1
|
Sargent M, Wark AW, Day S, Buis A. An ex vivo animal model to study the effect of transverse mechanical loading on skeletal muscle. Commun Biol 2024; 7:302. [PMID: 38461200 PMCID: PMC10925026 DOI: 10.1038/s42003-024-05994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
In many populations like wheelchair and prosthetic users, the soft tissue is subject to excessive or repetitive loading, making it prone to Deep Tissue Injury (DTI). To study the skeletal muscle response to physical stress, numerous in vitro and in vivo models exist. Yet, accuracy, variability, and ethical considerations pose significant trade-offs. Here, we present an ex vivo approach to address these limitations and offer additional quantitative information on cellular damage. In this study, skeletal muscle tissue from Sprague Dawley rats was isolated and transversely loaded. Histological analysis and fluorescence staining demonstrated that the setup was suitable to keep the tissue alive throughout the experimental procedure. Mechanically induced cell damage was readily distinguishable through morphological changes and uptake of a membrane impermeable dye. Our comparably simple experimental setup can be adapted to different loading conditions and tissues to assess the cell response to mechanical loading in future studies.
Collapse
Affiliation(s)
- Marisa Sargent
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Alastair W Wark
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, United Kingdom
| | - Sarah Day
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Arjan Buis
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom.
| |
Collapse
|
2
|
Tescher AN, Berns KS, Call E, Koehler PJ, Salzwedel KW, McCormack HE, Myers LA, Hagen CE, Mandrekar J, Russon M. Use of a Shear Reduction Surface for Prehospital Transport: A Randomized Crossover Study. Adv Skin Wound Care 2024; 37:155-161. [PMID: 37590441 DOI: 10.1097/asw.0000000000000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
OBJECTIVE To compare the effectiveness of an antishear mattress overlay (ASMO) with a standard ambulance stretcher surface in reducing pressure and shear and increasing patient comfort. METHODS In this randomized, crossover design, adults in three body mass index categories served as their own controls. Pressure/shear sensors were applied to the sacrum, ischial tuberosity, and heel. The stretcher was placed in sequential 0°, 15°, and 30° head-of-bed elevations with and without an ASMO. The ambulance traveled a closed course, achieving 30 mph, with five stops at each head-of-bed elevation. Participants rated discomfort after each series of five runs. RESULTS Thirty individuals participated. Each participant had 30 runs (15 with an ASMO, 15 without), for a total of 900 trial runs. The peak-to-peak shear difference between support surfaces was -0.03 N, indicating that after adjustment for elevation, sensor location, and body mass index, peak shear levels at baseline (starting pause) were 0.03 N lower for the ASMO than for the standard surface ( P = .02). The peak-to-peak pressure difference between surfaces was -0.16 mm Hg, indicating that prerun peak-to-peak pressure was 0.16 mm Hg lower with the ASMO versus standard surface ( P = .002). The heel received the most pressure and shear. Discomfort score distributions differed between surfaces at 0° ( P = .004) and 30° ( P = .01); the overall score across all elevations was significantly higher with the standard surface than with the ASMO ( P = .046). CONCLUSIONS The ASMO reduced shear, pressure, and discomfort. During transport, the ambulance team should provide additional heel offloading.
Collapse
Affiliation(s)
- Ann N Tescher
- At Mayo Clinic, Rochester, Minnesota, USA, Ann N. Tescher, PhD, APRN, CNS, and Kathleen S. Berns, APRN, CNS, MS, are Advanced Practice RN Clinical Nurse Specialists. Evan Call, MS, CSM (NRM), is Lab Manager, EC Service Corp, Centerville, Utah. Also at Mayo Clinic, Patrick J. Koehler, LRT, RRT-ACCS, and Kip W. Salzwedel, RRT, LRT, are Respiratory Therapists; Heather E. McCormack, DScPT, PT, CWS, is Assistant Professor in Physical Therapy (retired); Lucas A. Myers, BS, is Senior Business Analyst; Clinton E. Hagen, MS, is Principal Data Scientist, and Jay Mandrekar, PhD, is Professor of Biostatistics and Neurology, Department of Quantitative Health Sciences. Marianne Russon, BS, is Project Manager, EC Service Corp. Acknowledgments: Mayo Clinic does not endorse specific products or services included in this article. This paper was presented as a poster at the Minnesota Affiliate National Association of Clinical Nurse Specialists Fall Conference and Annual Meeting, October 28, 2016, Minneapolis, Minnesota; at the National Pressure Ulcer Advisory Panel Research Symposium, November 9, 2016, Las Vegas, Nevada; at the Mayo Clinic Quality Conference, March 15, 2017, Rochester, Minnesota; at the Wound, Ostomy, and Continence Nurses Society's 49th Annual Conference, May 19-23, 2017, Salt Lake City, Utah; at the Wound Care From Innovations to Clinical Trials 2017 Conference, June 20-21, 2017, Manchester, England; and at the National Association of Emergency Medicine Services Physicians Scientific Assembly, January 11-13, 2018, San Diego, California. Portions of this article have been published in abstract form: J Wound Ostomy Continence Nurs 2017;44:R03; Prehosp Emerg Care 2018;22(1):137. The authors thank Scott P. Zietlow, MD, past chair (emeritus), Mayo Clinic Ambulance Board of Directors for support of this study. Kathleen Louden, ELS, senior scientific/medical editor, Mayo Clinic, substantively edited the manuscript. The Scientific Publications staff, Mayo Clinic, provided proofreading, administrative, and clerical support. The authors have disclosed no financial relationships related to this article. Submitted April 7, 2023; accepted in revised form July 26, 2023; published ahead of print August 22, 2023
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Savin N, Erofeev A, Gorelkin P. Analytical Models for Measuring the Mechanical Properties of Yeast. Cells 2023; 12:1946. [PMID: 37566025 PMCID: PMC10417110 DOI: 10.3390/cells12151946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
The mechanical properties of yeast play an important role in many biological processes, such as cell division and growth, maintenance of internal pressure, and biofilm formation. In addition, the mechanical properties of cells can indicate the degree of damage caused by antifungal drugs, as the mechanical parameters of healthy and damaged cells are different. Over the past decades, atomic force microscopy (AFM) and micromanipulation have become the most widely used methods for evaluating the mechanical characteristics of microorganisms. In this case, the reliability of such an estimate depends on the choice of mathematical model. This review presents various analytical models developed in recent years for studying the mechanical properties of both cells and their individual structures. The main provisions of the applied approaches are described along with their limitations and advantages. Attention is paid to the innovative method of low-invasive nanomechanical mapping with scanning ion-conductance microscopy (SICM), which is currently starting to be successfully used in the discovery of novel drugs acting on the yeast cell wall and plasma membrane.
Collapse
Affiliation(s)
- Nikita Savin
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia;
| | - Alexander Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia;
| | | |
Collapse
|
4
|
Alvarado-Hidalgo F, Ramírez-Sánchez K, Starbird-Perez R. Smart Porous Multi-Stimulus Polysaccharide-Based Biomaterials for Tissue Engineering. Molecules 2020; 25:E5286. [PMID: 33202707 PMCID: PMC7697121 DOI: 10.3390/molecules25225286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023] Open
Abstract
Recently, tissue engineering and regenerative medicine studies have evaluated smart biomaterials as implantable scaffolds and their interaction with cells for biomedical applications. Porous materials have been used in tissue engineering as synthetic extracellular matrices, promoting the attachment and migration of host cells to induce the in vitro regeneration of different tissues. Biomimetic 3D scaffold systems allow control over biophysical and biochemical cues, modulating the extracellular environment through mechanical, electrical, and biochemical stimulation of cells, driving their molecular reprogramming. In this review, first we outline the main advantages of using polysaccharides as raw materials for porous scaffolds, as well as the most common processing pathways to obtain the adequate textural properties, allowing the integration and attachment of cells. The second approach focuses on the tunable characteristics of the synthetic matrix, emphasizing the effect of their mechanical properties and the modification with conducting polymers in the cell response. The use and influence of polysaccharide-based porous materials as drug delivery systems for biochemical stimulation of cells is also described. Overall, engineered biomaterials are proposed as an effective strategy to improve in vitro tissue regeneration and future research directions of modified polysaccharide-based materials in the biomedical field are suggested.
Collapse
Affiliation(s)
- Fernando Alvarado-Hidalgo
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Master Program in Medical Devices Engineering, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Karla Ramírez-Sánchez
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, CIET, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Ricardo Starbird-Perez
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| |
Collapse
|
5
|
Budri AMV, Moore Z, Patton D, O'Connor T, Nugent L, Avsar P. Sub-epidermal moisture measurement: an evidence-based approach to the assessment for early evidence of pressure ulcer presence. Int Wound J 2020; 17:1615-1623. [PMID: 32683789 DOI: 10.1111/iwj.13437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/27/2022] Open
Abstract
This paper aims to discuss the literature pertaining to early pressure-shear induced tissue damage detection, with emphasis on sub-epidermal moisture measurement (SEM). The current method for pressure detection is visual skin assessment (VSA); however, this method is fraught with challenges. Advances in early detection of pressure ulcers are reported in the literature and mainly involve measuring inflammation markers on weight-bearing anatomical areas in order to capture the first signs of tissue damage. One novel technique currently in use is SEM measurement. This biophysical marker is the product of plasma that leaks as a response to local inflammation arising due to pressure-shear induced damage over bony prominences. The early detection of tissue damage is beneficial in two different ways. First, it enables early intervention when the damage is still microscopic and reversible and, therefore, has the potential to prevent further aggravation of healthy surrounding tissue. This arises by avoiding the causation of the problem and stopping the knock-on effect of inflammation, especially when the rapid pressure ulceration pathway of deformation is in place. Second, when the slow ischaemic-reperfusion related mechanism is undergoing, cell death can be avoided when the problem is identified before the cell reaches the "death threshold," completely averting a pressure ulcer.
Collapse
Affiliation(s)
| | - Zena Moore
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Declan Patton
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tom O'Connor
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Linda Nugent
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Pinar Avsar
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
6
|
Finite element analysis reveals an important role for cell morphology in response to mechanical compression. Biomech Model Mechanobiol 2019; 19:1155-1164. [PMID: 31838604 DOI: 10.1007/s10237-019-01276-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022]
Abstract
Mechanical loading naturally controls cell phenotype, development, motility and various other biological functions; however, prolonged or substantial loading can cause cell damage and eventual death. Loading-induced mechanobiological and mechanostructural responses of different cell types affect their morphology and the internal architecture and the mechanics of the cellular components. Using single, mesenchymal stem cells, we have developed a cell-specific three-dimensional finite-element model; cell models were developed from phase-contrast microscopy images. This allowed us to evaluate the mechanostructural response of the naturally occurring variety of cell morphologies to increase sustained compressive loading. We focus on the morphology of the cytoplasm and the nucleus, as the main mechanically responsive elements, and evaluate formation of tensional strains and area changes in cells undergoing increasing uniaxial compressions. Here, we study mesenchymal stem cells as a model, due to their important role in tissue engineering and regenerative medicine; the method and findings are, however, applicable to any cell type. We observe variability in the cell responses to compression, which correlate directly with the morphology of the cells. Specifically, in cells with or without elongated protrusions (i.e., lamellipodia) tensional strains were, respectively, distributed mostly in the thin extensions or concentrated around the stiff nucleus. Thus, through cell-specific computational modeling of mechanical loading we have identified an underlying cause for stiffening (by actin recruitment) along the length of lamellipodia as well as a role for cell morphology in inducing cell-to-cell variability in mechanostructural response to loading.
Collapse
|
7
|
Villone MM, Nunes JK, Li Y, Stone HA, Maffettone PL. Design of a microfluidic device for the measurement of the elastic modulus of deformable particles. SOFT MATTER 2019; 15:880-889. [PMID: 30601566 DOI: 10.1039/c8sm02272k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A microfluidic technique recently proposed in the literature to measure the interfacial tension between a liquid droplet and an immiscible suspending liquid [Hudson et al., Appl. Phys. Lett., 2005, 87, 081905], [Cabral and Hudson, Lab Chip, 2006, 6, 427] is suitably adapted to the characterization of the elastic modulus of soft particles in a continuous-flow process. A microfluidic device consisting of a cylindrical pipe with a reduction in cross-section is designed, and the deformation and velocity of incompressible elastic particles suspended in a Newtonian liquid are tracked as they move along the centerline through the constriction. Kinematic and shape information is exploited to calculate the particle's elastic modulus by means of the theory of elastic particle deformation in extensional flow. The approach is validated for different orders of magnitude of the elastic capillary number through experiments and numerical simulations.
Collapse
Affiliation(s)
- Massimiliano M Villone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, P. le Tecchio 80, 80125 Napoli, Italy.
| | | | | | | | | |
Collapse
|
8
|
Boers HE, Haroon M, Le Grand F, Bakker AD, Klein‐Nulend J, Jaspers RT. ---Mechanosensitivity of aged muscle stem cells. J Orthop Res 2018; 36:632-641. [PMID: 29094772 PMCID: PMC5888196 DOI: 10.1002/jor.23797] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/13/2017] [Indexed: 02/04/2023]
Abstract
During aging, skeletal muscle tissue progressively declines in mass, strength, and regenerative capacity. Decreased muscle stem cell (MuSC) number and impaired function might underlie the aging-related muscle wasting and impaired regenerative capacity. As yet, the search for factors that regulate MuSC fate and function has revealed several biochemical factors within the MuSC niche that may be responsible for the decline in MuSC regenerative capacity. This decline cannot be explained by environmental factors solely, as the MuSC potential to regenerate muscle tissue is not reversed by changing the biochemical MuSC niche composition. Here we discuss the likeliness that during physical exercise, MuSCs within their niche are subjected to mechanical loads, in particular pressure and shear stress, as well as associated deformations. We postulate that these physical cues are involved in the activation and differentiation of MuSCs as these cells contain several transmembrane sensor proteins that have been shown to be mechanosensitive in other cell types, that is, endothelial cells and osteoprogenitors. We will specifically address age-related changes in mechanosensing in MuSCs and their niche. Insight in the physical cues applied to the MuSCs in vivo, and how these cues affect MuSC fate and function, helps to develop new therapeutic interventions to counterbalance age-related muscle loss. This requires an approach combining two- and three-dimensional live cell imaging of MuSCs within contracting muscle tissue, mathematical finite element modeling, and cell biology. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 36:632-641, 2018.
Collapse
Affiliation(s)
- Heleen E. Boers
- Laboratory for MyologyFaculty of Behavioural and Movement SciencesVrije Universiteit AmsterdamAmsterdam Movement SciencesDe Boelelaan 11081081 HZ AmsterdamThe Netherlands
| | - Mohammad Haroon
- Laboratory for MyologyFaculty of Behavioural and Movement SciencesVrije Universiteit AmsterdamAmsterdam Movement SciencesDe Boelelaan 11081081 HZ AmsterdamThe Netherlands
| | - Fabien Le Grand
- Sorbonne UniversitésUPMC Univ Paris 06INSERM UMRS974CNRS FRE3617Center for Research in Myology75013 ParisFrance
| | - Astrid D. Bakker
- Department of Oral Cell BiologyAcademic Centre for Dentistry AmsterdamUniversity of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Jenneke Klein‐Nulend
- Department of Oral Cell BiologyAcademic Centre for Dentistry AmsterdamUniversity of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Richard T. Jaspers
- Laboratory for MyologyFaculty of Behavioural and Movement SciencesVrije Universiteit AmsterdamAmsterdam Movement SciencesDe Boelelaan 11081081 HZ AmsterdamThe Netherlands
| |
Collapse
|
9
|
Parallelized cytoindentation using convex micropatterned surfaces. Biotechniques 2016; 61:73-82. [PMID: 27528072 DOI: 10.2144/000114436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/18/2016] [Indexed: 11/23/2022] Open
Abstract
Here we present a high-throughput, parallelized cytoindentor for local compression of live cells. The cytoindentor uses convex lens-induced confinement (CLiC) to indent micrometer-sized areas in single cells and/or populations of cells with submicron precision. This is accomplished using micropatterned poly(dimethylsiloxane) (PDMS) films that are adhered to a convex lens to create arrays of extrusions referred to here as "posts." These posts caused local deformation of subcellular regions without any evidence of cell lysis upon CLiC indentation. Our micropost arrays were also functionalized with glycoproteins, such as fibronectin, to both pull and compress cells under customized confinement geometries. Measurements of Chinese hamster ovary (CHO-K1) cell migration trajectories and oxidative stress showed that the CLiC device did not damage or significantly stress the cells. Our novel tool opens a new area of investigation for visualizing mechanobiology and mechanochemistry within living cells, and the high-throughput nature of the technique will streamline investigations as current tools for mechanically probing material properties and molecular dynamics within cells, such as traditional cytoindentors and atomic force microscopy (AFM), are typically restricted to single-cell manipulation.
Collapse
|
10
|
Pajic-Lijakovic I. Micro-environmentally restricted cell growth dynamics - modeling considerations. Crit Rev Biotechnol 2014; 35:402-9. [PMID: 24641483 DOI: 10.3109/07388551.2014.889078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Various modeling approaches have been applied to describe the rearrangement of immobilized cell clusters within the extracellular matrix. The cell rearrangement has been related with the micro-environmental restrictions to cell growth. Herein, an attempt is made to discuss and connect various modeling approaches on various time scales which have been proposed in the literature in order to shed further light to this complex phenomenon which induces micro-environmental restrictions to cell growth. The rearrangement is driven by internal stress generated within the cluster. The internal stress represents a consequence of the matrix rheological response to cell expansion. The rearrangement includes the interplay between the processes of: (1) single and collective cell migrations, (2) cell deformation and orientation, (3) decrease of cell-to-cell separation distances and (4) cell growth. It has been considered on two time scales: a short time scale (i.e. the rearrangement time) and a long time scale (i.e. the growing time). The results indicate that short and long times cell rearrangement induces energy dissipation. The dissipation provokes biological responses of cells which cause the resistance effects to cell growth. Deeper insight in the anomalous nature of the energy dissipation would be useful for understanding the biological mechanisms which causes the resistance effects to cell growth.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- a Department of Chemical Engineering, Faculty of Technology and Metallurgy , Belgrade University , Belgrade , Serbia
| |
Collapse
|
11
|
Fisher JK, Kleckner N. Magnetic force micropiston: an integrated force/microfluidic device for the application of compressive forces in a confined environment. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:023704. [PMID: 24593368 PMCID: PMC3970836 DOI: 10.1063/1.4864085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/20/2014] [Indexed: 05/24/2023]
Abstract
Cellular biology takes place inside confining spaces. For example, bacteria grow in crevices, red blood cells squeeze through capillaries, and chromosomes replicate inside the nucleus. Frequently, the extent of this confinement varies. Bacteria grow longer and divide, red blood cells move through smaller and smaller passages as they travel to capillary beds, and replication doubles the amount of DNA inside the nucleus. This increase in confinement, either due to a decrease in the available space or an increase in the amount of material contained in a constant volume, has the potential to squeeze and stress objects in ways that may lead to changes in morphology, dynamics, and ultimately biological function. Here, we describe a device developed to probe the interplay between confinement and the mechanical properties of cells and cellular structures, and forces that arise due to changes in a structure's state. In this system, the manipulation of a magnetic bead exerts a compressive force upon a target contained in the confining space of a microfluidic channel. This magnetic force microfluidic piston is constructed in such a way that we can measure (a) target compliance and changes in compliance as induced by changes in buffer, extract, or biochemical composition, (b) target expansion force generated by changes in the same parameters, and (c) the effects of compression stress on a target's structure and function. Beyond these issues, our system has general applicability to a variety of questions requiring the combination of mechanical forces, confinement, and optical imaging.
Collapse
Affiliation(s)
- J K Fisher
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02188, USA
| | - N Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02188, USA
| |
Collapse
|
12
|
Krause M, Te Riet J, Wolf K. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy. Phys Biol 2013; 10:065002. [PMID: 24304807 DOI: 10.1088/1478-3975/10/6/065002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness together with simultaneous visualization of the cantilever-nucleus contact and the fate of the cell. Using cantilevers functionalized with either tips or beads and spring constants ranging from 0.06-10 N m(-1), force-deformation curves were generated from nuclear positions of adherent HT1080 fibrosarcoma cell populations at unchallenged integrity, and a nuclear stiffness range of 0.2 to 2.5 kPa was identified depending on cantilever type and the use of extended fitting models. Chromatin-decondensating agent trichostatin A (TSA) induced nuclear softening of up to 50%, demonstrating the feasibility of our approach. Finally, using a stiff bead-functionalized cantilever pushing at maximal system-intrinsic force, the nucleus was deformed to 20% of its original height which after TSA treatment reduced further to 5% remaining height confirming chromatin organization as an important determinant of nuclear stiffness. Thus, combined AFM-confocal microscopy is a feasible approach to study nuclear compressibility to complement concepts of limiting nuclear deformation in cancer cell invasion and other biological processes.
Collapse
Affiliation(s)
- Marina Krause
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
13
|
Solis LR, Liggins AB, Seres P, Uwiera RRE, Poppe NR, Pehowich E, Thompson RB, Mushahwar VK. Distribution of Internal Strains Around Bony Prominences in Pigs. Ann Biomed Eng 2012; 40:1721-39. [DOI: 10.1007/s10439-012-0539-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
|
14
|
Stenson JD, Hartley P, Wang C, Thomas CR. Determining the mechanical properties of yeast cell walls. Biotechnol Prog 2011; 27:505-12. [PMID: 21485033 DOI: 10.1002/btpr.554] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 11/02/2010] [Indexed: 11/06/2022]
Abstract
The intrinsic cell wall mechanical properties of Baker's yeast (Saccharomyces cerevisiae) cells were determined. Force-deformation data from compression of individual cells up to failure were recorded, and these data were fitted by an analytical model to extract the elastic modulus of the cell wall and the initial stretch ratio of the cell. The cell wall was assumed to be homogeneous, isotropic, and incompressible. A linear elastic constitutive equation was assumed based on Hencky strains to accommodate the large stretches of the cell wall. Because of the high compression speed, water loss during compression could be assumed to be negligible. It was then possible to treat the initial stretch ratio and elastic modulus as adjustable parameters within the analytical model. As the experimental data fitted numerical simulations well up to the point of cell rupture, it was also possible to extract cell wall failure criteria. The mean cell wall properties for resuspended dried Baker's yeast were as follows: elastic modulus 185 ± 15 MPa, initial stretch ratio 1.039 ± 0.006, circumferential stress at failure 115 ± 5 MPa, circumferential strain at failure 0.46 ± 0.03, and strain energy per unit volume at failure 30 ± 3 MPa. Data on yeast cells obtained by this method and model should be useful in the design and optimization of cell disruption equipment for yeast cell processing.
Collapse
Affiliation(s)
- John D Stenson
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
15
|
Olesen CG, de Zee M, Rasmussen J. Missing links in pressure ulcer research—An interdisciplinary overview. J Appl Physiol (1985) 2010; 108:1458-64. [DOI: 10.1152/japplphysiol.01006.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This paper surveys the literature on the etiology of sitting-acquired deep tissue pressure ulcers from three different viewpoints. The first viewpoint is identification of risk factors related to seated posture. The second viewpoint focuses on the external factors that can cause necrosis to human cells, such as ischemia and compression. The third viewpoint focuses on computational models of the human buttocks to calculate where stress concentrations occur. Each viewpoint contributes to the understanding of pressure ulcer etiology, but in combination they cover the multiple scales from cell to organism, and the combined insight can provide important information toward a full understanding of the phenomenon. It is concluded that the following three questions must be answered by future research. 1) Does compressive stress alone explain cell death, or is it necessary to consider the full three-dimensional strain tensor in the tissues? 2) How does the change in posture-induced load applied on the human buttocks change the stress distribution in the deep muscle tissue? 3) Is it possible to optimize the seated posture in a computational model to reduce the deeper tissue loads?
Collapse
Affiliation(s)
- Christian Gammelgaard Olesen
- Departments of 1Mechanical and Manufacturing Engineering and
- Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mark de Zee
- Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John Rasmussen
- Departments of 1Mechanical and Manufacturing Engineering and
| |
Collapse
|
16
|
Lombardi ML, Lammerding J. Altered Mechanical Properties of the Nucleus in Disease. Methods Cell Biol 2010; 98:121-41. [DOI: 10.1016/s0091-679x(10)98006-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Microfabricated Devices for Studying Cellular Biomechanics and Mechanobiology. CELLULAR AND BIOMOLECULAR MECHANICS AND MECHANOBIOLOGY 2010. [DOI: 10.1007/8415_2010_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Thomas CR, Stenson JD, Zhang Z. Measuring the mechanical properties of single microbial cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 124:83-98. [PMID: 21072700 DOI: 10.1007/10_2010_84] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Many cells are considered to be susceptible to mechanical forces or "shear" in bioprocessing, leading to undesirable cell breakage or adverse metabolic effects. However, cell breakage is the aim of some processing operations, in particular high-pressure homogenisation and other cell disruption methods. In either case, the exact mechanisms of damage or disruption are obscure. One reason for this is that the mechanical properties of the cells are generally unknown, which makes investigation or prediction of the damage difficult. There are several methods for measuring the mechanical properties of single microbial cells, and these are reviewed briefly. In the context of bioprocessing research, a powerful method of characterising the mechanical properties of single cells is compression testing using micromanipulation, supplemented by mathematical modelling of the cell behaviour in compression. The method and associated modelling are described, with results mainly from studies on yeast cells. Continuing difficulties in making a priori predictions of cell breakage in processing are identified. In future, compression testing by micromanipulation might also be used in conjunction with other single cell analytical techniques to study mechanisms controlling form, growth and division of cells and their consequential mechanical behaviour. It ought to be possible to relate cell wall mechanics to cell wall composition and structure, and eventually to underlying gene expression, allowing much greater understanding and control of the cell mechanical properties.
Collapse
Affiliation(s)
- Colin R Thomas
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK,
| | | | | |
Collapse
|
19
|
|
20
|
|
21
|
Linder-Ganz E, Gefen A. The effects of pressure and shear on capillary closure in the microstructure of skeletal muscles. Ann Biomed Eng 2007; 35:2095-107. [PMID: 17899378 DOI: 10.1007/s10439-007-9384-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 09/13/2007] [Indexed: 10/22/2022]
Abstract
Deep tissue injury (DTI) is a severe pressure ulcer, which initiates in muscle tissue under a bony prominence, and progresses outwards. It is associated with mechanical pressure and shear that may cause capillaries to collapse and thus, induce ischemic conditions. Recently, some investigators stipulated that ischemia alone cannot explain the etiology of DTI, and other mechanisms, particularly excessive cellular deformations may be involved. The goal of this study was to evaluate the functioning of capillaries in loaded muscle tissue, using animal and finite element (FE) models. Pressures of 12, 37, and 78 kPa were applied directly to one gracilis muscle of 11 rats for 2 h. Temperatures of the loaded and contralateral muscles were recorded with time using infrared thermography (IRT) as a measure of the ischemic level. In addition, a non-linear large deformation muscle-fascicle-level FE model was developed and subjected to pressures of 12-120 kPa without and with simultaneous shear strain of up to 8%. For each simulation case, the accumulative percentage of open capillary cross-sectional area and the number of completely closed capillaries were determined. After 2 h, temperature of the loaded muscles was 2.4 +/- 0.3 degrees C (mean +/- standard deviation) lower than that of the unloaded contralateral limbs (mean of plateau temperature values across all pressure groups). Temperature of the loaded muscles dropped within 10 min but then remained stable and significantly higher than room temperature for at least 30 additional minutes in all pressure groups, indicating that limbs were not completely ischemic within the first 40 min of the trials. Our FE model showed that in response to pressures of 12-120 kPa and no shear, the accumulative percentage of open capillary cross-sectional area decreased by up to 71%. When shear strains were added, the open capillary cross-sectional area decreased more rapidly, but even for maximal loading, only 46% of the capillaries were completely closed. Taken together, the animal and FE model results suggest that acute ischemia does not develop in skeletal muscles under physiological load levels within a timeframe of 40 min. Since there is evidence that DTI develops within a shorter time, ischemia is unlikely to be the only factor causing DTI.
Collapse
Affiliation(s)
- Eran Linder-Ganz
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | | |
Collapse
|
22
|
Panos GZ, Xirouchakis E, Tzias V, Charatsis G, Bliziotis IA, Doulgeroglou V, Margetis N, Falagas ME. Helicobacter pylori infection in symptomatic HIV-seropositive and -seronegative patients: a case-control study. AIDS Res Hum Retroviruses 2007; 23:709-12. [PMID: 17530997 DOI: 10.1089/aid.2006.0174] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We conducted a case-control study in a Greek hospital to evaluate the prevalence and morbidity of Helicobacter pylori in HIV-infected patients. HIV-seropositive patients were infected by H. pylori less often than HIV-seronegative controls [12/58 (20.7%) versus 38/58 (65.5%),p < 0.001]. The mean CD4 count was lower for H. pylori-negative than H. pylori-positive HIV-infected patients (p < 0.007). Also, among HIV patients, prior use of antibiotics or proton pump inhibitors was more common in those without H. pylori infection, however, this difference was not statistically significant (p = 0.06). The grading of the density of H. pylori infection and the grading of the histomorphological findings according to the Sydney classification were similar between HIV-seropositive and -seronegative patients with H. pylori infection.
Collapse
|
23
|
Ramunas J, Illman M, Kam A, Farn K, Kelly L, Morshead CM, Jervis EJ. True monolayer cell culture in a confined 3D microenvironment enables lineage informatics. Cytometry A 2007; 69:1202-11. [PMID: 17066473 DOI: 10.1002/cyto.a.20341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND There is a need for methods to (1) track cells continuously to generate lineage trees; (2) culture cells in in vivo-like microenvironments; and (3) measure many biological parameters simultaneously and noninvasively. Herein, we present a novel imaging culture chamber that facilitates "lineage informatics," a lineage-centric approach to cytomics. METHODS We cultured cells in a confined monolayer using a novel "gap chamber" that produces images with confocal-like qualities using standard DIC microscopy. Lineage and other cytometric data were semiautomatically extracted from image sets of neural stem and progenitor cells and analyzed using lineage informatics. RESULTS Cells imaged in the chamber every 3 min could be tracked for at least 6 generations allowing for the construction of extensive lineage trees with multiparameter data sets at hundreds of time points for each cell. The lineage informatics approach reveals relationships between lineage, phenotype, and microenvironment. Mass transfer characteristics and 3D geometry make the chamber more in vivo-like than traditional culture systems. CONCLUSIONS The gap chamber allows cells to be cultured, imaged, and tracked in true monolayers permitting detailed informatics analysis of cell lineage, phenotype, and fate determinants. The chamber is biomimetic and straightforward to build and use, and should find many applications in long-term cell imaging.
Collapse
Affiliation(s)
- John Ramunas
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Stekelenburg A, Strijkers GJ, Parusel H, Bader DL, Nicolay K, Oomens CW. Role of ischemia and deformation in the onset of compression-induced deep tissue injury: MRI-based studies in a rat model. J Appl Physiol (1985) 2007; 102:2002-11. [PMID: 17255369 DOI: 10.1152/japplphysiol.01115.2006] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A rat model was used to distinguish between the different factors that contribute to muscle tissue damage related to deep pressure ulcers that develop after compressive loading. The separate and combined effects of ischemia and deformation were studied. Loading was applied to the hindlimb of rats for 2 h. Muscle tissue was examined using MR imaging (MRI) and histology. An MR-compatible loading device allowed simultaneous loading and measurement of tissue status. Two separate loading protocols incorporated uniaxial loading, resulting in tissue compression and ischemic loading. Uniaxial loading was applied to the tibialis anterior by means of an indenter, and ischemic loading was accomplished with an inflatable tourniquet. Deformation of the muscle tissue during uniaxial loading was measured using MR tagging. Compression of the tissues for 2 h led to increased T2 values, which were correlated to necrotic regions in the tibialis anterior. Perfusion measurements, by means of contrast-enhanced MRI, indicated a large ischemic region during indentation. Pure ischemic loading for 2 h led to reversible tissue changes. From the MR-tagging experiments, local strain fields were calculated. A 4.5-mm deformation, corresponding to a surface pressure of 150 kPa, resulted in maximum shear strain up to 1.0. There was a good correlation between the location of damage and the location of high shear strain. It was concluded that the large deformations, in conjunction with ischemia, provided the main trigger for irreversible muscle damage.
Collapse
Affiliation(s)
- Anke Stekelenburg
- Dept. of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
The role of the nucleus in protecting and sequestering the genome is intrinsically mechanical, and disease-causing structural mutants in lamins and other components underscore this function. Various methods to measure nuclear mechanics, isolated or in situ, are outlined here in some detail.
Collapse
Affiliation(s)
- Jan Lammerding
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital,/Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
26
|
Peeters EAG, Oomens CWJ, Bouten CVC, Bader DL, Baaijens FPT. Mechanical and failure properties of single attached cells under compression. J Biomech 2005; 38:1685-93. [PMID: 15958226 DOI: 10.1016/j.jbiomech.2004.07.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 07/13/2004] [Indexed: 10/26/2022]
Abstract
Eukaryotic cells are continuously subjected to mechanical forces under normal physiological conditions. These forces and associated cellular deformations induce a variety of biological processes. The degree of deformation depends on the mechanical properties of the cell. As most cells are anchorage dependent for normal functioning, it is important to study the mechanical properties of cells in their attached configuration. The goal of the present study was to obtain the mechanical and failure properties of attached cells. Individual, attached C2C12 mouse myoblasts were subjected to unconfined compression experiments using a recently developed loading device. The device allows global compression of the cell until cell rupture and simultaneously measures the associated forces. Cell bursting was characterized by a typical reduction in the force, referred to as the bursting force. Mean bursting forces were calculated as 8.7+/-2.5 microN at an axial strain of 72+/-4%. Visualization of the cell using confocal microscopy revealed that cell bursting was preceded by the formation of bulges at the cell membrane, which eventually led to rupturing of the cell membrane. Finite element calculations were performed to simulate the obtained force-deformation curves. A finite element mesh was built for each cell to account for its specific geometrical features. Using an axisymmetric approximation of the cell geometry, and a Neo-Hookean constitutive model, excellent agreement between predicted and measured force-deformation curves was obtained, yielding an average Young's modulus of 1.14+/-0.32 kPa.
Collapse
Affiliation(s)
- E A G Peeters
- Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Peeters EAG, Oomens CWJ, Bouten CVC, Bader DL, Baaijens FPT. Viscoelastic properties of single attached cells under compression. J Biomech Eng 2005; 127:237-43. [PMID: 15971701 DOI: 10.1115/1.1865198] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The viscoelastic properties of single, attached C2C12 myoblasts were measured using a recently developed cell loading device. The device allows global compression of an attached cell, while simultaneously measuring the associated forces. The viscoelastic properties were examined by performing a series of dynamic experiments over two frequency decades (0.1-10 Hz) and at a range of axial strains (approximately 10-40%). Confocal laser scanning microscopy was used to visualize the cell during these experiments. To analyze the experimentally obtained force-deformation curves, a nonlinear viscoelastic model was developed. The nonlinear viscoelastic model was able to describe the complete series of dynamic experiments using only a single set of parameters, yielding an elastic modulus of 2120 +/- 900 Pa for the elastic spring, an elastic modulus of 1960 +/- 1350 for the nonlinear spring, and a relaxation time constant of 0.3 +/- 0.12 s. To our knowledge, it is the first time that the global viscoelastic properties of attached cells have been quantified over such a wide range of strains. Furthermore, the experiments were performed under optimal environmental conditions and the results are, therefore, believed to reflect the viscoelastic mechanical behavior of cells, such as would be present in vivo.
Collapse
Affiliation(s)
- Emiel A G Peeters
- Eindhoven University of Technology, Department of Biomedical Engineering, P.O. Box 513, Building W-hoog 4.123, 5600 MB Eindhoven, The Netherlands.
| | | | | | | | | |
Collapse
|
28
|
Driessen NJB, Bouten CVC, Baaijens FPT. A Structural Constitutive Model For Collagenous Cardiovascular Tissues Incorporating the Angular Fiber Distribution. J Biomech Eng 2004; 127:494-503. [PMID: 16060356 DOI: 10.1115/1.1894373] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Accurate constitutive models are required to gain further insight into the mechanical behavior of cardiovascular tissues. In this study, a structural constitutive framework for cardiovascular tissues is introduced that accounts for the angular distribution of collagen fibers. To demonstrate its capabilities, the model is applied to study the biaxial behavior of the arterial wall and the aortic valve. The pressure–radius relationships of the arterial wall accurately describe experimentally observed sigma-shaped curves. In addition, the nonlinear and anisotropic mechanical properties of the aortic valve can be analyzed with the proposed model. We expect that the current model offers strong possibilities to further investigate the complex mechanical behavior of cardiovascular tissues, including their response to mechanical stimuli.
Collapse
Affiliation(s)
- Niels J B Driessen
- Eindhoven University of Technology, Department of Biomedical Engineering, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | |
Collapse
|
29
|
Broers JLV, Peeters EAG, Kuijpers HJH, Endert J, Bouten CVC, Oomens CWJ, Baaijens FPT, Ramaekers FCS. Decreased mechanical stiffness in LMNA-/- cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum Mol Genet 2004; 13:2567-80. [PMID: 15367494 DOI: 10.1093/hmg/ddh295] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Laminopathies comprise a group of inherited diseases with variable clinical phenotypes, caused by mutations in the lamin A/C gene (LMNA). A prominent feature in several of these diseases is muscle wasting, as seen in Emery-Dreifuss muscle dystrophy, dilated cardiomyopathy and limb-girdle muscular dystrophy. Although the mechanisms underlying this phenotype remain largely obscure, two major working hypotheses are currently being investigated, namely, defects in gene regulation and/or abnormalities in nuclear architecture causing cellular fragility. In this study, using a newly developed cell compression device we have tested the latter hypothesis. The device allows controlled application of mechanical load onto single living cells, with simultaneous visualization of cellular deformation and quantitation of resistance. With the device, we have compared wild-type (MEF+/+) and LMNA knockout (MEF-/-) mouse embryonic fibroblasts (MEFs), and found that MEF-/- cells show a significantly decreased mechanical stiffness and a significantly lower bursting force. Partial rescue of the phenotype by transfection with either lamin A or lamin C prevented gross nuclear disruption, as seen in MEF-/- cells, but was unable to fully restore mechanical stiffness in these cells. Our studies show a direct correlation between absence of LMNA proteins and nuclear fragility in living cells. Simultaneous recordings by confocal microscopy revealed that the nuclei in MEF-/- cells, in contrast to MEF+/+ cells, exhibited an isotropic deformation upon indentation, despite an anisotropic deformation of the cell as a whole. This nuclear behaviour is indicative for a loss of interaction of the disturbed nucleus with the surrounding cytoskeleton. In addition, careful investigation of the three-dimensional organization of actin-, vimentin- and tubulin-based filaments showed a disturbed interaction of these structures in MEF-/- cells. Therefore, we suggest that in addition to the loss of nuclear stiffness, the loss of a physical interaction between nuclear structures (i.e. lamins) and the cytoskeleton is causing more general cellular weakness and emphasizes a potential key function for lamins in maintaining cellular tensegrity.
Collapse
Affiliation(s)
- Jos L V Broers
- Department of Moecular Cell Biology, Cardiovascular Research Institute Maastricht, University Maastricht, PO Box 616, NL-6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|