1
|
Fochi RA, Santos FCA, Goes RM, Taboga SR. Progesterone as a morphological regulatory factor of the male and female gerbil prostate. Int J Exp Pathol 2013; 94:373-86. [PMID: 24205795 PMCID: PMC3944449 DOI: 10.1111/iep.12050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 08/17/2013] [Indexed: 01/28/2023] Open
Abstract
Testosterone (T) and oestrogen are the main active steroid hormones in the male and female reproductive system respectively. In female rodents progesterone (P4), together with testosterone and oestrogen, has an essential role in the regulation of the oestrous cycle, which influences the prostate physiology through their oscillations. In this work we investigated how the male and female prostate gland of Mongolian gerbils responds to surgical castration at the start of puberty and what are the effects of T, oestradiol (E2) and P4 replacement, using both quantitative and qualitative methods. We also examined the location of the main steroid receptors present in the prostate. In the castrated animals of both sexes an intense glandular regression, along with disorganization of the stromal compartment, and abundant hyperplasia was observed. The replacement of P4 secured a mild recovery of the glandular morphology, inducing the growth of secretory cells and restoring the androgen receptor (AR) cells. The administration of P4 and E2 eliminated epithelial hyperplasia and intensified gland hypertrophy, favouring the emergence of prostatic intraepithelial neoplasia (PIN). In animals treated with T and P4, even though there are some inflammatory foci and other lesions, the prostate gland revealed morphology closer to that of control animals. In summary, through the administration of P4, we could demonstrate that this hormone has anabolic characteristics, promoting hyperplasia and hypertrophy, mainly in the epithelial compartment. When combined with E2 and T, there is an accentuation of glandular hypertrophy that interrupts the development of hyperplasia and ensures the presence of a less dysplastic glandular morphology.
Collapse
Affiliation(s)
- Ricardo A Fochi
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | | | | | | |
Collapse
|
2
|
Cooke P, Borsdorf D, Ekman G, Doty K, Clark S, Dziuk P, Bartol F. Uterine gland development begins postnatally and is accompanied by estrogen and progesterone receptor expression in the dog. Theriogenology 2012; 78:1787-95. [DOI: 10.1016/j.theriogenology.2012.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/25/2012] [Accepted: 05/25/2012] [Indexed: 11/29/2022]
|
3
|
Shao R, Weijdegård B, Ljungström K, Friberg A, Zhu C, Wang X, Zhu Y, Fernandez-Rodriguez J, Egecioglu E, Rung E, Billig H. Nuclear progesterone receptor A and B isoforms in mouse fallopian tube and uterus: implications for expression, regulation, and cellular function. Am J Physiol Endocrinol Metab 2006; 291:E59-72. [PMID: 16449295 DOI: 10.1152/ajpendo.00582.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Progesterone and its interaction with nuclear progesterone receptors (PR) PR-A and PR-B play a critical role in the regulation of female reproductive function in all mammals. However, our knowledge of the regulation and possible cellular function of PR protein isoforms in the fallopian tube and uterus in vivo is still very limited. In the present study, we revealed that equine chorionic gonadotropin (eCG) treatment resulted in a time-dependent increase in expression of both isoforms, reaching a maximal level at 48 h in the fallopian tube. Regulation of PR-A protein expression paralleled that of PR-B protein expression. However, in the uterus PR-B protein levels increased and peaked earlier than PR-A protein levels after eCG treatment. With prolonged exposure to eCG, PR-B protein levels decreased, whereas PR-A protein levels continued to increase. Furthermore, subsequent treatment with human (h)CG decreased the levels of PR protein isoforms in both tissues in parallel with increased endogenous serum progesterone levels. To further elucidate whether progesterone regulates PR protein isoforms, we demonstrated that a time-dependent treatment with progesterone (P(4)) decreased the expression of PR protein isoforms in both tissues, whereas decreases in p27, cyclin D(2), and proliferating cell nuclear antigen protein levels were observed only in the uterus. To define the potential PR-mediated effects on apoptosis, we demonstrated that the PR antagonist treatment increased the levels of PR protein isoforms, induced mitochondrial-associated apoptosis, and decreased in epidermal growth factor (EGF) and EGF receptor protein expression in both tissues. Interestingly, immunohistochemistry indicated that the induction of apoptosis by PR antagonists was predominant in the epithelium, whereas increase in PR protein expression was observed in stromal cells of both tissues. Taken together, these observations suggest that 1) the tissue-specific and hormonal regulation of PR isoform expression in mouse fallopian tube and uterus, where they are potentially involved in regulation of mitochondrial-mediated apoptosis depending on the cellular compartment; and 2) a possible interaction between functional PR protein and growth factor signaling may have a coordinated role for regulating apoptotic process in both tissues in vivo.
Collapse
Affiliation(s)
- Ruijin Shao
- Section of Endocrinology, Dept. of Physiology and Pharmacology, Sahlgrenska Academy, Göteborg University, SE-40530, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Okada A, Sato T, Ohta Y, Iguchi T. SEX STEROID HORMONE RECEPTORS IN THE DEVELOPING FEMALE REPRODUCTIVE TRACT OF LABORATORY RODENTS. J Toxicol Sci 2005; 30:75-89. [PMID: 15928456 DOI: 10.2131/jts.30.75] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many chemicals released into the environment potentially disrupt the endocrine system in wildlife and humans. Some of these chemicals exhibit estrogenic activity by binding to the estrogen receptors. The developing organism is particularly sensitive to estrogenic chemicals during the critical period in which the induction of long-term changes and persistent molecular alterations in female reproductive tracts occur. Perinatal mouse and rat models can be utilized as indicators for determining the consequences of exposure to exogenous estrogenic agents, including possible xenoestrogens or environmental endocrine disruptors. Estrogen receptors (ER) and estrogen responsive genes, therefore, need to be identified in order to understand the molecular basis of estrogenic actions. Recent identifications of ER subtypes and isoforms make understanding target organ responses to these estrogenic chemicals even more difficult. Indeed, many reports suggest that these chemicals do affect the reproductive and developmental processes of female laboratory rodents that had been perinatally exposed, and that interactions between sex steroid hormone receptors occur. Much information concerning the expression of sex steroid receptors in rodents has been reported concerning the normal development of the Müllerian duct. Thus, accumulated information on the expression of ER subtypes and isoforms as well as that of progesterone and androgen receptors in laboratory rodents is herein reviewed, in addition to the presentation of our own data.
Collapse
Affiliation(s)
- Akinobu Okada
- Safety Research Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | | | | |
Collapse
|
5
|
Cunha GR, Cooke PS, Kurita T. Role of stromal-epithelial interactions in hormonal responses. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2004; 67:417-34. [PMID: 15781983 DOI: 10.1679/aohc.67.417] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Steroid sex hormones (17beta-estradiol, testosterone, dihydrotestosterone, and progesterone) and aryl hydrocarbons such as the dioxins regulate epithelial proliferation and secretory protein production and differentiation in their respective target organs in male and female urogenital tracts and mammary glands. Recent evidence has demonstrated that stromal-epithelial interactions are critical for mediating the effects of these molecules on epithelial cells. Our results have indicated that estradiol, testosterone, progesterone, and dioxin regulate epithelial proliferation (stimulation or inhibition) via paracrine mechanisms requiring the appropriate receptor in the stroma. The androgen receptor (AR), estrogen receptor alpha (ERalpha), progesterone receptor (PR), or aryl hydrocarbon receptor (AhR) in the epithelium are neither necessary nor sufficient for the regulation of epithelial proliferation. Moreover, during prostatic development, signaling through the stromal AR is required to induce prostatic epithelial identity, ductal morphogenesis and glandular differentiation. Epithelial functional differentiation is regulated in the prostate, uterus, and vagina via AR (prostate) and ERalpha(uterus and vagina). In these organs both epithelial and stromal steroid receptors are required for steroidal regulation of certain aspects of epithelial differentiation such as epithelial secretory protein production in the uterus and epithelial cornification in the vagina and prostate (squamous metaplasia). The mechanistic basis of these stromal-epithelial interactions is poorly understood, but growth factors appear to be mediators of these cell-cell interactions.
Collapse
Affiliation(s)
- Gerald R Cunha
- University of California, 3rd and Parnassus, Department of Anatomy, HSW 1323, San Francisco, USA.
| | | | | |
Collapse
|
6
|
Okada A, Ohta Y, Buchanan D, Sato T, Iguchi T. Effect of estrogens on ontogenetic expression of progesterone receptor in the fetal female rat reproductive tract. Mol Cell Endocrinol 2002; 195:55-64. [PMID: 12354672 DOI: 10.1016/s0303-7207(02)00211-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ontogenetic expression of progesterone receptor (PR) and effect of estrogens on PR expression in the fetal female rat reproductive tract were investigated. To evaluate ontogenetic PR expression, female reproductive tract from untreated fetuses was examined on gestational days (GD) 15.5, 17.5, 19.5 and 21.5. To evaluate estrogen effects, pregnant rats were injected once per day with oil, 17beta-estradiol (E(2)) or diethylstilbestrol (DES) from GD 15 through 21. Female fetuses were prepared for real-time reverse-transcription polymerase chain reaction (RT-PCR) or immunohistochemistry for PR. Increase in PR mRNA expression was detected in the Müllerian duct on GD 21.5 compared to that on GDs 15.5 and 17.5 in untreated fetuses (P<0.05). Prenatal administration of E(2) or DES increased Müllerian PR mRNA levels by GD 21.5 compared with oil controls (P<0.01). To identify cell and region in which PR was expressed and up-regulated by E(2) and DES, localization was evaluated within three regions along the Müllerian duct axis which differentiate into oviduct, uterus and upper vagina in immunohistochemistry. In untreated fetuses, Müllerian epithelial PR immunoreactivity was weak on GDs 15.5 and 17.5, but then became moderate on GDs 19.5 and 21.5 in all three regions. These fetuses exhibited faint signals in Müllerian mesenchymal PR immunoreactivity during gestational monitoring. Critically, Müllerian mesenchymal PR staining became intense after E(2) exposure in all three regions by GD 21.5, but no change was observed in Müllerian epithelial PR. Similarly, DES dramatically induced Müllerian mesenchymal PR in all regions by GD 21.5, and also enhanced proximal epithelial PR. On the other hand, middle and caudal epithelial PRs were reduced by DES. These affected mesenchymal and epithelial cells by DES were ER alpha immunopositive in the Müllerian duct, except for middle Müllerian epithelium. These findings clearly demonstrate cell-specific PR localization and region-specific effect of DES on PR in the developing rat Müllerian duct, and provide fundamental information critical for investigating the tissue-specific mechanisms underlying the prenatal response to estrogen receptor agonists.
Collapse
Affiliation(s)
- Akinobu Okada
- Safety Research Laboratories, Yamanouchi Pharmaceutical Co Ltd, Tokyo, Japan
| | | | | | | | | |
Collapse
|
7
|
DeMayo FJ, Zhao B, Takamoto N, Tsai SY. Mechanisms of action of estrogen and progesterone. Ann N Y Acad Sci 2002; 955:48-59; discussion 86-8, 396-406. [PMID: 11949965 DOI: 10.1111/j.1749-6632.2002.tb02765.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Estrogen and progesterone are steroid hormones that play a pivotal role in the regulation of mammalian reproduction. One primary action of these hormones is to regulate the development and function of the uterus. These hormones act by regulating the transcription of specific genes in the uterus. The actions of these hormones are mediated by their specific hormone receptors. These receptors are nuclear transcription factors, whose transcriptional regulatory activity is mediated by the binding of the specific steroid to these molecules. Once these receptors bind hormone, they can bind to specific cis-acting sequences in the promoter region of responsive genes and regulate transcription of these genes. In the regulation of transcription, these receptors interact with specific cofactors to activate the transcriptional machinery. A second gene family, the Steroid Receptor Coactivator (SRC) family, has been identified that serves to modulate the transcriptional activity of the hormone receptors. To date, three members of the SRC family have been identified. During the last decade, gene targeting technology has been used to identify the role of these receptors in the regulation of reproduction and uterine biology.
Collapse
Affiliation(s)
- Francesco J DeMayo
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
8
|
Kurita T, Lee KJ, Cooke PS, Taylor JA, Lubahn DB, Cunha GR. Paracrine regulation of epithelial progesterone receptor by estradiol in the mouse female reproductive tract. Biol Reprod 2000; 62:821-30. [PMID: 10727249 DOI: 10.1093/biolreprod/62.4.821] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Regulation of progesterone receptor (PR) by estradiol-17beta (E(2)) in mouse uterine and vaginal epithelia was studied. In ovariectomized mice, PR expression was low in both vaginal stroma and epithelium, but high in uterine epithelium. E(2) induced PR in vaginal epithelium and stroma, but down-regulated PR in uterine epithelium. Analysis of estrogen receptor alpha (ERalpha) knockout (ERKO) mice showed that ERalpha is essential for E(2)-induced PR expression in both vaginal epithelium and stroma, and for E(2)-induced down-regulation, but not constitutive expression of PR in uterine epithelium. Regulation of PR by E(2) was studied in vaginal and uterine tissue recombinants made with epithelium and stroma from wild-type and ERKO mice. In the vaginal tissue recombinants, PR was induced by E(2) only in wild-type epithelium and/or stroma. Hence, in vagina, E(2) induces PR directly via ERalpha within the tissue. Conversely, E(2) down-regulated epithelial PR only in uterine tissue recombinants constructed with wild-type stroma. Therefore, down-regulation of uterine epithelial PR by E(2) requires stromal, but not epithelial, ERalpha. In vitro, isolated uterine epithelial cells retained a high PR level with or without E(2), which is consistent with an indirect regulation of uterine epithelial PR in vivo. Thus, E(2) down-regulates PR in uterine epithelium through paracrine mechanisms mediated by stromal ERalpha.
Collapse
Affiliation(s)
- T Kurita
- Department of Anatomy, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
9
|
Kurita T, Lee KJ, Cooke PS, Lydon JP, Cunha GR. Paracrine regulation of epithelial progesterone receptor and lactoferrin by progesterone in the mouse uterus. Biol Reprod 2000; 62:831-8. [PMID: 10727250 DOI: 10.1095/biolreprod62.4.831] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objective of this study was to determine whether uterine stromal and/or epithelial progesterone receptor (PR) is required for the antagonism by progesterone (P(4)) of estradiol-17beta (E(2)) action on expression of PR and lactoferrin in uterine epithelium. Uterine tissue recombinants were prepared with epithelium (E) and stroma (S) from wild-type (wt) and PR knockout (PRKO) mice: wt-S+wt-E and PRKO-S+wt-E. P(4) action on epithelial PR expression was studied in wt-S+wt-E and PRKO-S+wt-E tissue recombinants. E(2) down-regulated epithelial PR in both types of tissue recombinants, but P(4) blocked E(2)-induced down-regulation of epithelial PR only in wt-S+wt-E tissue recombinants. Thus, P(4) requires stromal PR to inhibit E(2)-induced down-regulation of epithelial PR. Epithelial PR is not sufficient in itself. The inhibitory effect of P(4) on lactoferrin expression was studied in 4 types of tissue recombinants (wt-S+wt-E, PRKO-S+wt-E, wt-S+PRKO-E, and PRKO-S+PRKO-E). E(2) induced lactoferrin in all 4 types of tissue recombinants. P(4) blocked E(2)-induced lactoferrin expression only in wt-S+wt-E tissue recombinants. In wt-S+PRKO-E tissue recombinants, P(4) inhibited lactoferrin expression only partially. P(4) failed to block E(2)-induced lactoferrin expression in PRKO-S+wt-E and PRKO-S+PRKO-E tissue recombinants. Thus, both epithelial and stromal PR are essential for full P(4) inhibition of E(2)-induced lactoferrin expression.
Collapse
Affiliation(s)
- T Kurita
- Department of Anatomy, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
10
|
Uotinen N, Puustinen R, Pasanen S, Manninen T, Kivineva M, Syvälä H, Tuohimaa P, Ylikomi T. Distribution of progesterone receptor in female mouse tissues. Gen Comp Endocrinol 1999; 115:429-41. [PMID: 10480995 DOI: 10.1006/gcen.1999.7333] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two novel antibodies against the mammalian progesterone receptor (PR) were raised and characterized to study the distribution of PR and the effect of estrogen on PR expression in various female murine tissues by immunohistochemistry. There were estrogen-independent constitutive PR expressions in the smooth muscle cells of uterus, uterine blood vessels, urinary bladder, duodenum, and jejunum of ovariectomized mice. Uterine stromal cells, capsular cells of kidney and adrenal gland, and the epithelial cells of submandibular gland expressed PR constitutively. PR expression was detected in some thymic cells and the number of PR-positive thymic cells increased markedly after estrogen treatment. Estrogen induced PR expression in the epithelial cells of uterus, vagina, urethra, and skin and the stromal cells of vagina, urethra, and pancreatic ducts, as well as the smooth muscle cells of some blood vessels. These results suggest cell-specific progesterone actions in the urinary tract, skin, and gastrointestinal organs, on the immune functions, and on the regulation of local blood flow.
Collapse
Affiliation(s)
- N Uotinen
- Medical School, University of Tampere, Tampere, FIN-33101, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Tibbetts TA, Mendoza-Meneses M, O'Malley BW, Conneely OM. Mutual and intercompartmental regulation of estrogen receptor and progesterone receptor expression in the mouse uterus. Biol Reprod 1998; 59:1143-52. [PMID: 9780321 DOI: 10.1095/biolreprod59.5.1143] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The epithelial and stromal compartments of the uterus undergo significant estrogen- and progesterone (P4)-induced changes during the estrous cycle. While in the adult mouse, epithelial proliferation and stromal inflammation are induced by estrogen, P4 is antiproliferative in the epithelium and both proliferative and anti-inflammatory in the stroma. In light of these compartmentally varying roles, we have immunohistochemically examined estrogen and P4 regulation of the expression of their receptors (ER and PR) and their epithelial target gene lactoferrin (LF) in wild-type and PR null mutant mice. We demonstrate that estrogen exerts compartment-specific effects on the expression of ER, resulting in decreased levels of stromal and glandular epithelial (GE) ER and increased luminal epithelial (LE) and myometrial ER. Estrogen also has dual effects on PR expression, decreasing levels in the LE while at the same time increasing levels in the stroma and myometrium. Estrogen and P4 together mediate their effects in part through the ability of P4 to selectively inhibit myometrial ER expression while preserving GE expression. We also demonstrate a general negative feedback by P4 on PR expression that is most prominent in the GE. Finally, we demonstrate using the estrogen- and P4-responsive epithelial target gene LF that the differential regulation of PR in the glandular and luminal epithelium results in different functional responses of these compartments to P4. Together, our data indicate that the pleiotropic effects of estrogen and P4 in the adult mouse uterus are mediated by complex hormonal interregulation of ER and PR in specific uterine compartments.
Collapse
Affiliation(s)
- T A Tibbetts
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
12
|
Boutin EL, Battle E, Cunha GR. The germ layer origin of mouse vaginal epithelium restricts its responsiveness to mesenchymal inductors: uterine induction. Differentiation 1992; 49:101-7. [PMID: 1597255 DOI: 10.1111/j.1432-0436.1992.tb00774.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The epithelium of the mammalian vagina arises from two distinct germ layers, endoderm from the urogenital sinus and mesoderm from the lower fused Müllerian ducts. While previously it has been reported that neonatal vaginal epithelium can be induced to differentiate as uterus, which normally develops from the middle portion of the Müllerian ducts, it has not been determined whether this ability is shared by both mesoderm- and endoderm-derived vaginal epithelia. To test if germ layer origin influences the ability of vaginal epithelium to undergo uterine differentiation, we have isolated sinus-derived and Müllerian-derived vaginal epithelia from newborn mice, combined them with uterine mesenchyme, and grown them for 4 weeks in female mice. Mesoderm-derived Müllerian vaginal epithelium in combination with uterine mesenchyme formed the simple columnar epithelium typical of uterus. Similar results were obtained with neonatal cervical epithelium, another mesodermal Müllerian duct derivative. On the other hand, sinus vaginal epithelium combined with uterine mesenchyme formed small cysts lined by a stratified squamous vaginal-like epithelium. This epithelium never showed evidence of cycling between the cornified and mucified states as is typically seen in vaginal epithelium combined with vaginal stroma. These results indicate that the ability of epithelium to form uterus is limited to mesoderm-derived epithelia and suggest that endoderm-derived sinus vaginal epithelium cannot undergo the typical differentiative modifications in response to the hormonal fluctuations of the estrous cycle when associated with uterine stroma.
Collapse
Affiliation(s)
- E L Boutin
- Department of Anatomy, University of California-San Francisco 94143-0452
| | | | | |
Collapse
|
13
|
Bidmon HJ, Granger NA, Cherbas P, Maròy P, Stumpf WE. Ecdysteroid receptors in the central nervous system of Manduca sexta: their changes in distribution and quantity during larval-pupal development. J Comp Neurol 1991; 310:337-55. [PMID: 1787176 DOI: 10.1002/cne.903100305] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ecdysteroids act initially by binding to nuclear and possibly also extranuclear receptors. The presence and expression of these receptors in the insect brain was investigated in the present study as a means of defining these neurons involved in ecdysteroid-regulated processes at different developmental stages. Early in the fifth larval stadium of Manduca sexta, when endogenous ecdysteroid levels are low, receptors for ecdysteroids in cerebral neurons are either absent or present at low levels. Receptors can be reliably detected only on day 0 and are not found again until day 3.5, at the beginning of the commitment peak in the ecdysteroid titer, when they occur in a small stage-specific population of cells. At this time, ecdysteroid receptors are found mainly in nuclei but are also observed at low levels in cytoplasm. By day 4.8, ecdysteroid receptors are exclusively nuclear, and the number of target cells has increased dramatically in several brain regions, including those with known neurosecretory cell groups. This population and organization of ecdysteroid target cells is constant up to day 6, after which time the number of target neurons declines. By day 7.8, only 10% of the number of labelled neurons seen on days 4.8-6.8 remain in peripheral areas. In the pupal brains, ecdysteroid receptors reappear in a new population of neurons. The results indicate changes in the genomic regulation of a varying neuron population by ecdysteroids during fifth stadium development.
Collapse
Affiliation(s)
- H J Bidmon
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599-7090
| | | | | | | | | |
Collapse
|
14
|
Shughrue PJ, Stumpf WE, Elger W, Schulze PE, Sar M. Progestin receptor cells in mouse cerebral cortex during early postnatal development: a comparison with preoptic area and central hypothalamus using autoradiography with [125I]progestin. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1991; 59:143-55. [PMID: 1914138 DOI: 10.1016/0165-3806(91)90094-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The distribution of progestin target cells in the cerebral cortex and the effect of estrogen treatment was assessed during the critical period of brain development and compared with the preoptic/central hypothalamic regions. [125I]progestin was injected into 0, 2, 8, and 12 day postnatal mice pretreated for 3 days with oil, 5 micrograms/100 g b, wt., or 100 micrograms/100 g b. wt. of estradiol dissolved in oil. Two hours after injection of radiolabeled ligand, brains were frozen and processed for thaw-mount autoradiography. At birth, labeled cells were detected in the deep (lamina VI) and intermediate (lamina V) layers of the lateral cortical regions, increased in laminae V-VI of the lateral cortex and laminae II-VI of the cingulate/paracingulate cortex at days 2 and 8, and decreased throughout the cortex by day 12. Pretreatment of animals with estradiol had no noticeable effect on the nuclear concentration of [125I]progestin in cortical cells, while estrogen weakly enhanced labeling in preoptic/central hypothalamic regions at day 2 and markedly augmented labeling in the 8 and 12 day brain. The results demonstrated that progestin receptor cells are present in the postnatal dorsal cortex, preoptic area, and hypothalamus and that the topography of cortical progestin target cells differs in part from that of estrogen target cells reported earlier.
Collapse
Affiliation(s)
- P J Shughrue
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599
| | | | | | | | | |
Collapse
|