1
|
Latchoumane CFV, Chopra P, Sun L, Ahmed A, Palmieri F, Wu HF, Guerreso R, Thorne K, Zeltner N, Boons GJ, Karumbaiah L. Synthetic Heparan Sulfate Hydrogels Regulate Neurotrophic Factor Signaling and Neuronal Network Activity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28476-28488. [PMID: 35708492 PMCID: PMC10108098 DOI: 10.1021/acsami.2c01575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Three-dimensional (3D) synthetic heparan sulfate (HS) constructs possess promising attributes for neural tissue engineering applications. However, their sulfation-dependent ability to facilitate molecular recognition and cell signaling has not yet been investigated. We hypothesized that fully sulfated synthetic HS constructs (bearing compound 1) that are functionalized with neural adhesion peptides will enhance fibroblast growth factor-2 (FGF2) binding and complexation with FGF receptor-1 (FGFR1) to promote the proliferation and neuronal differentiation of human neural stem cells (hNSCs) when compared to constructs with unsulfated controls (bearing compound 2). We tested this hypothesis in vitro using 2D and 3D substrates consisting of different combinations of HS tetrasaccharides (compounds 3 and 4) and an engineered integrin-binding chimeric peptide (CP), which were assembled using strain-promoted alkyne-azide cycloaddition (SPAAC) chemistry. Results indicated that the adhesion of hNSCs increased significantly when cultured on 2D glass substrates functionalized with chimeric peptide. hNSCs encapsulated in 1-CP hydrogels and cultured in media containing the mitogen FGF2 exhibited significantly higher neuronal differentiation when compared to hNSCs in 2-CP hydrogels. These observations were corroborated by Western blot analysis, which indicated the enhanced binding and retention of both FGF2 and FGFR1 by 1 as well as downstream phosphorylation of extracellular signal-regulated kinases (ERK1/2) and enhanced proliferation of hNSCs. Lastly, calcium activity imaging revealed that both 1 and 2 hydrogels supported the neuronal growth and activity of pre-differentiated human prefrontal cortex neurons. Collectively, these results demonstrate that synthetic HS hydrogels can be tailored to regulate growth factor signaling and neuronal fate and activity.
Collapse
Affiliation(s)
- Charles-Francois V Latchoumane
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, United States
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Lifeng Sun
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3583, The Netherlands
| | - Aws Ahmed
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, United States
| | - Francesco Palmieri
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3583, The Netherlands
| | - Hsueh-Fu Wu
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Rebecca Guerreso
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, United States
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Kristen Thorne
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Nadja Zeltner
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
- Center for Molecular Medicine, University of Georgia, Athens, Georgia 30602, United States
- Division of Neuroscience, Biomedical and Translational Sciences Institute, University of Georgia, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3583, The Netherlands
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, United States
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia 30602, United States
- Division of Neuroscience, Biomedical and Translational Sciences Institute, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
Gritsun TA, le Feber J, Rutten WLC. Growth dynamics explain the development of spatiotemporal burst activity of young cultured neuronal networks in detail. PLoS One 2012; 7:e43352. [PMID: 23028450 PMCID: PMC3447003 DOI: 10.1371/journal.pone.0043352] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 07/23/2012] [Indexed: 11/28/2022] Open
Abstract
A typical property of isolated cultured neuronal networks of dissociated rat cortical cells is synchronized spiking, called bursting, starting about one week after plating, when the dissociated cells have sufficiently sent out their neurites and formed enough synaptic connections. This paper is the third in a series of three on simulation models of cultured networks. Our two previous studies [26], [27] have shown that random recurrent network activity models generate intra- and inter-bursting patterns similar to experimental data. The networks were noise or pacemaker-driven and had Izhikevich-neuronal elements with only short-term plastic (STP) synapses (so, no long-term potentiation, LTP, or depression, LTD, was included). However, elevated pre-phases (burst leaders) and after-phases of burst main shapes, that usually arise during the development of the network, were not yet simulated in sufficient detail. This lack of detail may be due to the fact that the random models completely missed network topology .and a growth model. Therefore, the present paper adds, for the first time, a growth model to the activity model, to give the network a time dependent topology and to explain burst shapes in more detail. Again, without LTP or LTD mechanisms. The integrated growth-activity model yielded realistic bursting patterns. The automatic adjustment of various mutually interdependent network parameters is one of the major advantages of our current approach. Spatio-temporal bursting activity was validated against experiment. Depending on network size, wave reverberation mechanisms were seen along the network boundaries, which may explain the generation of phases of elevated firing before and after the main phase of the burst shape.In summary, the results show that adding topology and growth explain burst shapes in great detail and suggest that young networks still lack/do not need LTP or LTD mechanisms.
Collapse
Affiliation(s)
- Taras A Gritsun
- Neural Engineering Department, Institute for Biomedical Engineering MIRA, University of Twente, Enschede, The Netherlands
| | | | | |
Collapse
|
3
|
Wiertz RWF, Marani E, Rutten WLC. Neural cell-cell and cell-substrate adhesion through N-cadherin, N-CAM and L1. J Neural Eng 2011; 8:046004. [PMID: 21628769 DOI: 10.1088/1741-2560/8/4/046004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study neural (N)-cadherin, neural cell adhesion molecule (N-CAM) and L1 proteins and their antibody equivalents were covalently immobilized on a polyethylene-imine (PEI)-coated glass surface to form neuron-adhesive coatings. Impedance sensing and (supplementary) image analysis were used to monitor the effects of these CAMs. Immobilization of high concentrations of both N-cadherin protein and antibody led to good adhesion of neurons to the modified surface, better than surfaces treated with 30.0 and 100.0 µg ml(-1) N-CAM protein and antibody. L1 antibody and protein coating revealed no significant effect on neuronal cell-substrate adhesion. In a second series of combinatorial experiments, we used the same antibodies and proteins as medium-additives to inhibit cell-cell adhesion between neurons. Adhesion of neurons cultured on N-cadherin protein or antibody-modified surfaces was lowered by the addition of a soluble N-cadherin protein and antibody to the culturing medium, accelerating neuronal aggregation. The presence of a soluble N-CAM antibody or protein had no effect on the adhesion of neuronal cells on a N-cadherin protein-modified surface. On a N-cadherin antibody-coated surface, the addition of a soluble N-CAM protein led to cell death of neurons after 48 h, while a N-CAM antibody had no effect. In the presence of a soluble N-cadherin protein and antibody the aggregation of neurons was inhibited, both on N-CAM protein and N-CAM antibody-modified surfaces. Neurons cultured on immobilized antibodies were less affected by the addition of soluble CAM blockers than neurons cultured on immobilized proteins, indicating that antibody-protein bonds are more stable compared to protein-protein bonds.
Collapse
Affiliation(s)
- R W F Wiertz
- Neural and Cellular Engineering, MIRA Institute, University of Twente, Enschede, The Netherlands.
| | | | | |
Collapse
|
5
|
Stieglitz T. Restoration of neurological functions by neuroprosthetic technologies: future prospects and trends towards micro-, nano-, and biohybrid systems. ACTA NEUROCHIRURGICA. SUPPLEMENT 2007; 97:435-42. [PMID: 17691407 DOI: 10.1007/978-3-211-33079-1_57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Today applications of neural prostheses that successfully help patients to increase their activities of daily living and participate in social life again are quite simple implants that yield definite tissue response and are well recognized as foreign body. Latest developments in genetic engineering, nanotechnologies and materials sciences have paved the way to new scenarios towards highly complex systems to interface the human nervous system. Combinations of neural cells with microimplants promise stable biohybrid interfaces. Nanotechnology opens the door to macromolecular landscapes on implants that mimic the biologic topology and surface interaction of biologic cells. Computer sciences dream of technical cognitive systems that act and react due to knowledge-based conclusion mechanisms to a changing or adaptive environment. Different sciences start to interact and discuss the synergies when methods and paradigms from biology, computer sciences and engineering, neurosciences, psychology will be combined. They envision the era of "converging technologies" to completely change the understanding of science and postulate a new vision of humans. In this chapter, these research lines will be discussed on some examples as well as the societal implications and ethical questions that arise from these new opportunities.
Collapse
Affiliation(s)
- T Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg-IMTEK, Freiburg, Germany.
| |
Collapse
|
6
|
Rutten WLC, Ruardij TG, Marani E, Roelofsen BH. Neural networks on chemically patterned electrode arrays: towards a cultured probe. ACTA NEUROCHIRURGICA. SUPPLEMENT 2007; 97:547-54. [PMID: 17691346 DOI: 10.1007/978-3-211-33081-4_63] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
One type of future, improved neural interfaces is the 'cultured probe'. It is a hybrid type of neural information transducer or prosthesis, for stimulation and/or recording of neural activity. It would consist of a micro-electrode array (MEA) on a planar substrate, each electrode being covered and surrounded by a local circularly confined network ('island') of cultured neurons. The main purpose of the local networks is that they act as bio-friendly intermediates for collateral sprouts from the in vivo system, thus allowing for an effective and selective neuron electrode interface. As a secondary purpose, one may envisage future information processing applications of these intermediary networks. In this chapter, first, progress is shown on how substrates can be chemically modified to confine developing networks, cultured from dissociated rat cortex cells, to 'islands' surrounding an electrode site. Additional coating of neurophobic, polyimide coated substrate by tri-block-copolymer coating enhances neurophilic-neurophobic adhesion contrast. Secondly, results are given on neuronal activity in patterned, unconnected and connected, circular 'island' networks. For connected islands, the larger the island diameter (50, 100 or 150 microm), the more spontaneous activity is seen. Also, activity may show a very high degree of synchronization between two islands. For unconnected islands, activity may start at 22 days in vitro (DIV), which is two weeks later than in unpatterned networks.
Collapse
Affiliation(s)
- W L C Rutten
- Biomedical Signals and Systems Department, Faculty of Electrical Engineering, Mathematics and Computer Science, Institute for Biomedical Technology, University of Twente, Enschede, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Prasad S, Zhang X, Yang M, Ni Y, Parpura V, Ozkan CS, Ozkan M. Separation of individual neurons using dielectrophoretic alternative current fields. J Neurosci Methods 2004; 135:79-88. [PMID: 15020092 DOI: 10.1016/j.jneumeth.2003.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 12/09/2003] [Accepted: 12/12/2003] [Indexed: 11/19/2022]
Abstract
Experimental investigations into the dynamics of neuronal networks are a fundamental step towards understanding how the nervous system works. Memory formation and development are associated with changes in the electrical activity of the neurons. To understand the changes in the electrical activity, it is essential to conduct in vitro studies on individual neurons. Hence, there is an enormous need to develop novel ways for isolating and localizing individual neurons. To this end, we designed and fabricated a 4x4 multiple microelectrode array system to spatially arrange neurons by generating dielectrophoretic traps using gradient alternating current (AC) fields. We characterized the electric field distribution inside our test platform by using three-dimensional finite element modeling (FEM) and estimated the location of neurons over the electrode array. As the first stage in forming a neuronal network, dielectrophoretic AC fields were employed to separate the neurons from the glial cells and to position individual neurons over single electrodes. The extracellular electrical activity from a single neuron was recorded. The frequency spectrum of the electrical activity was generated using fast Fourier transformation analysis (FFT) to determine the characteristic burst rates of individual neurons.
Collapse
Affiliation(s)
- Shalini Prasad
- Department of Electrical Engineering, University of California Riverside, A 220 Bourns Hall, Riverside, CA 92521, USA
| | | | | | | | | | | | | |
Collapse
|