration of B16-BL6 cells are closely associated with the arrest of cell cycle as well as the induction of apoptosis by decreasing the Bcl-2 expression.
Collapse
Affiliation(s)
- X Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, The People's Republic of China
| | | | | |
Collapse
|
15
|
Lagares-Garcia JA, Moore RA, Collier B, Heggere M, Diaz F, Qian F. Nitric Oxide Synthase as a Marker in Colorectal Carcinoma. Am Surg 2001. [DOI: 10.1177/000313480106700726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Elevated inducible nitric oxide synthase (iNOS) activity has been found in 60 per cent of colon adenomas and 20 to 50 per cent of adenocarcinomas. We postulated that high levels of iNOS may increase the invasive and metastatic potential of colon carcinoma and could be indicative of survival potential. Data were reviewed for 52 patients with colorectal carcinoma diagnosed in 1991 and 1992. Specimens were stained for iNOS and catalogued as low-activity staining (LAS) or high-activity staining (HAS) on the basis of visual evaluation by three pathologists. Thirty patients were LAS and 22 HAS. Age, sex, preoperative carcinoembryonic antigen, tumor and nodal status, and American Joint Committee on Cancer staging were not different between groups. Forty-six per cent of the HAS group remained alive after 5 years versus 71 per cent in the LAS group. Survival was significantly lower and metastatic status significantly higher in the HAS group. Results indicated that iNOS activity may be a prognostic indicator of long-term survival potential after treatment for colon cancer. In addition results suggested that metastasis was greater in colon carcinoma specimens that maintain an activated iNOS and that these cells clinically react more aggressively. Conclusions are tempered by the fact that results were based on a limited sample size.
Collapse
Affiliation(s)
- Jorge A. Lagares-Garcia
- Departments of Surgery, Temple University/Conemaugh's Memorial Medical Center, Johnstown, Pennsylvania
| | - Richard A. Moore
- Departments of Surgery, Temple University/Conemaugh's Memorial Medical Center, Johnstown, Pennsylvania
| | - Bryan Collier
- Departments of Surgery, Temple University/Conemaugh's Memorial Medical Center, Johnstown, Pennsylvania
| | - Manjunath Heggere
- Departments of Pathology, Temple University/Conemaugh's Memorial Medical Center, Johnstown, Pennsylvania
| | - Francisco Diaz
- Departments of Pathology, Temple University/Conemaugh's Memorial Medical Center, Johnstown, Pennsylvania
| | - Fang Qian
- Departments of Pathology, Temple University/Conemaugh's Memorial Medical Center, Johnstown, Pennsylvania
| |
Collapse
|
16
|
Vickers SM, MacMillan-Crow L, Huang Z, Thompson JA. Acidic fibroblast growth factor (FGF-1) signaling inhibits peroxynitrite-induced cell death during pancreatic tumorigenesis. Free Radic Biol Med 2001; 30:957-66. [PMID: 11316575 DOI: 10.1016/s0891-5849(01)00479-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous immunohistochemical studies have demonstrated enhanced appearance of FGF-1 and nitrotyrosine, a footprint of reactive nitrogen species peroxynitrite (ONOO(-)), in human pancreatic adenocarcinoma. We have examined the consequences of constitutive exposure to FGF-1 in nontumorigenic rat ductal epithelial cells (ARIP). ARIP cells were transduced with either a secreted chimera of FGF-1, ARIP(FGF-1), or a control plasmid, 65 RIP(betag). These cells were evaluated for alteration in growth and morphology, responses to ONOO(-) (protein tyrosine nitration/phosphorylation), and in vivo tumor formation. ARIP(FGF-1) cells, in contrast to 65 RIP(betag), demonstrated a transformed morphology, a 2-fold increased growth rate, and enhanced protein tyrosine phosphorylation. Treatment with 150 microM ONOO(-) resulted in 86 and 7% (p <.01) death of ARIP(betag) and ARIP(FGF-1), respectively. Exposure of 65 RIP(betag) cells to ONOO(-) enhanced tyrosine phosphorylation and tyrosine nitration of several polypeptides. Cell signaling by FGF-1 enhanced both phosphorylation and nitration of tyrosine residues in target proteins modified by ONOO(-). ARIP(betag) cells failed to exhibit tumor formation in nude mice, but at d 7 in vivo cells were TUNEL and nitrotyrosine positive and FGF-1 negative. ARIP(FGF-1) cells readily formed tumor nodules, exhibiting features of pancreatic adenocarcinoma and demonstrating FGF-1-positive, nitrotyrosine-positive, and TUNEL-negative epithelium. These results suggest an interdependent role between FGF-1 and ONOO(-) during the development and progression of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- S M Vickers
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA.
| | | | | | | |
Collapse
|
17
|
Franzius C, Kopka K, van Valen F, Eckervogt V, Riemann B, Sciuk J, Schober O. Characterization of 3-[123I]iodo-L-alpha-methyl tyrosine ([123I]IMT) transport into human Ewing's sarcoma cells in vitro. Nucl Med Biol 2001; 28:123-8. [PMID: 11295422 DOI: 10.1016/s0969-8051(00)00186-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
3-[(123)I]Iodo-L-alpha-methyl tyrosine ([(123)I]IMT) scintigraphy of extracranial malignant tumors has been described, but little is known about the transport systems involved in [(123)I]IMT uptake into extracranial tumor cells. Here, the precise kinetics of [(123)I]IMT transport into human Ewing's sarcoma cells (VH-64) was determined. The apparent Michaelis constant was of high affinity value (K(m)=41.7+/-3.9 microM) and maximum transport velocitiy amounted to V(max)=20.7+/-0.6 nmol x mg protein(-1) x 10 min(-1). Inhibition experiments revealed the predominance of [(123)I]IMT uptake via sodium-independent system L.
Collapse
Affiliation(s)
- C Franzius
- Department of Nuclear Medicine, Westfälische Wilhelms-Universität, Münster, Albert-Schweitzer-Str. 33, 48149, Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Kopka K, Riemann B, Friedrich M, Winters S, Halfter H, Weckesser M, Stögbauer F, Ringelstein EB, Schober O. Characterization of 3-[(123)I]iodo-L-alpha-methyl tyrosine transport in astrocytes of neonatal rats. J Neurochem 2001; 76:97-104. [PMID: 11145982 DOI: 10.1046/j.1471-4159.2001.00048.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
3-[(123)I]Iodo-L-alpha-methyl tyrosine ((123)I-IMT) is used for diagnosis and monitoring of brain tumours by means of single-photon emission tomography. As recently shown, (123)I-IMT is predominantly mediated into rat C6 glioma cells by sodium-independent system L for large neutral amino acids. Until now, (123)I-IMT transport in non-neoplastic glial cells has not been examined. Therefore, the aim of this study was to examine the cellular pathways and precise transport kinetics of (123)I-IMT uptake into astrocytes of neonatal rats. In particular sodium-independent (123)I-IMT transport into neonatal astrocytes was compared with sodium-independent (123)I-IMT uptake into neoplastic rat C6 glioma cells. Competitive inhibition experiments showed that (123)I-IMT is exclusively transported via sodium-independent system L into the neonatal astrocytes (92%). Kinetic analysis of sodium-independent (123)I-IMT uptake into neonatal astrocytes and into C6 glioma cells revealed apparent Michaelis constants K(M) = 13.9 +/- 0.5 microM and K(M) = 33.9 +/- 4.1 microM, respectively, which are in the same range of K(M) values as those recently determined for amino acid transport into neoplastic and non-neoplastic glial cells. Indeed, the K(M) values in the micromolar range correspond to the expression of the LAT-1 subunit of system L both in the neonatal astrocytes and in C6 glioma cells. However, sodium-independent maximum transport velocities (V(max)) differed significantly between neonatal astrocytes and C6 glioma cells (11.1 +/- 0.3 and 39.9 +/- 3.3 nmol/mg protein/10 min, respectively).
Collapse
Affiliation(s)
- K Kopka
- Department of Nuclear Medicine, Westfälische Wilhelms-Universität Münster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Harper A, Pogson CI, Pearce JH. Amino acid transport into cultured McCoy cells infected with Chlamydia trachomatis. Infect Immun 2000; 68:5439-42. [PMID: 10948179 PMCID: PMC101813 DOI: 10.1128/iai.68.9.5439-5442.2000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amino acid transport into McCoy cells infected with strains representative of the two major biovars of Chlamydia trachomatis has been studied to determine if uptake is increased during infection. Preliminary work suggested that the transport systems L, A/ASC (for neutral amino acid transport), N (for transport of Asn, Gln, and His) and y+ (for cationic amino acids) were present in McCoy cells. With lymphogranuloma venereum biovar strain 434, little difference in the influx of representative amino acids Trp, His, and Lys or the analogue 2-aminoisobutyric acid (AIB) was observed during infection. With trachoma biovar strain DK20, a small increase in the initial entry rate and equilibrium concentration of each amino acid was found. McCoy cells appear to have great capacity for concentrating amino acids, which might obviate the need for transport induction by chlamydiae under conditions favoring the growth of infectious organisms.
Collapse
Affiliation(s)
- A Harper
- Microbial Molecular Genetics and Cell Biology Group, School of Biological Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | | | | |
Collapse
|