1
|
Zhu M, Li H, Miao L, Li L, Dong X, Zou X. Dietary cadmium chloride impairs shell biomineralization by disrupting the metabolism of the eggshell gland in laying hens. J Anim Sci 2020; 98:5715281. [PMID: 31974567 DOI: 10.1093/jas/skaa025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/23/2020] [Indexed: 01/29/2023] Open
Abstract
In this study, we identified cadmium (Cd) as a potential endocrine disruptor that impairs laying performance, egg quality, and eggshell deposition and induces oxidative stress and inflammation in the eggshell glands of laying hens. A total of 480 38-wk-old laying hens were randomly assigned into 5 groups that were fed a basal diet (control) or a basal diet supplemented with Cd (provided as CdCl2·2.5 H2O) at 7.5, 15, 30, and 60 mg Cd per kg feed for 9 wk. The results showed that, when compared with the control group, a low dose of dietary Cd (7.5 mg/kg) had positive effects on egg quality by improving albumen height, Haugh unit, yolk color, and shell thickness at the third or ninth week. However, with the increase in the dose and duration of Cd exposure, the laying performance, egg quality, and activities of eggshell gland antioxidant enzymes (catalase [CAT], glutathione peroxide [GSH-Px]), and ATPase (Na+/K+-ATPase, Ca2+-ATPase, and Mg2+-ATPase) deteriorated, and the activity of total nitric oxide synthase (T-NOS) and the level of malondialdehyde (MDA) increased significantly (P < 0.05). The histopathology and real-time quantitative PCR results showed that Cd induced endometrial epithelial cell proliferation accompanied by upregulation of the mRNA levels of progesterone receptor (PgR) and epidermal growth factor receptor (EGFR), downregulation of the mRNA levels of estrogen receptor α (ERα) and interleukin 6 (IL6), and inflammation of the eggshell gland accompanied by significantly increased expression of complement C3 and pro-inflammatory cytokine tumor necrosis factor α (TNFα) (P < 0.05). In addition, the ultrastructure of the eggshell showed that dietary supplementation with 7.5 mg/kg Cd increased the palisade layer and total thickness of the shell, but with the increase in dietary Cd supplementation (30 and 60 mg/kg) the thickness of the palisade layer and mammillary layer decreased significantly (P < 0.05), and the outer surface of the eggshell became rougher. Correspondingly, the expression of calbindin 1 (CALB1), ovocalyxin-32 (OCX-32), ovocalyxin-36 (OCX-36), osteopontin (SPP1), and ovocledidin-17 (OC-17) decreased significantly (P < 0.05) with increasing dietary Cd supplementation. Conclusively, the present study demonstrates that dietary supplementation with Cd negatively affects laying performance, egg quality, and eggshell deposition by disturbing the metabolism of eggshell glands in laying hens but has a positive effect on egg quality at low doses.
Collapse
Affiliation(s)
- Mingkun Zhu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Huaiyu Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Liping Miao
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Lanlan Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xinyang Dong
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xiaoting Zou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
2
|
The endocrine disruptive effects of mercury. Environ Health Prev Med 2012; 4:174-83. [PMID: 21432482 DOI: 10.1007/bf02931255] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/1999] [Accepted: 11/13/1999] [Indexed: 10/21/2022] Open
Abstract
Mercury, identified thousands of years ago is one of the oldest toxicants known. The endocrine disruptive effects of mercury have recently become one of the major public concerns. In this report, the adverse effects of mercury on the hypothalamus, pituitary, thyroid, adrenal gland, and gonads (testis and ovary) in laboratory animals as well as in humans are reviewed. The effects of both environmental and occupational exposures to organic, inorganic, or metallic mercury are explained. There is sufficient evidence from animal studies supporting the disruptive effects of mercurials on the functions of the thyroid, adrenal, ovary, and testis, although several factors make it difficult to extrapolate the animal data to the human situation. However, the human studies performed so far, which focused mainly on serum hormone levels, failed to provide any conclusive data to confirm the findings from the animal studies. Therefore, further well-designed epidemiological studies are urgently needed. The possible mechanisms of the toxic effects are also discussed. The broad enzyme inhibition and the influence on the combining of hormones by their receptors, which seem due to its avid binding to sulphydryl, may account for the primary mechanism. The interference with intracellular calcium metabolism, and peroxidation may also be involved.
Collapse
|
3
|
Ellis BC, Gattoni-Celli S, Kindy MS. The impact of methylmercury on 1,25-dihydroxyvitamin D3-induced transcriptomic responses in dolphin skin cells. Biol Chem 2010; 391:245-258. [DOI: 10.1515/bc.2010.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractThe Atlantic bottlenose dolphin has been the focus of much attention owing to the considerable impact of environmental stress on its health and the associated implications for human health. Here, we used skin cells from the dolphin to investigate the protective role of the vitamin D pathway against environmental stressors. We previously reported that dolphin skin cells respond to 1,25-dihydroxyvitamin D3 (1,25D3), the bioactive metabolite of vitamin D3, by upregulation of the vitamin D receptor (VDR) and expression of several genes. Methylmercury is a highly bioaccumulative environmental stressor of relevance to the dolphin. We currently report that in dolphin cells sublethal concentrations of methylmercury compromise the ability of 1,25D3 to upregulate VDR, to transactivate a vitamin D-sensitive promoter, and to express specific target genes. These results help elucidate the effects of vitamin D and methylmercury on innate immunity in dolphin skin and potentially in human skin as well, considering similarities in the vitamin D pathway between the two species.
Collapse
Affiliation(s)
- Blake C. Ellis
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 331 Fort Johnson Road, Charleston, SC 29412, USA
| | - Sebastiano Gattoni-Celli
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 331 Fort Johnson Road, Charleston, SC 29412, USA
| | - Mark S. Kindy
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 331 Fort Johnson Road, Charleston, SC 29412, USA
| |
Collapse
|
4
|
Bar A. Calcium transport in strongly calcifying laying birds: mechanisms and regulation. Comp Biochem Physiol A Mol Integr Physiol 2008; 152:447-69. [PMID: 19118637 DOI: 10.1016/j.cbpa.2008.11.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 11/25/2008] [Accepted: 11/25/2008] [Indexed: 01/01/2023]
Abstract
Birds that lay long clutches (series of eggs laid sequentially before a "pause day"), among them the high-producing, strongly-calcifying Gallus gallus domesticus (domestic hen) and Coturnix coturnix japonica (Japanese quail), transfer about 10% of their total body calcium daily. They appear, therefore, to be the most efficient calcium-transporters among vertebrates. Such intensive transport imposes severe demands on ionic calcium (Ca2+) homeostasis, and activates at least two extremely effective mechanisms for Ca2+ transfer from food and bone to the eggshell. This review focuses on the development, action and regulation of the mechanisms associated with paracellular and transcellular Ca2+ transport in the intestine and the eggshell gland (ESG); it also considers some of the proteins (calbindin, Ca2+ATPase, Na+/Ca2+ exchange, epithelial calcium channels (TRPVs), osteopontin and carbonic anhydrase (CA) associated with this phenomenon. Calbindins are discussed in some detail, as they appear to be a major component of the transcellular transport system, and as only they have been studied extensively in birds. The review aims to gather old and new knowledge, which could form a conceptual basis, albeit not a completely accepted one, for our understanding of the mechanisms associated with this phenomenon. In the intestine, the transcellular pathway appears to compensate for low Ca2+ intake, but in birds fed adequate calcium the major drive for calcium absorption remains the electrochemical potential difference (ECPD) that facilitates paracellular transport. However, the mechanisms involved in Ca2+ transport into the ESG lumen are not yet established. In the ESG, the presence of Ca2+-ATPase and calbindin--two components of the transcellular transport pathway--and the apparently uphill transport of Ca2+ support the idea that Ca2+ is transported via the transcellular pathway. However, the positive (plasma with respect to mucosa) electrical potential difference (EPD) in the ESG, among other findings, indicates that there may be major alternative or complementary paracellular passive transport pathways. The available evidence hints that the flow from the gut to the ESG, which occurs during a relatively short period (11 to 14 h out the 24- to 25.5-h egg cycle), is primarily driven by carbonic anhydrase (CA) activity in the ESG, which results in high HCO3(-) content that, in turn, "sucks out" Ca2+ from the intestinal lumen via the blood and ESG cells, and deposits it in the shell crystals. The increased CA activity appears to be dependent on energy input, whereas it seems most likely that the Ca2+ movement is secondary, that it utilizes passive paracellular routes that fluctuate in accordance with the appearance of the energy-dependent CA activity, and that the level of Ca2+ movement mimics that of the CA activity. The on-off signals for the overall phenomenon have not yet been identified. They appear to be associated with the circadian cycle of gonadal hormones, coupled with the egg cycle: it is most likely that progesterone acts as the "off" signal, and that the "on" signal is provided by the combined effect of an as-yet undefined endocrine factor associated with ovulation and with the mechanical strain that results from "egg white" formation and "plumping". This strain may initially trigger the formation of the mammillae and the seeding of shell calcium crystals in the isthmus, and thereafter initiate the formation of the shell in the ESG.
Collapse
Affiliation(s)
- Arie Bar
- Institute of Animal Science, ARO, the Volcani Ctr., Bet Dagan 50250, Israel.
| |
Collapse
|
5
|
Heath JA, Frederick PC. Relationships Among Mercury Concentrations, Hormones, and Nesting Effort of White Ibises (Eudocimus Albus) in the Florida Everglades. ACTA ACUST UNITED AC 2005. [DOI: 10.1093/auk/122.1.255] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Mercury, a common wetland pollutant, can affect wildlife populations through acute toxicity or through physiological effects that modify behavior and negatively influence reproductive success. We compared body-feather mercury concentrations of free-living male and female adult White Ibises (Eudocimus albus) during three breeding seasons in the Florida Everglades and examined the relationships among mercury, hormone concentrations, and body-condition scores. Female White Ibises consistently had lower mercury concentrations than males. Prebreeding females' estradiol concentrations were negatively correlated with mercury concentrations. However, we found no relationship between mercury and female testosterone, progesterone, and corticosterone concentrations. Incubating male White Ibises showed a significant positive relationship between testosterone and mercury concentrations, but no other significant hormonal correlations with mercury concentrations. We used a seven-year standardized data set of Great Egret (Ardea alba) chick-feather mercury concentrations as a measure of temporal changes in mercury bioavailability in the Everglades and related that measure to annual numbers of White Ibis nests. White Ibis nesting was negatively correlated with the mercury exposure index. Low numbers of nesting White Ibises may have been the result of fewer birds nesting or high abandonment rates. Our results suggest that mercury exposure may cause fewer birds to nest or more birds to abandon nests because of subacute effects on hormone systems. However, the results are correlative; they call for further investigation in free-living populations and in the laboratory.
Relaciones entre las Concentraciones de Mercurio, Hormonas y el Esfuerzo de Nidificación de Eudocimus albus en los Everglades, Florida
Collapse
Affiliation(s)
- Julie A. Heath
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida 32611, USA
| | - Peter C. Frederick
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
6
|
Crellin NK, Rodway MR, Swan CL, Gillio-Meina C, Chedrese PJ. Dichlorodiphenyldichloroethylene potentiates the effect of protein kinase A pathway activators on progesterone synthesis in cultured porcine granulosa cells. Biol Reprod 1999; 61:1099-103. [PMID: 10491649 DOI: 10.1095/biolreprod61.4.1099] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The insecticide dichlorodiphenyltrichloroethane (DDT) and its major metabolite p,p'-dichlorodiphenyldichloroethylene (DDE) have been implicated as endocrine-modulating chemicals. The DDT metabolite p, p'-DDE has been found contaminating human tissues and follicular fluid because of dietary exposure. We investigated the effects of DDE on progesterone synthesis in a stable porcine granulosa cell line, JC-410, and in primary cultures of porcine granulosa cells. Progesterone synthesis was not affected by 0.1-100 ng/ml DDE in the JC-410 cells. However, 10 ng/ml DDE increased 8-bromo-cAMP (8-Br-cAMP)-stimulated progesterone synthesis 0.4-fold (P < 0.05) over the levels observed with 1 mM 8-Br-cAMP alone. The effect of cholera toxin (CT) on progesterone synthesis was increased 0.7-fold (P < 0.05) by 10 ng/ml DDE over the value observed with 30 ng/ml CT alone. In primary cultures of porcine granulosa cells, 10 ng/ml DDE potentiated CT-stimulated progesterone synthesis 1.2-fold over the value observed with CT alone. In the JC-410 cells, 1 and 10 ng/ml DDE increased CT-stimulated cytochrome P450-cholesterol side-chain cleavage (P450(scc)) mRNA levels 0.3- and 0.4-fold, respectively, over the values obtained with CT alone. Neither basal nor CT-stimulated cAMP levels were changed by DDE. We conclude that DDE affects granulosa cell response to protein kinase A activators by altering the expression of the P450(scc) gene.
Collapse
Affiliation(s)
- N K Crellin
- Reproductive Biology Research Unit, Department of Obstetrics and Gynecology and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N OW8
| | | | | | | | | |
Collapse
|
7
|
Kawashima M, Takahashi T, Kondo S, Yasuoka T, Ogawa H, Tanaka K. Identification of an androgen receptor within the uterus of the domestic fowl. Poult Sci 1999; 78:107-13. [PMID: 10023757 DOI: 10.1093/ps/78.1.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytosolic and nuclear fractions of the uterus (shell gland) of the hen's oviduct were found to contain a specific [17alpha-methyl-3H]-methyltrienolone ([3H]R1881; a synthetic androgen) binding component having properties of an androgen receptor; i.e., binding specificity, high affinity, and limited capacity. The value of the equilibrium dissociation constant (Kd) was of the order of 10(-9), and did not differ between laying and nonlaying hens. The maximum binding capacity (Bmax) per gram of tissue of both fractions was greater in laying hens than in nonlaying hens. When 5alpha-dihydrotestosterone was administered exogenously, the Bmax of the cytosolic fraction decreased and that of the nuclear fraction increased without any change in Kd. The specific binding in both fractions was at an increased level from 4 to 11 h before oviposition, suggesting that androgen binding may be related to certain events during an early stage of shell formation in the uterus of laying hens.
Collapse
Affiliation(s)
- M Kawashima
- Department of Biological Diversity and Resources, Gifu University, Yanagido, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Lundholm CD. DDE-induced eggshell thinning in birds: effects of p,p'-DDE on the calcium and prostaglandin metabolism of the eggshell gland. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1997; 118:113-28. [PMID: 9490182 DOI: 10.1016/s0742-8413(97)00105-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. The focus of this review is the effects and mechanism of action of p,p'-DDE on eggshell formation in birds. Inhibition of prostaglandin synthesis in the eggshell gland mucosa is a probable mechanism for p,p'-DDE-induced eggshell thinning. 2. The duck is sensitive to p,p'-DDE-induced eggshell thinning but the domestic fowl is not, and studies comparing the two species in regard to the calcium and prostaglandin metabolism of the eggshell gland have shown that eggshell thinning induced by p,p'-DDE in ducks is accompanied by reduced activity of prostaglandin synthetase, reduced levels of prostaglandin E2, and reduced uptake of 45Ca by the eggshell gland mucosa. The content of calcium, bicarbonate, chloride, sodium, and potassium are also reduced in the eggshell gland lumen in ducks exhibiting eggshell thinning. None of these effects are seen in the domestic fowl. 3. Inhibition of prostaglandin synthesis is a specific effect of p,p'-DDE. The detrimental effects of p,p'-DDE on the eggshell gland seem to be unique when comparing the compound with structurally related substances, i.e., similar treatment regimens with o,p'-DDE, p,p'-DDT, o,p'-DDT, and p,p'-DDD do not cause eggshell thinning in ducks. Neither do they inhibit prostaglandin synthesis in the eggshell gland mucosa. 4. Administration of other compounds that do inhibit prostaglandin synthesis, e.g., indomethacin, does cause the same effects as those seen with p,p'-DDE, i.e., eggshell thinning and the described effects on the calcium and prostaglandin metabolism of the eggshell gland.
Collapse
Affiliation(s)
- C D Lundholm
- Department of Pharmacology, Faculty of Health Sciences, Linköping, Sweden
| |
Collapse
|
9
|
Ratnasabapathy R, Tom M, Post C. Modulation of the hepatic expression of the estrogen-regulated mRNA stabilizing factor by estrogenic and antiestrogenic nonsteroidal xenobiotics. Biochem Pharmacol 1997; 53:1425-34. [PMID: 9260869 DOI: 10.1016/s0006-2952(97)00084-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Estrogen-mediated accumulation of apolipoprotein II (apoII) mRNA in the avian liver is due, in part, to its stabilization. This stabilization appears to be due to the estrogen-regulated mRNA stabilizing factor (E-RmRNASF) that is expressed in response to estrogen. The E-RmRNASF protects the mRNA from targeted endonucleolytic degradation (Ratnasabapathy, Cell Mol Biol Res 41: 583-594, 1995). To determine whether certain environmental xenobiotics altered the expression of the gene encoding E-RmRNASF by mimicking estrogen, roosters were given estrogen, tamoxifen, clomiphene, hexachlorophene, lindane, rotenone, chlordecone, dichlorodiphenyltrichloroethane (DDT); Araclor, methoxychlor, dieldrin, toxaphene, or bisphenol-A parenterally. Uniformly radiolabeled, capped, and polyadenylated apoII mRNA, incubated in vitro in the presence of liver cytosolic extracts from birds that received estrogen, tamoxifen, hexachlorophene, chlordecone, or Araclor, remained stable, indicating that these agents were estrogenic and stimulated the expression of E-RmRNASF. However, the same mRNA was degraded in similar extracts from control roosters and those treated with clomiphene, DDT, methoxychlor, dieldrin, rotenone, toxaphene, lindane, or bisphenol-A. To determine whether the latter agents were antiestrogenic, roosters were given a 1:5 molar combination of estrogen and each of the xenobiotics. ApoII mRNA showed degradation in liver extracts from roosters that received clomiphene, toxaphene, or bisphenol-A, indicating that these agents prevented estrogenic stimulation of expression of the E-RmRNASF and were antiestrogenic. However, the rest of the xenobiotics failed to antagonize estrogenic stimulation of E-RmRNASF gene expression. These results set a precedent in showing the estrogenic and antiestrogenic effects in vivo of environmental xenobiotics on the expression of a regulatory protein involved in estrogen-mediated mRNA stabilization.
Collapse
Affiliation(s)
- R Ratnasabapathy
- Division of Pharmacology, Toxicology and Medicinal Chemistry, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, NY 11201, U.S.A
| | | | | |
Collapse
|