1
|
Challenges and Opportunities in the Genetic Analysis of Inherited Retinal Dystrophies in Africa, a Literature Review. J Pers Med 2023; 13:jpm13020239. [PMID: 36836473 PMCID: PMC9964248 DOI: 10.3390/jpm13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are a global problem that is largely unaddressed, especially in Africa. Black indigenous Africans are rarely represented in research that develops genetic tests and genetic therapies for IRDs, yet their genomes are more diverse. The aim of this literature review is to synthesize information on the IRD genetic research conducted among indigenous black Africans to identify challenges and opportunities for progress. PubMed was searched to identify empirical publications reporting the genetic analysis of IRDs among indigenous Africans. A total of 11 articles were selected for the review. Based on the information in the articles, the main genetic testing methods in use include next-generation, whole exome, and Sanger sequencing. The main IRDs characterized by the genetic tests include retinitis pigmentosa, Leber Congenital Amaurosis, Stagardt disease, and cone dystrophy. Examples of implicated genes include MERTK, GUCY2D, ABCA4, and KCNV2 for the four IRDs, respectively. Research activities on the genetics of IRDs are generally scanty in Africa. Even in South Africa and North Africa where some research activities were noted, only a few indigenous black Africans were included in the study cohorts. There is an urgent need for genetic research on IRDs, especially in East, Central, and West Africa.
Collapse
|
2
|
Bouzidi A, Charoute H, Charif M, Amalou G, Kandil M, Barakat A, Lenaers G. Clinical and genetic spectrums of 413 North African families with inherited retinal dystrophies and optic neuropathies. Orphanet J Rare Dis 2022; 17:197. [PMID: 35551639 PMCID: PMC9097391 DOI: 10.1186/s13023-022-02340-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Inherited retinal dystrophies (IRD) and optic neuropathies (ION) are the two major causes world-wide of early visual impairment, frequently leading to legal blindness. These two groups of pathologies are highly heterogeneous and require combined clinical and molecular diagnoses to be securely identified. Exact epidemiological studies are lacking in North Africa, and genetic studies of IRD and ION individuals are often limited to case reports or to some families that migrated to the rest of the world. In order to improve the knowledge of their clinical and genetic spectrums in North Africa, we reviewed published data, to illustrate the most prevalent pathologies, genes and mutations encountered in this geographical region, extending from Morocco to Egypt, comprising 200 million inhabitants. Main body We compiled data from 413 families with IRD or ION together with their available molecular diagnosis. The proportion of IRD represents 82.8% of index cases, while ION accounted for 17.8%. Non-syndromic IRD were more frequent than syndromic ones, with photoreceptor alterations being the main cause of non-syndromic IRD, represented by retinitis pigmentosa, Leber congenital amaurosis, and cone-rod dystrophies, while ciliopathies constitute the major part of syndromic-IRD, in which the Usher and Bardet Biedl syndromes occupy 41.2% and 31.1%, respectively. We identified 71 ION families, 84.5% with a syndromic presentation, while surprisingly, non-syndromic ION are scarcely reported, with only 11 families with autosomal recessive optic atrophies related to OPA7 and OPA10 variants, or with the mitochondrial related Leber ION. Overall, consanguinity is a major cause of these diseases within North African countries, as 76.1% of IRD and 78.8% of ION investigated families were consanguineous, explaining the high rate of autosomal recessive inheritance pattern compared to the dominant one. In addition, we identified many founder mutations in small endogamous communities. Short conclusion As both IRD and ION diseases constitute a real public health burden, their under-diagnosis in North Africa due to the absence of physicians trained to the identification of inherited ophthalmologic presentations, together with the scarcity of tools for the molecular diagnosis represent major political, economic and health challenges for the future, to first establish accurate clinical diagnoses and then treat patients with the emergent therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02340-7.
Collapse
Affiliation(s)
- Aymane Bouzidi
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Majida Charif
- Genetics, and Immuno-Cell Therapy Team, Mohamed First University, Oujda, Morocco
| | - Ghita Amalou
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Mostafa Kandil
- Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France. .,Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
3
|
Choudhary M, Malek G. The Aryl Hydrocarbon Receptor: A Mediator and Potential Therapeutic Target for Ocular and Non-Ocular Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21186777. [PMID: 32947781 PMCID: PMC7555571 DOI: 10.3390/ijms21186777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which senses environmental, dietary or metabolic signals to mount a transcriptional response, vital in health and disease. As environmental stimuli and metabolic products have been shown to impact the central nervous system (CNS), a burgeoning area of research has been on the role of the AHR in ocular and non-ocular neurodegenerative diseases. Herein, we summarize our current knowledge, of AHR-controlled cellular processes and their impact on regulating pathobiology of select ocular and neurodegenerative diseases. We catalogue animal models generated to study the role of the AHR in tissue homeostasis and disease pathogenesis. Finally, we discuss the potential of targeting the AHR pathway as a therapeutic strategy, in the context of the maladies of the eye and brain.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, P.O. Box 3802, Durham, NC 27705, USA
- Correspondence: (M.C.); (G.M.)
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, P.O. Box 3802, Durham, NC 27705, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27705, USA
- Correspondence: (M.C.); (G.M.)
| |
Collapse
|
4
|
Stunkel ML, Brodie SE, Cideciyan AV, Pfeifer WL, Kennedy EL, Stone EM, Jacobson SG, Drack AV. Expanded Retinal Disease Spectrum Associated With Autosomal Recessive Mutations in GUCY2D. Am J Ophthalmol 2018; 190:58-68. [PMID: 29559409 DOI: 10.1016/j.ajo.2018.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 11/17/2022]
Abstract
PURPOSE GUCY2D has been associated with autosomal recessive Leber congenital amaurosis and autosomal dominant cone-rod dystrophy. This report expands the phenotype of autosomal recessive mutations to congenital night blindness, which may slowly progress to mild retinitis pigmentosa. DESIGN Retrospective case series. METHODS Multicenter study of 5 patients (3 male, 2 female). RESULTS All patients presented with night blindness since childhood. Age at referral was 9-45 years. Length of follow-up was 1-7 years. Best-corrected visual acuity at presentation ranged from 20/15 to 20/30 and at most recent visit averaged 20/25. No patient had nystagmus or high refractive error. ISCEV standard electroretinography revealed nondetectable dark-adapted dim flash responses and reduced amplitude but not electronegative dark-adapted bright flash responses with similar waveforms to the reduced-amplitude light-adapted single flash responses. The 30 Hz flicker responses were relatively preserved. Macular optical coherence tomography revealed normal lamination in 3 patients, with abnormalities in 2. Goldmann visual fields were normal at presentation in children but constricted in 1 adult. One child showed loss of midperipheral fields over time. Fundus appearance was normal in childhood; the adult had sparse bone spicule-like pigmentation. Full-field stimulus testing (FST) revealed markedly decreased retinal sensitivity to light. Dark adaptation demonstrated lack of rod-cone break. Two patients had tritanopia. All 5 had compound heterozygous mutations in GUCY2D. Three of the 5 patients harbor the Arg768Trp mutation reported in GUCY2D-associated Leber congenital amaurosis. CONCLUSIONS Autosomal recessive GUCY2D mutations may cause congenital night blindness with normal acuity and refraction, and unique electroretinography. Progression to mild retinitis pigmentosa may occur.
Collapse
Affiliation(s)
- Maria L Stunkel
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Scott E Brodie
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wanda L Pfeifer
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Elizabeth L Kennedy
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Edwin M Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arlene V Drack
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
5
|
Duda T, Pertzev A, Sharma RK. CO 2/bicarbonate modulates cone photoreceptor ROS-GC1 and restores its CORD6-linked catalytic activity. Mol Cell Biochem 2018; 448:91-105. [PMID: 29427171 DOI: 10.1007/s11010-018-3317-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/02/2018] [Indexed: 01/12/2023]
Abstract
This study with recombinant reconstituted system mimicking the cellular conditions of the native cones documents that photoreceptor ROS-GC1 is modulated by gaseous CO2. Mechanistically, CO2 is sensed by carbonic anhydrase (CAII), generates bicarbonate that, in turn, directly targets the core catalytic domain of ROS-GC1, and activates it to increased synthesis of cyclic GMP. This, then, functions as a second messenger for the cone phototransduction. The study demonstrates that, in contrast to the Ca2+-modulated phototransduction, the CO2 pathway is Ca2+-independent, yet is linked with it and synergizes it. It, through R787C mutation in the third heptad of the signal helix domain of ROS-GC1, affects cone-rod dystrophy, CORD6. CORD6 is caused firstly by lowered basal and GCAP1-dependent ROS-GC1 activity and secondly, by a shift in Ca2+ sensitivity of the ROS-GC1/GCAP1 complex that remains active in darkness. Remarkably, the first but not the second defect disappears with bicarbonate thus explaining the basis for CORD6 pathological severity. Because cones, but not rods, express CAII, the excessive synthesis of cyclic GMP would be most acute in cones.
Collapse
Affiliation(s)
- Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, USA
| | - Alexander Pertzev
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, USA
| | - Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, USA.
| |
Collapse
|
6
|
Das RG, Marinho FP, Iwabe S, Santana E, McDaid KS, Aguirre GD, Miyadera K. Variabilities in retinal function and structure in a canine model of cone-rod dystrophy associated with RPGRIP1 support multigenic etiology. Sci Rep 2017; 7:12823. [PMID: 28993665 PMCID: PMC5634483 DOI: 10.1038/s41598-017-13112-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
Defects in the cilia gene RPGRIP1 cause Leber congenital amaurosis and cone-rod dystrophy in humans. A form of canine cone-rod dystrophy (cord1) was originally associated with a homozygous insertion in RPGRIP1 (RPGRIP1ins/ins) as the primary disease locus while a homozygous deletion in MAP9 (MAP9del/del) was later identified as a modifier associated with the early onset form. However, we find further variability in cone electroretinograms (ERGs) ranging from normal to absent in an extended RPGRIP1ins/ins canine colony, irrespective of the MAP9 genotype. Ophthalmoscopically, cone ERGabsentRPGRIP1ins/ins eyes show discolouration of the tapetal fundus with varying onset and disease progression, while sd-OCT reveals atrophic changes. Despite marked changes in cone ERG and retinal morphology, photopic vision-guided behaviour is comparable between normal and cone ERGabsentRPGRIP1ins/ins littermates. Cone morphology of the dogs lacking cone ERG are truncated with shortened outer and inner segments. Immunohistochemically, cone ERGabsentRPGRIP1ins/ins retinas have extensive L/M-opsin mislocalization, lack CNGB3 labelling in the L/M-cones, and lack GC1 in all cones. Our results indicate that cord1 is a multigenic disease in which mutations in neither RPGRIP1 nor MAP9 alone lead to visual deficits, and additional gene(s) contribute to cone-specific functional and morphologic defects.
Collapse
Affiliation(s)
- Rueben G Das
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Felipe Pompeo Marinho
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simone Iwabe
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Evelyn Santana
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kendra Sierra McDaid
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gustavo D Aguirre
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Keiko Miyadera
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Jacobson SG, Cideciyan AV, Sumaroka A, Roman AJ, Charng J, Lu M, Choudhury S, Schwartz SB, Heon E, Fishman GA, Boye SE. Defining Outcomes for Clinical Trials of Leber Congenital Amaurosis Caused by GUCY2D Mutations. Am J Ophthalmol 2017; 177:44-57. [PMID: 28212877 DOI: 10.1016/j.ajo.2017.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 11/19/2022]
Abstract
PURPOSE To determine outcome measures for a clinical trial of Leber congenital amaurosis (LCA) associated with mutations in the GUCY2D gene. DESIGN Retrospective observational case series. METHODS Twenty-eight patients with GUCY2D-LCA (aged 2-59 years) were studied clinically and with chromatic full-field sensitivity testing (FST), optical coherence tomography (OCT), pupillometry, and the NEI Visual Function Questionnaire (VFQ). RESULTS FST permitted quantitation of cone and rod sensitivity in these patients with severe visual impairment. For most patients, the degree of rod and cone sensitivity losses showed a relationship, thereby providing an opportunity to divide patients into cohorts by severity of rod and cone dysfunction. OCT analyses indicated that retinal structure could be used not only as an objective safety measure but also as an exploratory efficacy outcome. A foveal bulge was not present in 67% of patients. The intensity of inner segment/outer segment (ellipsoid zone line) reflectivity was reduced significantly at the fovea and in the rod-dense superior retina. Based on OCT and FST parameters, most patients had dissociation of structure and function. Abnormal pupillometry sensitivity in the majority of GUCY2D-LCA patients provided another objective efficacy outcome. NEI VFQ scores showed a similar range of findings to those of other severe retinal diseases. CONCLUSION Conventional outcome measures, such as visual acuity and the NEI VFQ, will need to be complemented by methods more specific to this GUCY2D-LCA population. Any therapeutic strategy should determine if there is an effect on rod as well as cone function and structure. FST provides a photoreceptor-based subjective outcome; and OCT in 2 retinal regions, fovea and superior retina, can assess photoreceptor structure. A change in the relationship of structure and function away from baseline becomes evidence of efficacy.
Collapse
Affiliation(s)
- Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alejandro J Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason Charng
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Monica Lu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shreyasi Choudhury
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - Sharon B Schwartz
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, Program of Genetics and Genomic Biology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Gerald A Fishman
- Pangere Center for Hereditary Retinal Diseases, The Chicago Lighthouse, Chicago, Illinois
| | - Shannon E Boye
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
8
|
Alhaddad H, Gandolfi B, Grahn RA, Rah HC, Peterson CB, Maggs DJ, Good KL, Pedersen NC, Lyons LA. Genome-wide association and linkage analyses localize a progressive retinal atrophy locus in Persian cats. Mamm Genome 2014; 25:354-62. [PMID: 24777202 PMCID: PMC4105591 DOI: 10.1007/s00335-014-9517-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/03/2014] [Indexed: 12/03/2022]
Abstract
Hereditary eye diseases of animals serve as excellent models of human ocular disorders and assist in the development of gene and drug therapies for inherited forms of blindness. Several primary hereditary eye conditions affecting various ocular tissues and having different rates of progression have been documented in domestic cats. Gene therapy for canine retinopathies has been successful, thus the cat could be a gene therapy candidate for other forms of retinal degenerations. The current study investigates a hereditary, autosomal recessive, retinal degeneration specific to Persian cats. A multi-generational pedigree segregating for this progressive retinal atrophy was genotyped using a 63 K SNP array and analyzed via genome-wide linkage and association methods. A multi-point parametric linkage analysis localized the blindness phenotype to a ~1.75 Mb region with significant LOD scores (Z ≈ 14, θ = 0.00) on cat chromosome E1. Genome-wide TDT, sib-TDT, and case-control analyses also consistently supported significant association within the same region on chromosome E1, which is homologous to human chromosome 17. Using haplotype analysis, a ~1.3 Mb region was identified as highly associated for progressive retinal atrophy in Persian cats. Several candidate genes within the region are reasonable candidates as a potential causative gene and should be considered for molecular analyses.
Collapse
Affiliation(s)
- Hasan Alhaddad
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
- College of Science, Kuwait University, 13060 Safat, Kuwait
| | - Barbara Gandolfi
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, E109 Vet Med Building, 1600 E. Rollins St., Columbia, MO 65211 USA
| | - Robert A. Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
| | - Hyung-Chul Rah
- College of Medicine, Chungbuk National University, Chongju, Chungbuk Province South Korea
| | - Carlyn B. Peterson
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
| | - David J. Maggs
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
| | - Kathryn L. Good
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
| | - Niels C. Pedersen
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
| | - Leslie A. Lyons
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, E109 Vet Med Building, 1600 E. Rollins St., Columbia, MO 65211 USA
| |
Collapse
|
9
|
Peshenko IV, Olshevskaya EV, Yao S, Ezzeldin HH, Pittler SJ, Dizhoor AM. Activation of retinal guanylyl cyclase RetGC1 by GCAP1: stoichiometry of binding and effect of new LCA-related mutations. Biochemistry 2010; 49:709-17. [PMID: 20050595 DOI: 10.1021/bi901495y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retinal membrane guanylyl cyclase (RetGC) and Ca(2+)/Mg(2+) sensor proteins (GCAPs) control the recovery of the photoresponse in vertebrate photoreceptors, through their molecular interactions that remain rather poorly understood and controversial. Here we have determined the main RetGC isozyme (RetGC1):GCAP1 binding stoichiometry at saturation in cyto, using fluorescently labeled RetGC1 and GCAP1 coexpressed in HEK293 cells. In a striking manner, the equimolar binding of RetGC1 with GCAP1 in transfected HEK293 cells typical for wild-type RetGC1 was eliminated by a substitution, D639Y, in the kinase homology domain of RetGC1 found in a patient with a severe form of retinal dystrophy, Leber congenital amaurosis (LCA). A similar effect was observed with another LCA-related mutation, R768W, in the same domain of RetGC1. In contrast to the completely suppressed binding and activation of RetGC1 by Mg(2+)-liganded GCAP1, neither of these two mutations eliminated the GCAP1-independent activity of RetGC stimulated by Mn(2+). These results directly implicate the D639 (and possibly R768)-containing portion of the RetGC1 kinase homology domain in its primary recognition by the Mg(2+)-bound activator form of GCAP1.
Collapse
Affiliation(s)
- Igor V Peshenko
- Hafter Research Laboratories, Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027, USA
| | | | | | | | | | | |
Collapse
|
10
|
Dharmaraj S, Silva E, Pina AL, Li YY, Yang JM, Carter RC, Loyer M, El-Hilali H, Traboulsi E, Sundin O, Zhu D, Koenekoop RK, Maumenee IH. Mutational analysis and clinical correlation in Leber congenital amaurosis. Ophthalmic Genet 2009. [DOI: 10.1076/1381-6810(200009)2131-zft135] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Abstract
Almost 150 years ago, Theodor Leber described a severe form of vision loss at or near birth which was later given his name. During the century that followed this description, ophthalmologists dedicated efforts to give an accurate definition of the disease but patients were neglected because of the inability of physicians to provide them with treatment. In the 90s, at the time of the Golden Age of Linkage, the first LCA locus was mapped to a human chromosome and shortly after identified as the gene for guanylate cyclase. This discovery was the spark that made the disease emerge from the shadows as illustrated by the flood of LCA genes identified in the following ten-year period. During the same time period, the clinical variability of the disease was rediscovered and an unexpected physiopathological heterogeneity demonstrated. In the beginning of the third millennium, LCA came out definitively from the tunnel to shine under the bright spotlights with the RPE65 gene therapy trial that succeeded to restore vision in a dog model and opened the door to gene therapy trials in humans.
Collapse
Affiliation(s)
- Josseline Kaplan
- Research Unit in Genetics and Epigenetics of Metabolic, Neuro-sensorial and Developmental Diseases, INSERM U781 & Paris Descartes University, Paris, France.
| |
Collapse
|
12
|
Hanein S, Perrault I, Gerber S, Tanguy G, Hamel C, Dufier JL, Rozet JM, Kaplan J. [Leber congenital amaurosis: comprehensive survey of genetic heterogeneity. A clinical definition update]. J Fr Ophtalmol 2005; 28:98-105. [PMID: 15767905 DOI: 10.1016/s0181-5512(05)81031-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Leber congenital amaurosis (LCA) is the earliest and most severe form of all inherited retinal dystrophies, responsible for congenital blindness. Disease-associated mutations have been hitherto reported in seven genes. These genes are all expressed preferentially in the photoreceptor cells or the retinal pigment epithelium, but they are involved in strikingly different physiologic pathways, resulting in an unforeseeable pathophysiologic variety. This broad genetic and physiologic heterogeneity, which could greatly increase in the coming years, hinders molecular diagnosis in LCA patients. Genotyping is, however, required to establish genetically defined subgroups of patients ready for therapy. Here we report a comprehensive mutational analysis of all the known genes in 179 unrelated LCA patients, including 52 familial and 127 sporadic (27/127 consanguineous) cases. Mutations were identified in 47.5% of patients. GUCY2D accounted for by far the largest part of the LCA cases in our series (21.2%), followed by CRB1 (10%), RPE65 (6.1%), RPGRIP1 (4.5%), AIPL1 (3.4%), TULP1 (1.7%) and CRX (0.6%). The clinical history of all patients with mutations was carefully revisited in the search for phenotype variations. Genotype-phenotype correlations were found that made it possible to divide patients into two main groups. The first one includes patients whose symptoms fit the traditional definition of LCA, i.e., congenital or very early cone-rod dystrophy, while the second group gathers patients affected with severe yet progressive rod-cone dystrophy. In addition, objective ophthalmologic data subdivided each group into two subtypes. Based on these findings, we have drawn decisional flowcharts directing the molecular analysis of LCA genes in a given case. These flowcharts will hopefully lighten the onerous task of genotyping new patients, but only if the most precise clinical history since birth is available.
Collapse
Affiliation(s)
- S Hanein
- Unité de Recherche sur les Handicaps Génétiques de l'Enfant, INSERM U 393, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Galvin JA, Fishman GA, Stone EM, Koenekoop RK. EVALUATION OF GENOTYPE–PHENOTYPE ASSOCIATIONS IN LEBER CONGENITAL AMAUROSIS. Retina 2005; 25:919-29. [PMID: 16205573 DOI: 10.1097/00006982-200510000-00016] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To describe the clinical phenotypes associated with various genotypes known to cause Leber congenital amaurosis (LCA). METHODS One hundred ten LCA patients were screened for various probable disease-causing gene sequence variations. Those patients with a probable disease-causing sequence variation in one of six genotypes were recalled for a follow-up examination. Evaluations included assessment of visual acuity, slit-lamp biomicroscopy, and dilated fundus examination. When possible, Goldmann perimetry was also performed. RESULTS Of the 37 LCA patients with suspected disease-causing sequence variations, 7 had an AIPL1 variation, 8, a CRB1 variation, 2, a CRX variation, 4, a GUCY2D variation, 11, an RPE65 variation, and 5, an RPGRIP1 variation. Across the 6 genotypes, we observed a wide range of visual acuities from 20/40 to no light perception. The widest range of vision was noted for patients with a CRB1 or RPE65 variation. Younger patients with an AIPL1 or RPGRIP1 variation were found to have severely reduced vision. Drusenlike deposits were more selectively observed in patients with mutations in the AIPL1, CRB1, RPE65, and RPGRIP1 genes, whereas focal regions of peripheral chorioretinal atrophy were observed only in patients with AIPL1 or RPE65 variations. Neurologic, intellectual, or psychomotor developmental delay was noted in 8.1% of our cohort. CONCLUSIONS There was considerable overlap of phenotypic expression in six genetic subtypes in our LCA cohort. However, phenotypic trends were noted in our patients' visual acuities and posterior segment findings within genotypes. These findings have practical value for genetic screening strategies for LCA patients based upon phenotype as well as for counseling patients on their visual prognosis.
Collapse
Affiliation(s)
- Jennifer A Galvin
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
14
|
Prenatal Human Ocular Degeneration Occurs in Leber’s Congenital Amaurosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003. [DOI: 10.1007/978-1-4615-0067-4_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Gerber S, Perrault I, Hanein S, Shalev S, Zlotogora J, Barbet F, Ducroq D, Dufier J, Munnich A, Rozet J, Kaplan J. A novel mutation disrupting the cytoplasmic domain of CRB1 in a large consanguineous family of Palestinian origin affected with Leber congenital amaurosis. Ophthalmic Genet 2002; 23:225-35. [PMID: 12567265 DOI: 10.1076/opge.23.4.225.13879] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Leber congenital amaurosis (LCA) is a genetically heterogeneous autosomal recessive condition responsible for congenital blindness or greatly impaired vision since birth. Eight LCA loci have been mapped, but only six out of eight genes have been hitherto identified. A genome-wide screen for homozygosity was conducted in a large consanguineous family originating from Palestine, for which no mutation was found in any of the six known LCA genes and that excluded the LCA3 and LCA5 loci. Evidence for homozygosity, however, was found in all affected patients of the family on chromosome 1q31, a region in which the human homologue of the Drosophila melanogaster crumbs gene (CRB1) has been mapped. Consequently, we proposed a hypothesis that the disease-causing mutation in this family might lie in an unexplored region of this LCA gene. As a matter of fact, while no mutation was found in any of the 11 CRB1 exons originally reported, we identified a 10-bp (del 4121-4130) deletion segregating with the disease in a later reported 12th exon lying in the 3' end of the gene. Interestingly, this deletion disrupts an amino acid sequence that was shown to be crucial for the function of the protein in the Drosophila counterpart (CRB).
Collapse
Affiliation(s)
- Sylvie Gerber
- Unité de Recherches sur les Handicaps Génétiques de l'Enfant, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Porto FBO, Perrault I, Hicks D, Rozet JM, Hanoteau N, Hanein S, Kaplan J, Sahel JA. Prenatal human ocular degeneration occurs in Leber's congenital amaurosis (LCA2). J Gene Med 2002; 4:390-6. [PMID: 12124981 DOI: 10.1002/jgm.278] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Leber's congenital amaurosis (LCA) encompasses the most precocious and severe forms of inherited retinal dystrophy, displaying very significant visual handicap at or soon after birth. Among the currently identified mutations, alterations in the gene coding for retinal pigment epithelium 65-kDa protein (RPE65) lead to LCA2. Existing animal models for LCA2 (RPE65(-/-) null mice and naturally occurring RPE65(-/-) Briard dogs) exhibit near normal retinal histology at birth, although no recordable photofunction can be detected. Structural degeneration in both cases occurs with delayed onset, cone death generally preceding that of rods. METHODS We obtained retinal tissue from a voluntarily aborted embryo of an LCA2 carrier in order to compare histopathology and immunohistochemistry with age-matched normal foetal retina. RESULTS Compared to normal retinas, affected retina displayed cell loss and thinning of the outer nuclear (photoreceptor) layer, decreased immunoreactivity for key phototransduction proteins, and aberrant synaptic and inner retinal organisation. The gene mutation abolished detectable expression of RPE65 within the retinal pigment epithelium (RPE) of affected eyes, and ultrastructural examination revealed the presence of lipid and vesicular inclusions not seen in normal RPE. In addition, mutant eyes demonstrated thickening, detachment and collagen fibril disorganisation in the underlying Bruch's membrane, and the choroid was distended and abnormally vascularised, in comparison with controls. CONCLUSIONS Such data contrast with the late-onset ocular changes observed in animal models, indicating caution should be exercised when inferring human retinal pathophysiology from information based on other species.
Collapse
Affiliation(s)
- Fernanda B O Porto
- Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, INSERM Université Louis Pasteur EMI 9918, Clinique Médicale A, CHUR Strasbourg, BP. 426, 1 Place de l'Hôpital, 67091 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Omran H, Sasmaz GÜ, Häffner K, Volz A, Olbrich H, Melkaoui R, Otto E, Wienker TF, Korinthenberg R, Brandis M, Antignac C, Hildebrandt F. Identification of a gene locus for Senior-Løken syndrome in the region of the nephronophthisis type 3 gene. J Am Soc Nephrol 2002; 13:75-79. [PMID: 11752023 DOI: 10.1681/asn.v13175] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Senior-Løken syndrome is an autosomal recessive disease with the main features of nephronophthisis (NPH) and Leber congenital amaurosis. The gene for adolescent nephronophthisis (NPHP3) was recently localized to chromosome 3q21-q22. The hypothesis was tested that Senior-Løken syndrome (SLS) might localize to the same region by studying a kindred of German ancestry with extended consanguinity and typical findings of SLS. Twenty highly polymorphic markers located in the vicinity of the NPHP3 genetic region were tested. Haplotype analysis revealed homozygosity by descent in affected individuals, and linkage analysis yielded a parametric maximum multipoint logarithm of likelihood of odds (LOD) score of 3.14, thus identifying the first locus for SLS. The SLS1 locus is flanked by D3S1587 and D3S621 and contains a 14-cM interval that contains the whole critical NPHP3 region. Three additional families with SLS were studied, and evidence for genetic heterogeneity in one of them was found. Localization of a SLS locus to the region of NPHP3 opens the possibilities of both diseases arising by mutations within the same pleiotropic gene or two adjacent genes.
Collapse
Affiliation(s)
- Heymut Omran
- *University Children's Hospital Freiburg and Institute for Medical Biometry, Informatics and Epidemology, University of Bonn, Bonn, Germany; Inserm U423, Hôpital Necker-Enfants Malades, Paris, France
| | - GÜrsel Sasmaz
- *University Children's Hospital Freiburg and Institute for Medical Biometry, Informatics and Epidemology, University of Bonn, Bonn, Germany; Inserm U423, Hôpital Necker-Enfants Malades, Paris, France
| | - Karsten Häffner
- *University Children's Hospital Freiburg and Institute for Medical Biometry, Informatics and Epidemology, University of Bonn, Bonn, Germany; Inserm U423, Hôpital Necker-Enfants Malades, Paris, France
| | - Andreas Volz
- *University Children's Hospital Freiburg and Institute for Medical Biometry, Informatics and Epidemology, University of Bonn, Bonn, Germany; Inserm U423, Hôpital Necker-Enfants Malades, Paris, France
| | - Heike Olbrich
- *University Children's Hospital Freiburg and Institute for Medical Biometry, Informatics and Epidemology, University of Bonn, Bonn, Germany; Inserm U423, Hôpital Necker-Enfants Malades, Paris, France
| | - Rachid Melkaoui
- *University Children's Hospital Freiburg and Institute for Medical Biometry, Informatics and Epidemology, University of Bonn, Bonn, Germany; Inserm U423, Hôpital Necker-Enfants Malades, Paris, France
| | - Edgar Otto
- *University Children's Hospital Freiburg and Institute for Medical Biometry, Informatics and Epidemology, University of Bonn, Bonn, Germany; Inserm U423, Hôpital Necker-Enfants Malades, Paris, France
| | - Thomas F Wienker
- *University Children's Hospital Freiburg and Institute for Medical Biometry, Informatics and Epidemology, University of Bonn, Bonn, Germany; Inserm U423, Hôpital Necker-Enfants Malades, Paris, France
| | - Rudolf Korinthenberg
- *University Children's Hospital Freiburg and Institute for Medical Biometry, Informatics and Epidemology, University of Bonn, Bonn, Germany; Inserm U423, Hôpital Necker-Enfants Malades, Paris, France
| | - Matthias Brandis
- *University Children's Hospital Freiburg and Institute for Medical Biometry, Informatics and Epidemology, University of Bonn, Bonn, Germany; Inserm U423, Hôpital Necker-Enfants Malades, Paris, France
| | - Corinne Antignac
- *University Children's Hospital Freiburg and Institute for Medical Biometry, Informatics and Epidemology, University of Bonn, Bonn, Germany; Inserm U423, Hôpital Necker-Enfants Malades, Paris, France
| | - Friedhelm Hildebrandt
- *University Children's Hospital Freiburg and Institute for Medical Biometry, Informatics and Epidemology, University of Bonn, Bonn, Germany; Inserm U423, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
18
|
Gerber S, Perrault I, Hanein S, Barbet F, Ducroq D, Ghazi I, Martin-Coignard D, Leowski C, Homfray T, Dufier JL, Munnich A, Kaplan J, Rozet JM. Complete exon-intron structure of the RPGR-interacting protein (RPGRIP1) gene allows the identification of mutations underlying Leber congenital amaurosis. Eur J Hum Genet 2001; 9:561-71. [PMID: 11528500 DOI: 10.1038/sj.ejhg.5200689] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2001] [Revised: 05/17/2001] [Accepted: 05/22/2001] [Indexed: 11/09/2022] Open
Abstract
Leber congenital amaurosis (LCA) is a genetically heterogeneous autosomal recessive condition responsible for congenital blindness or greatly impaired vision since birth. So far, six LCA loci have been mapped but only 4 out of 6 genes have been identified. A genome-wide screen for homozygosity was conducted in seven consanguineous families unlinked to any of the six LCA loci. Evidence for homozygosity was found in two of these seven families at the 14q11 chromosomal region. Two retinal specific candidate genes were known to map to this region, namely the neural retina leucine zipper (NRL) and the retinitis pigmentosa GTPase regulator interacting protein (RPGRIP1). No mutation of the NRL gene was found in any of the two families. Thus, we determined the complete exon-intron structure of the RPGRIP1 gene. RPGRIP1 encompasses 24 coding exons, nine of which are first described here with their corresponding exon-intron boundaries. The screening of the gene in the two families consistent with linkage to chromosome 14q11 allowed the identification of a homozygous null mutation and a homozygous missense mutation, respectively. Further screening of LCA patients unlinked to any of the four already identified LCA genes (n=86) identified seven additional mutations in six of them. In total, eight distinct mutations (5 out of 8 truncating) in 8/93 patients were found. So far this gene accounts for eight out of 142 LCA cases in our series (5.6%).
Collapse
Affiliation(s)
- S Gerber
- Unité de Recherches sur les Handicaps Génétiques de l'Enfant, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dharmaraj S, Li Y, Robitaille JM, Silva E, Zhu D, Mitchell TN, Maltby LP, Baffoe-Bonnie AB, Maumenee IH. A novel locus for Leber congenital amaurosis maps to chromosome 6q. Am J Hum Genet 2000; 66:319-26. [PMID: 10631161 PMCID: PMC1288337 DOI: 10.1086/302719] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Sharola Dharmaraj
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Yingying Li
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Johane M. Robitaille
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Eduardo Silva
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Danping Zhu
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Thomas N. Mitchell
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Lara P. Maltby
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Agnes B. Baffoe-Bonnie
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Irene H. Maumenee
- The Johns Hopkins Center for Hereditary Eye Diseases, The Wilmer Eye Institute, The Johns Hopkins Medical Institutions, Baltimore; IWK-Grace Health Centre, Dalhousie University, Halifax; Women's and Children's Health, North Carolina Department of Health and Human Services, Wilmington; Fox Chase Cancer Center, Philadelphia; and Division of Statistical Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda
| |
Collapse
|
20
|
|
21
|
Perrault I, Rozet JM, Gerber S, Ghazi I, Leowski C, Ducroq D, Souied E, Dufier JL, Munnich A, Kaplan J. Leber congenital amaurosis. Mol Genet Metab 1999; 68:200-8. [PMID: 10527670 DOI: 10.1006/mgme.1999.2906] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Leber's congenital amaurosis (LCA) is the earliest and most severe form of all inherited retinal dystrophies responsible for congenital blindness. Genetic heterogeneity of LCA has been suspected since the report by Waardenburg of normal children born to affected parents. In 1995, we localized the first disease causing gene, LCA1, to chromosome 17p13 and confirmed the genetic heterogeneity. In 1996, we ascribed LCA1 to mutations in the photoreceptor-specific guanylate cyclase gene (retGC1). RetGC1 is an essential protein implicated in the phototransduction cascade, especially in the recovery of the dark state after the excitation process of photoreceptor cells by light stimulation. In 1997, mutations in a second gene were reported in LCA, the RPE65 gene, which is the first specific retinal pigment epithelium gene. The protein RPE65 is implicated in the metabolism of vitamin A, the precursor of the photoexcitable retinal pigment (rhodopsin). Finally, a third gene, CRX, implicated in photoreceptor development, has been suspected of causing a few cases of LCA. Taken together, these three genes account for only 27% of LCA cases in our series. The three genes encode proteins that are involved in completely different physiopathologic pathways. Based on these striking differences of physiopathologic processes, we reexamined all clinical physiopathological discrepancies and the results strongly suggested that retGC1 gene mutations are responsible for congenital stationary severe cone-rod dystrophy, while RPE65 gene mutations are responsible for congenital severe but progressive rod-cone dystrophy. It is of tremendous importance to confirm and to refine these genotype-phenotype correlations on a large scale in order to anticipate the final outcome in a blind infant, on the one hand, and to further guide genetic studies in older patients on the other hand.
Collapse
Affiliation(s)
- I Perrault
- Service de Génétique Médicale et Unité de Recherches sur les Handicaps Génétiques de l'Enfant, INSERM U-393, Hôpital des Enfants-Malades, 149 rue de Sèvres, Paris Cedex 15, 75743, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Perrault I, Rozet JM, Ghazi I, Leowski C, Bonnemaison M, Gerber S, Ducroq D, Cabot A, Souied E, Dufier JL, Munnich A, Kaplan J. Different functional outcome of RetGC1 and RPE65 gene mutations in Leber congenital amaurosis. Am J Hum Genet 1999; 64:1225-8. [PMID: 10090910 PMCID: PMC1377849 DOI: 10.1086/302335] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
23
|
Hughes AE, Lotery AJ, Silvestri G. Fine localisation of the gene for central areolar choroidal dystrophy on chromosome 17p. J Med Genet 1998; 35:770-2. [PMID: 9733038 PMCID: PMC1051432 DOI: 10.1136/jmg.35.9.770] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Central areolar choroidal dystrophy (CACD) is a retinal disease which causes progressive profound loss of vision in patients during middle age. The disease is inherited as an autosomal dominant trait and shows genetic heterogeneity. Mutations in the peripherin-RDS gene on chromosome 6 have been reported in affected members of families transmitting the disease. A new locus at chromosome 17p13 was identified recently by a genome wide linkage search in members of a large Northern Irish family. We now report the refinement of the critical region for this gene to an interval of approximately 5 cM flanked by polymorphic markers D17S1810 and CHLC GATA7B03.
Collapse
Affiliation(s)
- A E Hughes
- Division of Molecular Medicine, The Queen's University of Belfast, UK
| | | | | |
Collapse
|
24
|
Yano S, Oda K, Watanabe Y, Watanabe S, Matsuishi T, Kojima K, Abe T, Kato H. Two sib cases of Leber congenital amaurosis with cerebellar vermis hypoplasia and multiple systemic anomalies. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1096-8628(19980806)78:5<429::aid-ajmg7>3.0.co;2-g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Farber DB, Danciger M. Identification of genes causing photoreceptor degenerations leading to blindness. Curr Opin Neurobiol 1997; 7:666-73. [PMID: 9384551 DOI: 10.1016/s0959-4388(97)80087-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
At least 15 genes with defects responsible for various forms of inherited retinal disease involving photoreceptor loss have been identified over the past eight years. Several of the genes were first considered as candidates for study because of their involvement in murine retinal disease, others because of their chromosomal loci. In two cases, novel genes were uncovered by positional cloning. Based on reports of disease loci for which no gene has yet been found, more than twice as many genes remain to be identified in this genetically heterogeneous group of diseases.
Collapse
Affiliation(s)
- D B Farber
- Jules Stein Eye Institute, University of California at Los Angeles, School of Medicine, Los Angeles, California 90024-7008, USA.
| | | |
Collapse
|
26
|
Fornerod M, van Baal S, Valentine V, Shapiro DN, Grosveld G. Chromosomal localization of genes encoding CAN/Nup214-interacting proteins--human CRM1 localizes to 2p16, whereas Nup88 localizes to 17p13 and is physically linked to SF2p32. Genomics 1997; 42:538-40. [PMID: 9205132 DOI: 10.1006/geno.1997.4767] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M Fornerod
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
27
|
Perrault I, Rozet JM, Calvas P, Gerber S, Camuzat A, Dollfus H, Châtelin S, Souied E, Ghazi I, Leowski C, Bonnemaison M, Le Paslier D, Frézal J, Dufier JL, Pittler S, Munnich A, Kaplan J. Retinal-specific guanylate cyclase gene mutations in Leber's congenital amaurosis. Nat Genet 1996; 14:461-4. [PMID: 8944027 DOI: 10.1038/ng1296-461] [Citation(s) in RCA: 314] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Leber's congenital amaurosis (LCA, MIM 204,000), the earliest and most severe form of inherited retinopathy, accounts for at least 5% of all inherited retinal dystrophies. This autosomal recessive condition is usually recognized at birth or during the first months of life in an infant with total blindness or greatly impaired vision, normal fundus and extinguished electroretinogram (ERG). Nystagmus (pendular type) and characteristic eye poking are frequently observed in the first months of life (digito-ocular sign of Franceschetti). Hypermetropia and keratoconus frequently develop in the course of the disease. The observation by Waardenburg of normal children born to affected parents supports the genetic heterogeneity of LCA. Until now, however, little was known about the pathophysiology of the disease, but LCA is usually regarded as the consequence of either impaired development of photoreceptors or extremely early degeneration of cells that have developed normally. We have recently mapped a gene for LCA to chromosome 17p13.1 (LCA1) by homozygosity mapping in consanguineous families of North African origin and provided evidence of genetic heterogeneity in our sample, as LCA1 accounted for 8/15 LCA families in our series. Here, we report two missense mutations (F589S) and two frameshift mutations (nt 460 del C, nt 693 del C) of the retinal guanylate cyclase (RETGC, GDB symbol GUC2D) gene in four unrelated LCA1 probands of North African ancestry and ascribe LCA1 to an impaired production of cGMP in the retina, with permanent closure of cGMP-gated cation channels.
Collapse
Affiliation(s)
- I Perrault
- Unité de Recherches sur les Handicaps Génétiques de l'Enfant, INSERM U-393, Hôpital des Enfants-malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|