1
|
Kim SJ, Miller B, Hartel NG, Ramirez R, Braniff RG, Leelaprachakul N, Huang A, Wang Y, Arpawong TE, Crimmins EM, Wang P, Sun X, Liu C, Levy D, Yen K, Petzinger GM, Graham NA, Jakowec MW, Cohen P. A naturally occurring variant of SHLP2 is a protective factor in Parkinson's disease. Mol Psychiatry 2024; 29:505-517. [PMID: 38167865 PMCID: PMC11116102 DOI: 10.1038/s41380-023-02344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Mitochondrial DNA single nucleotide polymorphisms (mtSNPs) have been associated with a reduced risk of developing Parkinson's disease (PD), yet the underlying mechanisms remain elusive. In this study, we investigate the functional role of a PD-associated mtSNP that impacts the mitochondrial-derived peptide (MDP) Small Humanin-like Peptide 2 (SHLP2). We identify m.2158 T > C, a mtSNP associated with reduced PD risk, within the small open reading frame encoding SHLP2. This mtSNP results in an alternative form of SHLP2 (lysine 4 replaced with arginine; K4R). Using targeted mass spectrometry, we detect specific tryptic fragments of SHLP2 in neuronal cells and demonstrate its binding to mitochondrial complex 1. Notably, we observe that the K4R variant, associated with reduced PD risk, exhibits increased stability compared to WT SHLP2. Additionally, both WT and K4R SHLP2 show enhanced protection against mitochondrial dysfunction in in vitro experiments and confer protection against a PD-inducing toxin, a mitochondrial complex 1 inhibitor, in a mouse model. This study sheds light on the functional consequences of the m.2158 T > C mtSNP on SHLP2 and provides insights into the potential mechanisms by which this mtSNP may reduce the risk of PD.
Collapse
Affiliation(s)
- Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Nicolas G Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Ricardo Ramirez
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Regina Gonzalez Braniff
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Naphada Leelaprachakul
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Amy Huang
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Yuzhu Wang
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Thalida Em Arpawong
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Eileen M Crimmins
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Penglong Wang
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xianbang Sun
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Chunyu Liu
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Daniel Levy
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Giselle M Petzinger
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Nicholas A Graham
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Michael W Jakowec
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
- Department of Biokinesiology and Physical Therapy, The George and MaryLou Boone Center for Parkinson's Disease Research, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Saisawang C, Priewkhiew S, Wongsantichon J, Reamtong O, Nopparat C, Mukda S, Ketterman AJ, Govitrapong P. Characterization of endotoxin free protein production of brain-derived neurotrophic factor (BDNF) for the study of Parkinson model in SH-SY5Y differentiated cells. Protein Expr Purif 2023; 203:106212. [PMID: 36481372 DOI: 10.1016/j.pep.2022.106212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Human neuronal cells are a more appropriate cell model for neurological disease studies such as Alzheimer and Parkinson's disease. SH-SY5Y neuroblastoma cells have been widely used for differentiation into a mature neuronal cell phenotype. The cellular differentiation process begins with retinoic acid incubation, followed by incubation with brain-derived neurotrophic factor (BDNF), a recombinant protein produced in E. coli cells. Endotoxin or lipopolysaccharide (LPS) is the major component of the outer membrane of bacterial cells that triggers the activation of pro-inflammatory cytokines and ultimately cell death. Consequently, any endotoxin contamination of the recombinant BDNF used for cell culture experiments would impact on data interpretation. Therefore, in this study, we expressed the BDNF recombinant protein in bacterial endotoxin-free cells that were engineered to modify the oligosaccharide chain of LPS rendering the LPS unable to trigger the immune response of human cells. The expression of DCX and MAP-2 in differentiated cells indicate that in-house and commercial BDNF are equally effective in inducing differentiation. This suggests that our in-house BDNF protein can be used to differentiate SH-SY5Y neuroblastoma cells without the need for an endotoxin removal step.
Collapse
Affiliation(s)
- Chonticha Saisawang
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand.
| | - Suphansa Priewkhiew
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Jantana Wongsantichon
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Chutikorn Nopparat
- Innovative Learning Center, Srinakharinwirot University, Sukhumvit 23, Bangkok, 10110, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, 25/25 Putthamonthol Road 4, Salaya, Nakhon Pathom, 73170, Thailand
| | - Albert J Ketterman
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| |
Collapse
|
3
|
Brahadeeswaran S, Lateef M, Calivarathan L. An Insight into the Molecular Mechanism of Mitochondrial Toxicant-induced Neuronal Apoptosis in Parkinson's Disease. Curr Mol Med 2023; 23:63-75. [PMID: 35125081 DOI: 10.2174/1566524022666220203163631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is one of the most common progressive neurodegenerative disorders affecting approximately 1% of the world's population at the age of 50 and above. Majority of PD cases are sporadic and show symptoms after the age of 60 and above. At that time, most of the dopaminergic neurons in the region of substantia nigra pars compacta have been degenerated. Although in past decades, discoveries of genetic mutations linked to PD have significantly impacted our current understanding of the pathogenesis of this devastating disorder, it is likely that the environment also plays a critical role in the etiology of sporadic PD. Recent epidemiological and experimental studies indicate that exposure to environmental agents, including a number of agricultural and industrial chemicals, may contribute to the pathogenesis of several neurodegenerative disorders, including PD. Furthermore, there is a strong correlation between mitochondrial dysfunction and several forms of neurodegenerative disorders, including Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS) and PD. Interestingly, substantia nigra of patients with PD has been shown to have a mild deficiency in mitochondrial respiratory electron transport chain NADH dehydrogenase (Complex I) activity. This review discusses the role of mitochondrial toxicants in the selective degeneration of dopaminergic neurons targeting the electron transport system that leads to Parkinsonism.
Collapse
Affiliation(s)
- Subhashini Brahadeeswaran
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur - 610005, India
| | - Mohammad Lateef
- Department of Animal Sciences, School of Life Sciences, Central University of Kashmir, Nunar Campus, Ganderbal - 191201, Jammu & Kashmir, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur - 610005, India
| |
Collapse
|
4
|
Choi JY, Yun J, Hwang CJ, Lee HP, Kim HD, Chun H, Park PH, Choi DY, Han SB, Hong JT. (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) Phenol Ameliorates MPTP-Induced Dopaminergic Neurodegeneration by Inhibiting the STAT3 Pathway. Int J Mol Sci 2019; 20:ijms20112632. [PMID: 31146332 PMCID: PMC6600543 DOI: 10.3390/ijms20112632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/08/2023] Open
Abstract
Neuroinflammation is implicated in dopaminergic neurodegeneration. We have previously demonstrated that (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP), a selective signal transducer and activator of transcription 3 (STAT3) inhibitor, has anti-inflammatory properties in several inflammatory disease models. We investigated whether MMPP could protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic cell loss and behavioral impairment. Imprinting control region (ICR) mice (8 weeks old, n = 10 per group) were administered MMPP (5 mg/kg) in drinking water for 1 month, and injected with MPTP (15 mg/kg, four times with 2 h intervals) during the last 7 days of treatment. MMPP decreased MPTP-induced behavioral impairments in rotarod, pole, and gait tests. We also showed that MMPP ameliorated dopamine depletion in the striatum and inflammatory marker elevation in primary cultured neurons by high-performance liquid chromatography and immunohistochemical analysis. Increased activation of STAT3, p38, and monoamine oxidase B (MAO-B) were observed in the substantia nigra and striatum after MPTP injection, effects that were attenuated by MMPP treatment. Furthermore, MMPP inhibited STAT3 activity and expression of neuroinflammatory proteins, including ionized calcium binding adaptor molecule 1 (Iba1), inducible nitric oxide synthase (iNOS), and glial fibrillary acidic protein (GFAP) in 1-methyl-4-phenylpyridinium (MPP+; 0.5 mM)-treated primary cultured cells. However, mitogen-activated protein kinase (MAPK) inhibitors augmented the activity of MMPP. Collectively, our results suggest that MMPP may be an anti-inflammatory agent that attenuates dopaminergic neurodegeneration and neuroinflammation through MAO-B and MAPK pathway-dependent inhibition of STAT3 activation.
Collapse
Affiliation(s)
- Ji Yeon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Cheongju 28160, Korea.
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Cheongju 28160, Korea.
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Cheongju 28160, Korea.
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Cheongju 28160, Korea.
| | - Hae Deun Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Cheongju 28160, Korea.
| | - Hyungok Chun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Cheongju 28160, Korea.
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, 280, Daehak-ro, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Dong Young Choi
- College of Pharmacy, Yeungnam University, 280, Daehak-ro, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Cheongju 28160, Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Cheongju 28160, Korea.
| |
Collapse
|
5
|
Peng S, Wang C, Ma J, Jiang K, Jiang Y, Gu X, Sun C. Achyranthes bidentata polypeptide protects dopaminergic neurons from apoptosis in Parkinson's disease models both in vitro and in vivo. Br J Pharmacol 2018; 175:631-643. [PMID: 29181847 DOI: 10.1111/bph.14110] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 11/14/2017] [Accepted: 11/19/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD) is a neurodegenerative disorder closely associated with dopaminergic neuron loss. It is well documented that Achyranthes bidentata polypeptides (ABPP) are potent neuroprotective agents in several kinds of neurons. Therefore, we proposed that ABPP might play a beneficial role against PD by protecting dopaminergic neurons from apoptosis. EXPERIMENTAL APPROACH SH-SY5Y cells and primary rat dopaminergic neurons were pretreated with ABPP fraction k (ABPPk), a purified fraction of ABPP, and then the cells were exposed to 1-methyl-4-phenylpyridinium iodide (MPP+ ) to induce apoptosis. Cell viability, LDH activity, a Tunel assay and protein levels of Bcl-2 and Bax were analysed. In an in vivo PD model induced by MPTP, ABPPk was intranasally delivered to mice. Behavioural tests, immunohistochemistry, immunostaining, Nissl staining, qRT-PCR and Western blot were employed to evaluate the potential effects of ABPPk on PD in mice. KEY RESULTS The application of ABPPk markedly enhanced the viability of SH-SY5Y cells and primary dopaminergic neurons treated with neurotoxic agent MPP+ . In an in vivo MPTP-induced PD model, ABPPk significantly improved behavioural performances and prevented tyrosine hydroxylase loss in the substantia nigra pars compacta and striatum. Furthermore, we showed that MPTP-induced astrocyte and microglia activation were largely attenuated by ABPPk, leading to low levels of neuroinflammation and a downregulation of the apoptotic signalling pathway. CONCLUSION AND IMPLICATIONS Taken together, our data show that ABPPk protects dopaminergic neurons from apoptosis, suggesting that ABPPk might be an effective intervention for treating the neuron loss associated with disorders such as PD.
Collapse
Affiliation(s)
- Su Peng
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jinyu Ma
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Ketao Jiang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yuhui Jiang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
6
|
Hwang CJ, Choi DY, Jung YY, Lee YJ, Yun JS, Oh KW, Han SB, Oh S, Park MH, Hong JT. Inhibition of p38 pathway-dependent MPTP-induced dopaminergic neurodegeneration in estrogen receptor alpha knockout mice. Horm Behav 2016; 80:19-29. [PMID: 26836768 DOI: 10.1016/j.yhbeh.2016.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 01/24/2016] [Accepted: 01/29/2016] [Indexed: 01/20/2023]
Abstract
Approximately, 7-10 million people in the world suffer from Parkinson's disease (PD). Recently, increasing evidence has suggested the protective effect of estrogens against nigrostriatal dopaminergic damage in PD. In this study, we investigated whether estrogen affects 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced behavioral impairment in estrogen receptor alpha (ERα)-deficient mice. MPTP (15mg/kg, four times with 1.5-h interval)-induced dopaminergic neurodegeneration was evaluated in ERα wild-type (WT) and knockout (KO) mice. Larger dopamine depletion, behavioral impairments (Rotarod test, Pole test, and Gait test), activation of microglia and astrocytes, and neuroinflammation after MPTP injection were observed in ERα KO mice compared to those in WT mice. Immunostaining for tyrosine hydroxylase (TH) after MPTP injection showed fewer TH-positive neurons in ERα KO mice than WT mice. Levels of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC, metabolite of dopamine) were also lowered in ERα KO mice after MPTP injection. Interestingly, a higher immunoreactivity for monoamine oxidase (MAO) B was found in the substantia nigra and striatum of ERα KO mice after MPTP injection. We also found an increased activation of p38 kinase (which positively regulates MAO B expression) in ERα KO mice. In vitro estrogen treatment inhibited neuroinflammation in 1-methyl-4-phenyl pyridium (MPP+)-treated cultured astrocyte cells; however, these inhibitory effects were removed by p38 inhibitor. These results indicate that ERα might be important for dopaminergic neuronal survival through inhibition of p38 pathway.
Collapse
Affiliation(s)
- Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 361-951, South Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280, Daehak-ro, Gyeongsan, Gyeongbuk 712-749, South Korea
| | - Yu Yeon Jung
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 361-951, South Korea
| | - Young-Jung Lee
- School of Equine Science, Cheju Halla University, 38 Halladaehak-ro, Jeju-si, Jeju Special Self-Governing Province 690-708, South Korea
| | - Jae Suk Yun
- Osong Health Technology Administration Complex, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Cheongju, Chungbuk 363-700, South Korea
| | - Ki-Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 361-951, South Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 361-951, South Korea
| | - Seikwan Oh
- Department of Neuroscience and Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-710, South Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 361-951, South Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 361-951, South Korea.
| |
Collapse
|
7
|
Chong CM, Ma D, Zhao C, Franklin RJM, Zhou ZY, Ai N, Li C, Yu H, Hou T, Sa F, Lee SMY. Discovery of a novel neuroprotectant, BHDPC, that protects against MPP+/MPTP-induced neuronal death in multiple experimental models. Free Radic Biol Med 2015; 89:1057-66. [PMID: 26415025 DOI: 10.1016/j.freeradbiomed.2015.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/21/2015] [Accepted: 08/13/2015] [Indexed: 11/22/2022]
Abstract
Progressive degeneration and death of neurons are main causes of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Although some current medicines may temporarily improve their symptoms, no treatments can slow or halt the progression of neuronal death. In this study, a pyrimidine derivative, benzyl 7-(4-hydroxy-3-methoxyphenyl)-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate (BHDPC), was found to attenuate dramatically the MPTP-induced death of dopaminergic neurons and improve behavior movement deficiency in zebrafish, supporting its potential neuroprotective activity in vivo. Further study in rat organotypic cerebellar cultures indicated that BHDPC was able to suppress MPP(+)-induced cell death of brain tissue slices ex vivo. The protective effect of BHDPC against MPP(+) toxicity was also effective in human neuroblastoma SH-SY5Y cells through restoring abnormal changes in mitochondrial membrane potential and numerous apoptotic regulators. Western blotting analysis indicated that BHDPC was able to activate PKA/CREB survival signaling and further up-regulate Bcl2 expression. However, BHDPC failed to suppress MPP(+)-induced cytotoxicity and the increase of caspase 3 activity in the presence of the PKA inhibitor H89. Taken together, these results suggest that BHDPC is a potential neuroprotectant with prosurvival effects in multiple models of neurodegenerative disease in vitro, ex vivo, and in vivo.
Collapse
Affiliation(s)
- Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dan Ma
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neuroscience, University of Cambridge, UK
| | - Chao Zhao
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neuroscience, University of Cambridge, UK
| | - Robin J M Franklin
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neuroscience, University of Cambridge, UK
| | - Zhong-Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Nana Ai
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chuwen Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Huidong Yu
- Rongene Pharma Co., Ltd. 3 Juquan Rd, International Business Incubator, Guangzhou Science Town, Guangdong, 510663, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fei Sa
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|