1
|
Recent advances in electrochemical sensors for amoxicillin detection in biological and environmental samples. Bioelectrochemistry 2020; 137:107687. [PMID: 33160182 DOI: 10.1016/j.bioelechem.2020.107687] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Amoxicillin (AMX) is among the most successful antibiotics used for human therapy. It is used extensively to prevent or treat bacterial infections in humans and animals. However, the widespread distribution and excess utilization of AMX can be an environmental and health risk due to the hazardous potential associated to its pharmaceutical industries effluents. Besides, their extensive use in food animal production may result in some undesirable residues in food, e.g. meat, eggs and milk. Consequently, at high enough concentrations in biological fluids, AMX may be responsible of various diseases such as nausea, vomiting, rashes, and antibiotic-associated colitis. For this reason, the detection and quantification of amoxicillin in pharmaceuticals, biological fluids, environmental samples and foodstuffs require new electroanalytical techniques with sensitive and rapid measurement abilities. This review discusses recent advances in the development of electrochemical sensors and bio-sensors for AMX analysis in complex matrices such as pharmaceuticals, biological fluids, environmental water and foodstuffs. The main electrochemical sensors used are based on chemically modified electrodes involving carbon materials and nanomaterials, nanoparticles, polymers and biological recognition molecules.
Collapse
|
2
|
Lioliou E, Fechter P, Caldelari I, Jester BC, Dubrac S, Helfer AC, Boisset S, Vandenesch F, Romby P, Geissmann T. Various checkpoints prevent the synthesis of Staphylococcus aureus peptidoglycan hydrolase LytM in the stationary growth phase. RNA Biol 2016; 13:427-40. [PMID: 26901414 DOI: 10.1080/15476286.2016.1153209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In Staphylococcus aureus, peptidoglycan metabolism plays a role in the host inflammatory response and pathogenesis. Transcription of the peptidoglycan hydrolases is activated by the essential 2-component system WalKR at low cell density. During stationary growth phase, WalKR is not active and transcription of the peptidoglycan hydrolase genes is repressed. In this work, we studied regulation of expression of the glycylglycine endopeptidase LytM. We show that, in addition to the transcriptional regulation mediated by WalKR, the synthesis of LytM is negatively controlled by a unique mechanism at the stationary growth phase. We have identified 2 different mRNAs encoding lytM, which vary in the length of their 5' untranslated (5'UTR) regions. LytM is predominantly produced from the WalKR-regulated mRNA transcript carrying a short 5'UTR. The lytM mRNA is also transcribed as part of a polycistronic operon with the upstream SA0264 gene and is constitutively expressed. Although SA0264 protein can be synthesized from the longer operon transcript, lytM cannot be translated because its ribosome-binding site is sequestered into a translationally inactive secondary structure. In addition, the effector of the agr system, RNAIII, can inhibit translation of lytM present on the operon without altering the transcript level but does not have an effect on the translation of the upstream gene. We propose that this dual regulation of lytM expression, at the transcriptional and post-transcriptional levels, contributes to prevent cell wall damage during the stationary phase of growth.
Collapse
Affiliation(s)
- Efthimia Lioliou
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Pierre Fechter
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Isabelle Caldelari
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Brian C Jester
- b Institute of Systems and Synthetic Biology, University of Evry-Val-d'Essonne, CNRS FRE3561 , Evry , France
| | - Sarah Dubrac
- c Unité de Biologie des Bactéries pathogènes à Gram-positif, Institut Pasteur , 28 rue du Dr Roux, Paris , France
| | - Anne-Catherine Helfer
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Sandrine Boisset
- d CIRI, Center International de Recherche en Infectiologie - Inserm U1111 - Université Lyon 1 - Ecole Normale Supérieure de Lyon - CNRS UMR5308 , 21 Avenue Tony Garnier, LYON cedex 07 , France
| | - François Vandenesch
- d CIRI, Center International de Recherche en Infectiologie - Inserm U1111 - Université Lyon 1 - Ecole Normale Supérieure de Lyon - CNRS UMR5308 , 21 Avenue Tony Garnier, LYON cedex 07 , France
| | - Pascale Romby
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Thomas Geissmann
- d CIRI, Center International de Recherche en Infectiologie - Inserm U1111 - Université Lyon 1 - Ecole Normale Supérieure de Lyon - CNRS UMR5308 , 21 Avenue Tony Garnier, LYON cedex 07 , France
| |
Collapse
|
3
|
Szweda P, Schielmann M, Kotlowski R, Gorczyca G, Zalewska M, Milewski S. Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus. Appl Microbiol Biotechnol 2012; 96:1157-74. [PMID: 23076591 PMCID: PMC3492699 DOI: 10.1007/s00253-012-4484-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/29/2012] [Accepted: 10/01/2012] [Indexed: 11/27/2022]
Abstract
Bacteria of the genus Staphylococcus are common pathogens responsible for a broad spectrum of human and animal infections and belong to the most important etiological factors causing food poisoning. Because of rapid increase in the prevalence of isolation of staphylococci resistant to many antibiotics, there is an urgent need for the development of new alternative chemotherapeutics. A number of studies have recently demonstrated the strong potential of peptidoglycan hydrolases (PHs) to control and treat infections caused by this group of bacteria. PHs cause rapid lysis and death of bacterial cells. The review concentrates on enzymes hydrolyzing peptidoglycan of staphylococci. Usually, they are characterized by high specificity to only Staphylococcus aureus cell wall components; however, some of them are also able to lyse cells of other staphylococci, e.g., Staphylococcus epidermidis-human pathogen of growing importance and also other groups of bacteria. Some PHs strengthen the bactericidal or bacteriostatic activity of common antibiotics, and as a result, they should be considered as component of combined therapy which could definitely reduced the development of bacterial resistance to both enzymes and antibiotics. The preliminary research revealed that most of these enzymes can be produced using heterologous, especially Escherichia coli expression systems; however, still much effort is required to develop more efficient and large-scale production technologies. This review discusses current state on knowledge with emphasis on the possibilities of application of PHs in the context of therapeutics for infections caused by staphylococci.
Collapse
Affiliation(s)
- Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | | | | | | | | | | |
Collapse
|
4
|
Eirich J, Orth R, Sieber SA. Unraveling the protein targets of vancomycin in living S. aureus and E. faecalis cells. J Am Chem Soc 2011; 133:12144-53. [PMID: 21736328 DOI: 10.1021/ja2039979] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vancomycin is a potent glycopeptide antibiotic that has evolved to specifically bind to the D-Ala-D-Ala dipeptide termini of nascent peptidoglycans. Although this mode of action is well established, several studies indicate that vancomycin and analogues exploit noncanonical target sites. In order to address all vancomycin targets in clinically relevant Staphylococcus aureus and Enterococcus faecalis strains we developed a series of small-molecule photoaffinity probes based on vancomycin. Proteomic profiling revealed the specific labeling of two previously unknown vancomycin targets that are likely to contribute to its antibiotic activity. The specific inhibition of the major staphylococcal autolysin Atl confirms previous observations that vancomycin alters S. aureus cell morphology by interaction with the autolytic machinery. Moreover, in E. faecalis the vancomycin photoprobe specifically binds to an ABC transporter protein, which likely impedes the uptake of essential nutrients such as sugars and peptides. The labeling of these two prominent membrane targets in living cells reveals a thus far unexplored mode of vancomycin binding and inhibition that could allow a rational design of variants with improved activity.
Collapse
Affiliation(s)
- Jürgen Eirich
- Center for Integrated Protein Science Munich CIPSM, Department of Chemistry, Institute of Advanced Studies IAS, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|
5
|
Yu X, Zheng L, Yang J, Lei T, Ji Y. Characterization of essential enolase in Staphylococcus aureus. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0532-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Bourgeois I, Camiade E, Biswas R, Courtin P, Gibert L, Götz F, Chapot-Chartier MP, Pons JL, Pestel-Caron M. Characterization of AtlL, a bifunctional autolysin ofStaphylococcus lugdunensiswithN-acetylglucosaminidase andN-acetylmuramoyl-l-alanine amidase activities. FEMS Microbiol Lett 2009; 290:105-13. [DOI: 10.1111/j.1574-6968.2008.01414.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Rice KC, Bayles KW. Molecular control of bacterial death and lysis. Microbiol Mol Biol Rev 2008; 72:85-109, table of contents. [PMID: 18322035 PMCID: PMC2268280 DOI: 10.1128/mmbr.00030-07] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although the phenomenon of bacterial cell death and lysis has been studied for over 100 years, the contribution of these important processes to bacterial physiology and development has only recently been recognized. Contemporary study of cell death and lysis in a number of different bacteria has revealed that these processes, once thought of as being passive and unregulated, are actually governed by highly complex regulatory systems. An emerging paradigm in this field suggests that, analogous to programmed cell death in eukaryotes, regulated cell death and lysis in bacteria play an important role in both developmental processes, such as competence and biofilm development, and the elimination of damaged cells, such as those irreversibly injured by environmental or antibiotic stress. Further study in this exciting field of bacterial research may provide new insight into the potential evolutionary link between control of cell death in bacteria and programmed cell death (apoptosis) in eukaryotes.
Collapse
Affiliation(s)
- Kelly C Rice
- Department of Microbiology and Pathology, University of Nebraska Medical Center, 668 S. 41st St., PYH4014, Omaha, NE 68198-6245, USA
| | | |
Collapse
|
8
|
Zheng L, Yu C, Bayles K, Lasa I, Ji Y. Conditional mutation of an essential putative glycoprotease eliminates autolysis in Staphylococcus aureus. J Bacteriol 2007; 189:2734-42. [PMID: 17237169 PMCID: PMC1855823 DOI: 10.1128/jb.01806-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous studies demonstrated that a putative Staphylococcus aureus glycoprotease (Gcp) is essential for bacterial survival, indicating that Gcp may be a novel target for developing antibacterial agents. However, the biological function of Gcp is unclear. In order to elucidate the reason that Gcp is required for growth, we examined the role of Gcp in bacterial autolysis, which is an important biological process for bacterial growth. Using both a spacp-regulated gcp expression strain and a TetR-regulated gcp antisense expression strain, we found that the down-regulation of gcp expression can effectively inhibit Triton X-100-induced lysis, eliminate penicillin- and vancomycin-caused cell lysis, and dramatically increase tolerance to hydrolases. Moreover, we determined whether resistance to lysis is due to a defect in murein hydrolase activity by using a zymogram analysis. The results showed that the cell lysate of a down-regulated gcp expression mutant displayed several bands of decreased murein hydrolytic activity. Furthermore, we explored the potential mechanism of Gcp's involvement in autolysis and demonstrated that Gcp may function independently from several key autolysins (Atl, LytM, and LytN) and regulators (ArlRS, Mgr/Rat, and CidA). Taken together, the above results indicate that the essential Gcp is involved in the modification of substrates of murein hydrolases as well as in the regulation of expression and/or activity of some murein hydrolases, which, in turn, may play important roles in bacterial viability.
Collapse
Affiliation(s)
- Li Zheng
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Ave., St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
9
|
Marrero A, Mallorquí-Fernández G, Guevara T, García-Castellanos R, Gomis-Rüth FX. Unbound and acylated structures of the MecR1 extracellular antibiotic-sensor domain provide insights into the signal-transduction system that triggers methicillin resistance. J Mol Biol 2006; 361:506-21. [PMID: 16846613 DOI: 10.1016/j.jmb.2006.06.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 06/15/2006] [Accepted: 06/16/2006] [Indexed: 11/25/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains are responsible for most hospital-onset bacterial infections. Lately, they have become a major threat to the community through infections of skin, soft tissue and respiratory tract, and subsequent septicaemia or septic shock. MRSA strains are resistant to most beta-lactam antibiotics (BLAs) as a result of the biosynthesis of a penicillin-binding protein with low affinity for BLAs, called PBP2a, PBP2' or MecA. This response is regulated by the chromosomal mec-divergon, which encodes a signal-transduction system including a transcriptional repressor, MecI, and a sensor/transducer, MecR1, as well as the structural mecA gene. This system is similar to those encoded by bla divergons in S. aureus and Bacillus licheniformis. MecR1 comprises an integral-membrane latent metalloprotease domain facing the cytosol and an extracellular sensor domain. The latter binds BLAs and transmits a signal through the membrane that eventually triggers activation of the metalloprotease moiety, which in turn switches off MecI-induced repression of mecA transcription. The MecR1 sensor domain, MecR1-PBD, reveals a two-domain structure of alpha/beta-type fold reminiscent of penicillin-binding proteins and beta-lactamases, and a catalytic serine residue as the ultimate cause for BLA-binding. Covalent complexes with benzylpenicillin and oxacillin provide evidence that serine acylation does not entail significant structural changes, thus supporting the hypothesis that additional extracellular segments of MecR1 are involved in signal transmission. The chemical nature of the residues shaping the active-site cleft favours stabilisation of the acyl enzyme complexes in MecR1-PBD, in contrast to the closely related OXA beta-lactamases, where the cleft is more likely to promote subsequent hydrolysis. The present structural data provide insights into the mec-encoded BLA-response mechanism and an explanation for kinetic differences in signal transmission with the related bla-encoded systems.
Collapse
Affiliation(s)
- Aniebrys Marrero
- Institut de Biologia Molecular de Barcelona, C.I.D.-C.S.I.C. C/Jordi Girona, 18-26 08034 Barcelona, Spain
| | | | | | | | | |
Collapse
|
10
|
Kajimura J, Fujiwara T, Yamada S, Suzawa Y, Nishida T, Oyamada Y, Hayashi I, Yamagishi JI, Komatsuzawa H, Sugai M. Identification and molecular characterization of anN-acetylmuramyl-l-alanine amidase Sle1 involved in cell separation ofStaphylococcus aureus. Mol Microbiol 2005; 58:1087-101. [PMID: 16262792 DOI: 10.1111/j.1365-2958.2005.04881.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We purified a peptidoglycan hydrolase involved in cell separation from a Staphylococcus aureus atl null mutant and identified its gene. Characterization of the gene product shows a 32 kDa N-acetylmuramyl-L-alanine amidase that we designated Sle1. Analysis of peptidoglycan digests showed Sle1 preferentially cleaved N-acetylmuramyl-L-Ala bonds in dimeric cross-bridges that interlink the two murein strands in the peptidoglycan. An insertion mutation of sle1 impaired cell separation and induced S. aureus to form clusters suggesting Sle1 is involved in cell separation of S. aureus. The Sle1 mutant revealed a significant decrease in pathogenesis using an acute infection mouse model. Atl is the major autolysin of S. aureus, which has been implicated in cell separation of S. aureus. Generation of an atl/sle1 double mutant revealed that the mutant cell separation was heavily impaired suggesting that S. aureus uses two peptidoglycan hydrolases, Atl and Sle1, for cell separation. Unlike Atl, Sle1 is not directly involved in autolysis of S. aureus.
Collapse
Affiliation(s)
- Junko Kajimura
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi Hiroshima City, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yoshimura G, Komatsuzawa H, Kajimura J, Fujiwara T, Ohara M, Kozai K, Sugai M. Zymographic characterization of bacteriolytic enzymes produced by oral streptococci. Microbiol Immunol 2004; 48:465-9. [PMID: 15215620 DOI: 10.1111/j.1348-0421.2004.tb03537.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zymographic analysis was performed to know the bacteriolytic enzyme profiles of 4% SDS extracts of oral streptococci, Streptococcus mutans, S. sobrinus, S. sanguis, S. mitis and S. salivarius. We investigated the five strains in each species and found that the profile was very similar among strains of the same species except for S. salivarius(the profile was classified into two types). On the other hand, the profile was considerably different among species. Two major bacteriolytic enzymes of S. mutans showing molecular mass of 80 and 100 kDa were found using SDS-boiled S. mutans or S. sobrinus cells as substrate. These bacteriolytic activities were less apparent in the gel containing S. mitis or S. salivarius, and also not detectable in the gel containing S. sanguis. S. sobrinus extract showed only one bacteriolytic band (78 kDa) as strong activity using S. sobrinus cells as substrate. S. sanguis extract showed no bacteriolytic bands using any streptococcal cells. Extracts of either S. mitis or S. salivarius showed weak activity by using respective strains as substrate.
Collapse
Affiliation(s)
- Goh Yoshimura
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Rohrer S, Maki H, Berger-Bächi B. What makes resistance to methicillin heterogeneous? J Med Microbiol 2003; 52:605-607. [PMID: 12867551 DOI: 10.1099/jmm.0.05176-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Susanne Rohrer
- University of Zürich, Institute of Medical Microbiology, Gloriastr. 32, CH-8028 Zürich, Switzerland
| | - Hideki Maki
- University of Zürich, Institute of Medical Microbiology, Gloriastr. 32, CH-8028 Zürich, Switzerland
| | - Brigitte Berger-Bächi
- University of Zürich, Institute of Medical Microbiology, Gloriastr. 32, CH-8028 Zürich, Switzerland
| |
Collapse
|
13
|
Ingavale SS, Van Wamel W, Cheung AL. Characterization of RAT, an autolysis regulator in Staphylococcus aureus. Mol Microbiol 2003; 48:1451-66. [PMID: 12791130 DOI: 10.1046/j.1365-2958.2003.03503.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In trying to identify genetic loci involved in the regulation of cap5 genes in Staphylococcus aureus, we isolated a transposon mutant that exhibited a growth defect, enhanced autolysis and increased sensitivity to Triton X-100 and penicillin, attributable in part to increased murein hydrolase activity. Analysis of the chromosomal sequence flanking the transposon insertion site revealed that the gene disrupted in the mutant encodes an open reading frame of 147 amino acids. We named this gene rat, which stands for regulator of autolytic activity. Sequence analysis indicated that Rat is homologous to the MarR and, to a lesser extent, the SarA protein families. Mutations in rat resulted in decreased expression of known autolytic regulators lytSR, lrgAB and arlRS. Gel shift studies indicated that Rat binds to the lytRS and arlRS promoters, thus confirming Rat as a DNA-binding protein to these known repressors of autolytic activity. As anticipated, rat appears to be a negative regulator of autolysin genes including lytM and lytN. These data suggest that the rat gene product is an important regulator of autolytic activity in S. aureus.
Collapse
Affiliation(s)
- S S Ingavale
- Department of Microbiology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
14
|
Rohrer S, Berger-Bächi B. FemABX peptidyl transferases: a link between branched-chain cell wall peptide formation and beta-lactam resistance in gram-positive cocci. Antimicrob Agents Chemother 2003; 47:837-46. [PMID: 12604510 PMCID: PMC149326 DOI: 10.1128/aac.47.3.837-846.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- S Rohrer
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | | |
Collapse
|
15
|
Takahashi J, Komatsuzawa H, Yamada S, Nishida T, Labischinski H, Fujiwara T, Ohara M, Yamagishi JI, Sugai M. Molecular characterization of an atl null mutant of Staphylococcus aureus. Microbiol Immunol 2003; 46:601-12. [PMID: 12437027 DOI: 10.1111/j.1348-0421.2002.tb02741.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
atl is a gene encoding a bifunctional peptidoglycan hydrolase of Staphylococcus aureus. The gene product of atl is a 138 kDa protein that has an amidase domain and a glucosaminidase domain, and undergoes processing to generate two major peptidoglycan hydrolases, a 51 kDa glucosaminidase and a 62 kDa amidase in culture supernatant. An atl null mutant was isolated by allelic replacement and characterized. The mutant grew in clusters and sedimented when grown in broth culture. Analysis of peptidoglycan prepared from the wild type and the mutant revealed that there were no differences in muropeptide composition or in glycan chain length distribution. On the other hand, the atl mutation resulted in pleiotropic effects on cell surface nature. The mutant cells showed complete inhibition of metabolic turnover of cell wall peptidoglycan and revealed a rough outer cell wall surface. The mutation also decreased the amount of protein non-covalently bound to the cell surface and altered the protein profile, but did not affect proteins covalently associated with the cell wall. Lysis of growing cells treated with otherwise lytic concentration of penicillin G was completely inhibited in the mutant, but that of non-growing cells was not affected by the mutation. The atl mutation did not significantly affect the ability of S. aureus to provoke an acute infection when inoculated intraperitoneally in a mouse sepsis model. These results further support the supposition that atl gene products are involved in cell separation, cell wall turnover and penicillin-induced lysis of the cells.
Collapse
Affiliation(s)
- Junko Takahashi
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical Sciences, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kondo N, Kuwahara-Arai K, Kuroda-Murakami H, Tateda-Suzuki E, Hiramatsu K. Eagle-type methicillin resistance: new phenotype of high methicillin resistance under mec regulator gene control. Antimicrob Agents Chemother 2001; 45:815-24. [PMID: 11181367 PMCID: PMC90380 DOI: 10.1128/aac.45.3.815-824.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report a novel phenotype of methicillin resistance, designated "Eagle-type" resistance, which is characteristic in its resistance to high concentrations of methicillin (64 to 512 microg/ml) and susceptibility to low concentrations of methicillin (2 to 16 microg/ml). The type of resistance was expressed in mutant strains selected with high concentrations (e.g., 128 to 512 microg/ml) of methicillin from the pre-methicillin-resistant Staphylococcus aureus strain N315, whose mecA gene transcription is strongly repressed by the mecI gene-encoded repressor protein MecI. The Eagle-type mutant strains harbored no mutation in the mecI gene or in the operator region of mecA gene to which MecI repressor is supposed to bind. In the representative Eagle-type strain h4, repression of mecA gene transcription and penicillin-binding protein 2' production were found to be released by exposing the cells to a high concentration (128 microg/ml) of methicillin but not to lower concentrations (1 and 8 microg/ml) of methicillin. The strain h4 expressed paradoxical susceptibility (Eagle effect) to the cytokilling activity of methicillin. Experimental deletion of mecI gene from the chromosome of h4 by mecI-specific gene substitution converted its Eagle-type resistance to homogeneously high methicillin resistance. We cloned two novel genes, designated hmrA and hmrB, from genomic library of h4, which conferred Eagle-type resistance to N315 when introduced into the cell in multiple copies. The genes were shown to confer homogeneous methicillin resistance to the heterogeneously methicillin-resistant strain LR5 when they were introduced into on multicopy plasmids. This result strongly indicated that the genetic alteration responsible for the expression of the Eagle phenotype is identical, or equivalent in its effect, to the genetic alteration underlying heterogeneous-to-homogeneous conversion of methicillin resistance in S. aureus.
Collapse
Affiliation(s)
- N Kondo
- Department of Bacteriology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | |
Collapse
|
17
|
Qoronfleh MW, Gustafson JE, Wilkinson BJ. Conditions that induce Staphylococcus aureus heat shock proteins also inhibit autolysis. FEMS Microbiol Lett 1998; 166:103-7. [PMID: 9741088 DOI: 10.1111/j.1574-6968.1998.tb13189.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
When Staphylococcus aureus strain 8325 was grown at 30 degrees C and heat shocked at 40 degrees C the rate of cell autolysis in buffer with or without Triton X-100 was reduced. Treatment of growing cells with other agents (CdCl2, ethanol, NaCl) known to induce heat shock proteins also resulted in cells that showed a decreased rate of autolysis. Heat shocked cells showed lower rates of freeze-thaw autolysin activity on purified cell walls, and isolated crude cell walls from heat shocked cells had lower rates of autolytic activity compared to controls. No differences in the peptidoglycan hydrolase activity profiles of control and heat shocked cells were detected by renaturing sodium dodecyl sulfate polyacrylamide gel electrophoresis. It is proposed that autolysins are damaged by heat shock and their targeting to the cell wall is impaired, possibly by complexing with heat shock proteins, which may also inhibit autolysin activity. Heat shock also inhibited the autolytic activity of methicillin-resistant and related-susceptible strains, and the possible relationship of this to the expression of methicillin resistance is discussed.
Collapse
Affiliation(s)
- M W Qoronfleh
- Department of Biological Sciences, Illinois State University, Normal 61790-4120, USA
| | | | | |
Collapse
|