1
|
Choi YJ, Eom H, Park J, Park J, Cheon S, Ro HS. Fungal Diversity in Nam River and Their Biodegradative Activities. MYCOBIOLOGY 2024; 52:102-110. [PMID: 38690029 PMCID: PMC11057473 DOI: 10.1080/12298093.2024.2324575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024]
Abstract
145 fungal isolates were obtained from three sampling sites situated within the Nam River basin, located in the southern region of South Korea. Through ITS sequence analysis, the fungal isolates were identified to comprise 55 species of ascomycetes and 11 species of basidiomycetes. The 55 species of ascomycetes exclusively belong to the phylum Pezizomycotina, comprising 33 species of Dothideomycetes, 6 species of Eurotiomycetes, and 16 species of Sordariomycetes. Regarding their plant pathogenicity, an investigation into the fungi's ability to penetrate solid media revealed Nigrospora chinensis as displaying the highest growth, followed by Pseudopestalotiopsis theae, various Curvularia species, Diaporthe species, and Alternaria alternata. Further research associating this penetration ability with fungal pathogenicity is deemed necessary. Among the 10 fungal species exhibiting penetration abilities, an examination of their capability to degrade biological polymers revealed that two strains of D. phaseolorum displayed exceptional polymer degradation. These strains exhibited remarkable abilities in decomposing malachite green and crystal violet, both recalcitrant dyes. This study underscores the potential utilization of fungal diversity in freshwater environments as a foundational approach to address freshwater pollution issues.
Collapse
Affiliation(s)
- Yeon Jae Choi
- Department of BioMedical Bigdata (BK21), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyerang Eom
- Department of BioMedical Bigdata (BK21), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jiyeon Park
- Division of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jelyn Park
- Division of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Seoyoung Cheon
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Hyeon-Su Ro
- Department of BioMedical Bigdata (BK21), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
2
|
Kaleem M, Mumtaz AS, Hashmi MZ, Saeed A, Inam F, Waqar R, Jabeen A. Myco- and phyco-remediation of polychlorinated biphenyls in the environment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13994-14007. [PMID: 36550253 DOI: 10.1007/s11356-022-24902-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Polychlorinated biphenyls (PCBs) are toxic organic compounds and pose serious threats to environment and public health. PCBs still exist in different environments such as air, water, soil, and sediments even on ban. This review summarizes the phyco- and myco-remediation technologies developed to detoxify the PCB-polluted sites. It was found that algae mostly use bioaccumulation to biodegradation strategies to reclaim the environment. As bio-accumulator, Ulva rigida C. Agardh has been best at 25 ng/g dry wt to remove PCBs. Evidently, Anabaena PD-1 is the only known PCB degrading alga and efficiently degrade Aroclor 1254 and dioxin-like PCBs up to 84.4% and 37.4% to 68.4%, respectively. The review suggested that factors such as choice of algal strains, response of microalgae, biomass, the rate of growth, and cost-effective cultivation conditions significantly influence the remediation of PCBs. Furthermore, the Anabaena sp. linA gene of Pseudomonas paucimobilis Holmes UT26 showed enhanced efficiency. Pleurotus ostreatus (Jacq.) P. Kumm is the most efficient PCB degrading fungus, degrading up to 98.4% and 99.6% of PCB in complex and mineral media, respectively. Combine metabolic activities of bacteria and yeast led to the higher detoxification of PCBs. Fungi-algae consortia would be a promising approach in remediation of PCBs. A critical analysis on potentials and limits of PCB treatment through fungal and algal biosystems have been reviewed, and thus, new insights have emerged for possible bioremediation, bioaccumulation, and biodegradation of PCBs.
Collapse
Affiliation(s)
- Muhammad Kaleem
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Abdul Samad Mumtaz
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | | | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Farooq Inam
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Rooma Waqar
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Amber Jabeen
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| |
Collapse
|
3
|
White-Rot Fungi for Bioremediation of Polychlorinated Biphenyl Contaminated Soil. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Mycoremediation of PCBs by Pleurotus ostreatus: Possibilities and Prospects. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9194185] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the rising awareness on environmental issues and the increasing risks through industrial development, clean up remediation measures have become the need of the hour. Bioremediation has become increasingly popular owing to its environmentally friendly approaches and cost effectiveness. Polychlorinated biphenyls (PCBs) are an alarming threat to human welfare as well as the environment. They top the list of hazardous xenobiotics. The multiple effects these compounds render to the niche is not unassessed. Bioremediation does appear promising, with myco remediation having a clear edge over bacterial remediation. In the following review, the inputs of white-rot fungi in PCB remediation are examined and the lacunae in the practical application of this versatile technology highlighted. The unique abilities of Pleurotus ostreatus and its deliverables with respect to removal of PCBs are presented. The need for improvising P. ostreatus-mediated remediation is emphasized.
Collapse
|
5
|
Bioremediation of Xenobiotic Organic Compounds in Greywater by Fungi Isolated from Peatland, a Future Direction. MANAGEMENT OF GREYWATER IN DEVELOPING COUNTRIES 2019. [DOI: 10.1007/978-3-319-90269-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Lignin peroxidase ligand access channel dysfunction in the presence of atrazine. Sci Rep 2018; 8:5989. [PMID: 29662099 PMCID: PMC5902622 DOI: 10.1038/s41598-018-24478-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/05/2018] [Indexed: 11/23/2022] Open
Abstract
Studies have determined that the white-rot basidiomycete Phanerochaete chrysosporium is capable of biodegrading the atrazine herbicide with its broad-specificity enzymes, but the particular role of biocatalysts is still unclear. In the case of lignin peroxidase, a ligand access channel connected to the active heme cofactor provides access to the active site for potential small-sized substrates. Experimental results show that lignin peroxidase is unable to degrade atrazine, therefore, the primary goal was to determine whether there is any connection between the structural and dynamical properties of the enzyme and its incapability to degrade atrazine. The results of protein-ligand docking and molecular dynamics study correlate with relevant, published NMR and molecular dynamics data, and give the answer to the lack of atrazine degradation by lignin peroxidase which has already been established by numerous authors using experimental methods. Atrazine has no access to heme edge due to the electric charges of the delocalized s-triazine ring. The detected phenomenon suggests that the small size of the ligands only is not a sufficient condition to access the active site. Their physicochemical properties influence the structural behaviour of the channel.
Collapse
|
7
|
Donnelly PK, Entry JA. Bioremediation of Soils with Mycorrhizal Fungi. AGRONOMY MONOGRAPHS 2015. [DOI: 10.2134/agronmonogr37.c16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Paula K. Donnelly
- Department of Biology; Santa Fe Community College; Santa Fe New Mexico
| | | |
Collapse
|
8
|
Decoloration of azo dyes by three whiterot fungi: influence of carbon source. World J Microbiol Biotechnol 2014; 10:556-9. [DOI: 10.1007/bf00367666] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/04/1994] [Accepted: 05/08/1994] [Indexed: 11/26/2022]
|
9
|
Behnood M, Nasernejad B, Nikazar M. Biodegradation of crude oil from saline waste water using white rot fungus Phanerochaete chrysosporium. J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2013.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Hernández Mendieta E, Guillén Sánchez D, López Martínez V, Tejacal IA, Andrade Rodríguez M, Villegas Torres OG, Martínez Fernández E, Huerta Lara M, Segura Miranda A. Identificación del agente causal de la pudrición blanca en Morelos, México. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2013. [DOI: 10.15446/rev.colomb.biote.v15n2.41744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
11
|
|
12
|
Syed K, Yadav JS. P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium. Crit Rev Microbiol 2012; 38:339-63. [PMID: 22624627 PMCID: PMC3567848 DOI: 10.3109/1040841x.2012.682050] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phanerochaete chrysosporium, the model white rot fungus, has been the focus of research for the past about four decades for understanding the mechanisms and processes of biodegradation of the natural aromatic polymer lignin and a broad range of environmental toxic chemicals. The ability to degrade this vast array of xenobiotic compounds was originally attributed to its lignin-degrading enzyme system, mainly the extracellular peroxidases. However, subsequent physiological, biochemical, and/or genetic studies by us and others identified the involvement of a peroxidase-independent oxidoreductase system, the cytochrome P450 monooxygenase system. The whole genome sequence revealed an extraordinarily large P450 contingent (P450ome) with an estimated 149 P450s in this organism. This review focuses on the current status of understanding on the P450 monooxygenase system of P. chrysosproium in terms of pre-genomic and post-genomic identification, structural and evolutionary analysis, transcriptional regulation, redox partners, and functional characterization for its biodegradative potential. Future research on this catalytically diverse oxidoreductase enzyme system and its major role as a newly emerged player in xenobiotic metabolism/degradation is discussed.
Collapse
Affiliation(s)
- Khajamohiddin Syed
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Jagjit S Yadav
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| |
Collapse
|
13
|
Determination of co-metabolism for 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) degradation with enzymes from Trametes versicolor U97. J Biosci Bioeng 2012; 114:176-81. [DOI: 10.1016/j.jbiosc.2012.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/08/2012] [Accepted: 03/01/2012] [Indexed: 11/21/2022]
|
14
|
Degradation of Chloro-organic Pollutants by White Rot Fungi. ENVIRONMENTAL SCIENCE AND ENGINEERING 2012. [DOI: 10.1007/978-3-642-23789-8_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Bhattacharya S, Das A, G M, K V, J S. Mycoremediation of congo red dye by filamentous fungi. Braz J Microbiol 2011; 42:1526-36. [PMID: 24031787 PMCID: PMC3768715 DOI: 10.1590/s1517-838220110004000040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 05/16/2011] [Indexed: 11/22/2022] Open
Abstract
Azo, anthroquinone and triphenylmethane dyes are the major classes of synthetic colourants, which are difficult to degrade and have received considerable attention. Congo red, a diazo dye, is considered as a xenobiotic compound, and is recalcitrant to biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several fungi, under certain environmental conditions, are able to transfer azo dyes to non toxic products using laccases. The aim of this work was to study the factors influencing mycoremediation of Congo red. Several basidiomycetes and deuteromycetes species were tested for the decolourisation of Congo red (0.05 g/l) in a semi synthetic broth at static and shaking conditions. Poor decolourisation was observed when the dye acted as the sole source of nitrogen, whereas semi synthetic broth supplemented with fertilizer resulted in better decolourisation. Decolourisation of Congo red was checked in the presence of salts of heavy metals such as mercuric chloride, lead acetate and zinc sulphate. Decolourisation parameters such as temperature, pH, and rpm were optimized and the decolourisation obtained at optimized conditions varied between 29.25- 97.28% at static condition and 82.1- 100% at shaking condition. Sodium dodecyl sulphate polyacrylamide gel electrophoretic analysis revealed bands with molecular weights ranging between 66.5 to 71 kDa, a characteristic of the fungal laccases. High efficiency decolourisation of Congo red makes these fungal forms a promising choice in biological treatment of waste water containing Congo red.
Collapse
Affiliation(s)
- Sourav Bhattacharya
- Department of Microbiology, Genohelix Biolabs, Jain University 127/ 3, Bull Temple Road, Chamarajpet , Bangalore - 560019, Karnataka , India
| | | | | | | | | |
Collapse
|
16
|
Co-cultured Production of Lignin-Modifying Enzymes with White-Rot Fungi. Appl Biochem Biotechnol 2011; 165:700-18. [DOI: 10.1007/s12010-011-9289-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
|
17
|
Garg SK, Tripathi M. Strategies for decolorization and detoxification of pulp and paper mill effluent. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 212:113-36. [PMID: 21432056 DOI: 10.1007/978-1-4419-8453-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The potential hazards associated with industrial effluents, coupled with increasing awareness of environment problems, have prompted many countries to limit the indiscriminate discharge of untreated wastewaters. The pulp and paper industry has been among the most significant of industrial polluters of the waterways, and therefore has been one of the industries of concern. The pulp and paper industry produces large quantities of brown/black effluent that primarily result from pulping, bleaching, and paper-making production stages. The dark color and toxicity of pulp-paper mill effluent comes primarily from lignin and its chlorinated derivatives (e.g., lignosulphonic acid, resins, phenols, and hydrocarbons) that are released during various processing steps of lignocellulosic materials. The color originates from pulping and pulp bleaching stages, while adsorbable organic halides (AOX) originates exclusively from chlorine bleaching. Discharge of untreated effluent results in increased BOD/COD, slime growth, thermal problems, scum formation, discoloration, loss of aesthetic quality and toxicity to the aquatic life, in the receiving waterbodies. The dark brow color of pulp-paper effluent is not only responsible for aesthetic unacceptability, but also prevents the passage of sunlight through colored waterbodies. This reduces the photosynthetic activity of aquatic flora, ultimately causing depletion of dissolved oxygen. The pulp-paper organic waste, coupled with the presence of chlorine, results in the generation of highly chlorinated organic compounds. These toxic constituents of wastewater pose a human health risk through long term exposure. via drinking water and\or through consumption of fish that can bioaccumulate certain pollutants from the food chain. Therefore, considerable attention has been focused by many countries on decolorization of paper mill effluents , along with reduction in the contaminants that pose human health or other environmental hazards. Various physicochemical remediation treatments in the pulp-paper industry are now used, or have been suggested, but often are not implemented, because of the high cost involved. More recently, the paper and pulp industry has been investigating the use of biological remediation steps to replace or augment current treatment strategies. Certain biological treatments offer opportunities to reduce cost (both capital and operating), reduce energy consumption, and minimize environmental impact. Two primary approaches may be effective to curtail release of toxic effluents: first, development of pulping and bleaching processes that emphasize improved oxygen delignification or biopulping, plus partial or complete replacement of chlorine treatment with hydrogen peroxide or with biobleaching; second, implementation of biological processing that involves sequential two-step anaerobic-aerobic or three-step aerobic-anaerobic treatment technologies at end of pipe. The selection of the specific process will depend upon the type of pollutants/toxicants/mutagens present in the effluent. The use of environmental-friendly technologies in the pulp and paper industry is becoming more popular, partly because of increasing regulation, and partly because of the availability of new techniques that can be used to economically deal with pollutants in the effluents. Moreover, biotechnology research methods are offering promise for even greater improvements in the future. The obvious ultimate goal of the industry and the regulators should be zero emission through recycling of industrial wastewater, or discharge of the bare minimum amount of toxicants or color.
Collapse
Affiliation(s)
- Satyendra K Garg
- Centre of Excellence, Department of Microbiology, Dr Ram Manohar Lohia Avadh University, Faizabad, 224001, Uttar Pradesh, India.
| | | |
Collapse
|
18
|
Xiao P, Mori T, Kamei I, Kondo R. A novel metabolic pathway for biodegradation of DDT by the white rot fungi, Phlebia lindtneri and Phlebia brevispora. Biodegradation 2010; 22:859-67. [PMID: 21184141 DOI: 10.1007/s10532-010-9443-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 12/08/2010] [Indexed: 11/27/2022]
Abstract
1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) was used as the substrate for a degradation experiment with the white rot fungi Phlebia lindtneri GB-1027 and Phlebia brevispora TMIC34596, which are capable of degrading polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated biphenyls (PCBs). Pure culture of P. lindtneri and P. brevispora with DDT (25 μmol l(-1)) showed that 70 and 30% of DDT, respectively, disappeared in a low-nitrogen medium after a 21-day incubation period. The metabolites were analyzed using gas chromatography/mass spectrometry (GC/MS). Both fungi metabolized DDT to 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), 2,2-bis(4-chlorophenyl)acetic acid (DDA) and 4,4-dichlorobenzophenone (DBP). Additionally, DDD was converted to DDA and DBP. DDA was converted to DBP and 4,4-dichlorobenzhydrol (DBH). While DBP was treated as substrate, DBH and three hydroxylated metabolites, including one dihydroxylated DBP and two different isomers of monohydroxylated DBH, were produced from fungal cultures, and these hydroxylated metabolites were efficiently inhibited by the addition of a cytochrome P-450 inhibitor, piperonyl butoxide. These results indicate that the white rot fungi P. lindtneri and P. brevispora can degrade DBP/DBH through hydroxylation of the aromatic ring. Moreover, the single-ring aromatic metabolites, such as 4-chlorobenzaldehyde, 4-chlorobenzyl alcohol and 4-chlorobenzoic acid, were found as metabolic products of all substrate, demonstrating that the cleavage reaction of the aliphatic-aryl carbon bond occurs in the biodegradation process of DDT by white rot fungi.
Collapse
Affiliation(s)
- Pengfei Xiao
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Japan
| | | | | | | |
Collapse
|
19
|
Gao D, Du L, Yang J, Wu WM, Liang H. A critical review of the application of white rot fungus to environmental pollution control. Crit Rev Biotechnol 2010; 30:70-7. [PMID: 20099998 DOI: 10.3109/07388550903427272] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Research on white rot fungi for environmental biotechnology has been conducted for more than 20 years. In this article, we have reviewed processes for cell growth and enzyme production including the factors influencing enzyme productivity and the methods for enhancement of enzyme production. Significant progress has been achieved in molecular biology related to white rot fungi, especially related to the extraction of genetic material (RNA and DNA), gene cloning and the construction of genetically engineered microorganisms. The development of biotechnologies using white rot fungi for environmental pollution control has been implemented to treat various refractory wastes and to bioremediate contaminated soils. The current status and future research needs for fundamentals and application are addressed in this review.
Collapse
Affiliation(s)
- Dawen Gao
- School of Forestry, Northeast Forestry University, Harbin, PR China.
| | | | | | | | | |
Collapse
|
20
|
Barrasa JM, Martínez AT, Martínez MJ. Isolation and selection of novel basidiomycetes for decolorization of recalcitrant dyes. Folia Microbiol (Praha) 2009; 54:59-66. [DOI: 10.1007/s12223-009-0009-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 10/08/2008] [Indexed: 11/30/2022]
|
21
|
Castillo MDP, Torstensson L, Stenström J. Biobeds for environmental protection from pesticide use--a review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:6206-19. [PMID: 18598049 DOI: 10.1021/jf800844x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biobeds originated in Sweden in response to the need for simple and effective methods to minimize environmental contamination from pesticide use, especially when filling spraying equipment, a typical point source of contamination. The biobed system has attracted attention in several countries, where work is being conducted to adapt it to local conditions and applications. As a consequence, the biobed system has been more or less modified and sometimes renamed, for example, as biomassbed in Italy, biofilter in Belgium, and Phytobac and biobac in France. The effectiveness and simplicity of the biobed also make it suitable for use in developing countries, and different adaptations of the biobed concept now exist in, for instance, Peru, Guatemala, and Ecuador. When the modification of the biobed includes an intention to use it for retention and degradation of pesticides in sprayer washings, the construction has to be adapted to, for example, lined biobeds to ensure that no pesticide leaching will occur. Replacement of some of the original materials in the Swedish biomixture (straw, peat, and soil) can also change the performance of the system, for instance, the amount, activity, and composition of the microbial community that develops. This review presents the state of the art of biobeds and similar systems in Sweden and worldwide and identifies future research needs. Factors affecting the efficiency of biobeds in terms of degradation and retention of pesticides are discussed, with particular emphasis on the microbial processes involved.
Collapse
Affiliation(s)
- María del Pilar Castillo
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07 Uppsala, Sweden.
| | | | | |
Collapse
|
22
|
Purnomo AS, Kamei I, Kondo R. Degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi. J Biosci Bioeng 2008; 105:614-21. [DOI: 10.1263/jbb.105.614] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 02/28/2008] [Indexed: 11/17/2022]
|
23
|
Kwon HS, Chung E, Oh J, Lee CH, Ahn IS. Optimized production of lignolytic manganese peroxidase in immobilized cultures of Phanerochaete chrysosporium. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-007-0189-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Kamei I, Sonoki S, Haraguchi K, Kondo R. Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus, Phlebia brevispora. Appl Microbiol Biotechnol 2006; 73:932-40. [PMID: 16862425 DOI: 10.1007/s00253-006-0529-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/31/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
Toxic coplanar polychlorinated biphenyls (Co-PCBs) were used as substrates for a degradation experiment with white-rot fungus, Phlebia brevispora TMIC33929, which is capable of degrading polychlorinated dibenzo-p-dioxins. Eleven PCB congener mixtures (7 mono-ortho- and 4 non-ortho-PCBs) were added to the cultures of P. brevispora and monitored by high resolution gas chromatography and mass spectrometry (HRGC/HRMS). Five PCB congeners, 3,3',4,4'-tetrachlorobiphenyl, 2,3,3',4,4'-pentachlorobiphenyl, 2,3',4,4',5-pentachlorobiphenyl, 3,3',4,4',5-pentachlorobiphenyl, and 2,3',4,4',5,5'-hexachlorobiphenyl were degraded by P. brevispora. To investigate the fungal metabolism of PCB, each Co-PCB was treated separately by P. brevispora and the metabolites were analyzed by gas chromatography and mass spectrometry (GC/MS) and identified on the basis of the GC/MS comparison with the authentic compound. Meta-methoxylated metabolite was detected from the culture containing each compound. Additionally, para-dechlorinated and -methoxylated metabolite was also detected from the culture with 2,3,3',4,4'-pentachlorobiphenyl, 2,3',4,4',5-pentachlorobiphenyl, and 2,3',4,4',5,5'-hexachlorobiphenyl, which are mono-ortho-PCBs. In this paper, we identified the congener specific degradation of coplanar PCBs by P. brevispora, and clearly proved for the first time by identifying the metabolites that the white-rot fungus, P. brevispora, transformed recalcitrant coplanar PCBs.
Collapse
Affiliation(s)
- Ichiro Kamei
- Department of Forest and Forest Products Sciences, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, 812-8581 Higashi-ku, Fukuoka, Japan
| | | | | | | |
Collapse
|
25
|
Use of diluted medium in repeated-batch fermentation for production of lignin peroxidase by Phanerochaete chrysosporium. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9264-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Kamei I, Kogura R, Kondo R. Metabolism of 4,4′-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142. Appl Microbiol Biotechnol 2006; 72:566-75. [PMID: 16528513 DOI: 10.1007/s00253-005-0303-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 12/10/2005] [Accepted: 12/13/2005] [Indexed: 10/24/2022]
Abstract
Degradation experiment of model polychlorinated biphenyl (PCB) compound 4,4'-dichlorobiphenyl (4,4'-DCB) and its metabolites by the white-rot fungus Phanerochaete chrysosporium and newly isolated 4,4'-DCB-degrading white-rot fungus strain MZ142 was carried out. Although P. chrysosporium showed higher degradation of 4,4'-DCB in low-nitrogen (LN) medium than that in potato dextrose broth (PDB) medium, Phanerochaete sp. MZ142 showed higher degradation of 4,4'-DCB under PDB medium condition than that in LN medium. The metabolic pathway of 4,4'-DCB was elucidated by the identification of metabolites upon addition of 4,4'-DCB and its metabolic intermediates. 4,4'-DCB was initially metabolized to 2-hydroxy-4,4'-DCB and 3-hydroxy-4,4'-DCB by Phanerochaete sp. MZ142. On the other hand, P. chrysosporium transformed 4,4'-DCB to 3-hydroxy-4,4'-DCB and 4-hydroxy-3,4'-DCB produced via a National Institutes of Health shift of 4-chlorine. 3-Hydroxy-4,4'-DCB was transformed to 3-methoxy-4,4'-DCB; 4-chlorobenzoic acid; 4-chlorobenzaldehyde; and 4-chlorobenzyl alcohol in the culture with Phanerochaete sp. MZ142 or P. chrysosporium. LN medium condition was needed to form 4-chlorobenzoic acid, 4-chlorobenzaldehyde, and 4-chlorobenzyl alcohol from 3-hydroxy-4,4'-DCB, indicating the involvement of secondary metabolism. 2-Hydroxy-4,4'-DCB was not methylated. In this paper, we proved for the first time by characterization of intermediate that hydroxylation of PCB was a key step in the PCB degradation process by white-rot fungi.
Collapse
Affiliation(s)
- Ichiro Kamei
- Department of Forest and Forest Products Sciences, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka, 812-8581, Japan
| | | | | |
Collapse
|
27
|
A phytoremediation study: Selection of tropical and other vascular plants for decolorization of Poly R-478 dye. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/rem.20104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Schirp A, Loge F, Aust S, Swaner P, Turner G, Wolcott M. Production and characterization of natural fiber-reinforced thermoplastic composites using wheat straw modified with the fungusPleurotus ostreatus. J Appl Polym Sci 2006. [DOI: 10.1002/app.24724] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Ahmadi M, Vahabzadeh F, Bonakdarpour B, Mehranian M, Mofarrah E. Phenolic removal in olive oil mill wastewater using loofah-immobilized Phanerochaete chrysosporium. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-005-9006-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Christian V, Shrivastava R, Shukla D, Modi H, Vyas BRM. Mediator role of veratryl alcohol in the lignin peroxidase-catalyzed oxidative decolorization of Remazol brilliant blue R. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2004.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Mediator role of veratryl alcohol in the lignin peroxidase-catalyzed oxidative decolorization of Remazol Brilliant Blue R. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2004.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Davila-Vazquez G, Tinoco R, Pickard MA, Vazquez-Duhalt R. Transformation of halogenated pesticides by versatile peroxidase from Bjerkandera adusta. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2004.07.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Wang Y, Vazquez-Duhalt R, Pickard MA. Manganese-lignin peroxidase hybrid from Bjerkandera adusta oxidizes polycyclic aromatic hydrocarbons more actively in the absence of manganese. Can J Microbiol 2004; 49:675-82. [PMID: 14735217 DOI: 10.1139/w03-091] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied polycyclic aromatic hydrocarbon (PAH) oxidation using whole cells and purified manganese-lignin peroxidase (MnLiP) from Bjerkandera adusta UAMH 8258. Although the metabolism of PAHs by B. adusta has been previously demonstrated, less than 5% mineralization of 14C-labelled PAHs occurred in this study over a 40-day period. Oxidation of PAHs was examined by a purified MnLiP hybrid isoenzyme in the presence and absence of manganous ions. The rate of PAH oxidation was decreased by the presence of Mn. The substrates were anthracene and its methyl derivatives, pyrene and benzo[a]pyrene, PAHs with ionization potentials of 7.43 eV or lower. The PAH metabolites of the Mn-independent reaction were identified as the corresponding quinones. The pH optimum of the Mn-independent oxidation was generally about 4, while for the Mn-dependent reaction it was 3. The kinetic constants for the Mn-independent oxidation of 2-methylanthracene at pH 4 were determined, and the values we obtained were a kcat of 145/min, KM,app of 23.8 mmol/L for the aromatic substrate, and KM,app of 0.2 mmol/L for hydrogen peroxide. This is the first report of PAH oxidation by a MnLiP hybrid isoenzyme from white rot fungi.
Collapse
Affiliation(s)
- Yuxin Wang
- Deartment of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
34
|
Guiraud P, Villemain D, Kadri M, Bordjiba O, Steiman R. Biodegradation capability of Absidia fusca Linnemann towards environmental pollutants. CHEMOSPHERE 2003; 52:663-671. [PMID: 12738280 DOI: 10.1016/s0045-6535(03)00229-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The purpose of this work was to study the bioremediation capability of Absidia fusca Linnemann (Zygomycete) towards different classes of xenobiotics (lignin-derived compounds, chloroaromatic compounds, polycyclic aromatic hydrocarbons) the presence of which in contaminated soils, water and sediments poses a significant risk to the environment and human health. Two strains from different origins were compared. One was from an official collection and grown in non-inducing conditions, while the other was isolated during the course of the survey of fungal flora in a polluted soil from Annaba (Algeria). All data were analyzed and results validated via a statistical treatment. We showed the effect of the factors studied (origin of the strain, xenobiotic) but also the interactions between these factors. The strain of A. fusca isolated from a polluted soil was able to efficiently degrade most of the xenobiotics tested, particularly: pentachlorophenol, phenol, catechol, guaiacol and ferulic acid. This property also existed in the other strain but at a very low level.
Collapse
Affiliation(s)
- P Guiraud
- Groupe pour l'Etude du Devenir des Xénobiotiques dans l'Environnement (GEDEXE), EA 2945 Environnement-Santé, UFR de Pharmacie de Grenoble, Université Joseph Fourier, BP 138, 38243 Meylan, France.
| | | | | | | | | |
Collapse
|
35
|
Van Aken B, Agathos SN. Biodegradation of nitro-substituted explosives by white-rot fungi: a mechanistic approach. ADVANCES IN APPLIED MICROBIOLOGY 2002; 48:1-77. [PMID: 11677677 DOI: 10.1016/s0065-2164(01)48000-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- B Van Aken
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
36
|
López MJ, Elorrieta MA, Vargas-García MC, Suárez-Estrella F, Moreno J. The effect of aeration on the biotransformation of lignocellulosic wastes by white-rot fungi. BIORESOURCE TECHNOLOGY 2002; 81:123-129. [PMID: 11762904 DOI: 10.1016/s0960-8524(01)00112-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The mineralisation and the humification of organic matter (OM) in sterile horticultural plant wastes inoculated with Coriolus versicolor or Phanerochaete flavido-alba was investigated under different aeration rates in order to determine their efficacy as potential inoculants for composting. The change in elemental composition, lignin content and OM fractions was analysed during a 90-day incubation. Both fungi degraded 30% of lignin at low aeration rates. Different aeration rates led to significant changes in OM mineralisation induced by C. versicolor, but did not have noticeable effect on P. flavido-alba activity. The mineralisation was more effectively carried out by P. flavido-alba than by C. versicolor. Lignin degradation and the linked humification process were equally achieved by the two fungi and were enhanced in aerated conditions. The fungi analysed may facilitate the composting of lignocellulosic wastes by means of an increase in substrate bioavailability and OM humification.
Collapse
Affiliation(s)
- M J López
- Departamento de Biología Aplicada, CITE II-B, Universidad de Almeria, La Cañada de San Urbano, Spain.
| | | | | | | | | |
Collapse
|
37
|
ten Have R, Teunissen PJ. Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 2001; 101:3397-413. [PMID: 11749405 DOI: 10.1021/cr000115l] [Citation(s) in RCA: 262] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R ten Have
- Division of Industrial Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, P.O. Box 8129, 6700 EV Wageningen, The Netherlands.
| | | |
Collapse
|
38
|
Ahlert RC, Peters RW. Treatment of PCB-contaminated soils: I. Evaluation ofin situ reductive dechlorination of PCBs. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/ep.670200214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Bordjiba O, Steiman R, Kadri M, Semadi A, Guiraud P. Removal of herbicides from liquid media by fungi isolated from a contaminated soil. JOURNAL OF ENVIRONMENTAL QUALITY 2001; 30:418-426. [PMID: 11285902 DOI: 10.2134/jeq2001.302418x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fungi were isolated from soil samples corresponding to pesticide-contaminated soil (CS) and noncontaminated soil (NCS) in the Annaba vicinity (Algeria) and identified. The number of isolates obtained from CS and NCS were 263 and 288, respectively. The most frequent species (Aspergillus fumigatus, A. niger, A. terreus, Absidia corymbifera, and Rhizopus microsporus var microsporus) were not sensitive to the pesticides. The growth of the genus Trichoderma was inhibited by the pesticides, while genera Absidia and Fusarium were stimulated. The 53 species isolated were assayed for their ability to remove metribuzin from liquid medium. Only Botrytis cinerea from NCS and Sordaria superba and Absidia fusca from CS removed more than 50% of the compound after 5 d. Metamitron was very resistant. Among the 21 species tested, only Alternaria solani (from NCS), Drechslera australiensis (from CS and NCS), and Absidia fusca (from CS) reduced the concentration in the medium more than 10% (10-16%). Twelve species were grown with linuron, seven of them were inefficient in removing this compound. The two strains of Sordaria macrospora yielded 22 to 25% depletion, while Botrytis cinerea depleted linuron almost completely. Among the 31 species assayed for their ability to eliminate metobromuron, Botrytis cinerea (from CS and NCS) depleted almost completely the chemical from the medium. Rhizopus oryzae and Absidia fusca from CS removed 40 and 47% of the compound, respectively. No systematic relationships were observed between the soil contamination and herbicide elimination capacities of soil fungi. Absidia fusca and Botrytis cinerea were particularly interesting for bioremediation purposes because they were able to transform efficiently three of the four compounds assayed.
Collapse
Affiliation(s)
- O Bordjiba
- Institut des Sciences de la Nature, Université d'Annaba, 23000 Annaba, Algérie
| | | | | | | | | |
Collapse
|
40
|
Conesa A, van den Hondel CA, Punt PJ. Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 2000; 66:3016-23. [PMID: 10877800 PMCID: PMC92105 DOI: 10.1128/aem.66.7.3016-3023.2000] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To get insight into the limiting factors existing for the efficient production of fungal peroxidase in filamentous fungi, the expression of the Phanerochaete chrysosporium lignin peroxidase H8 (lipA) and manganese peroxidase (MnP) H4 (mnp1) genes in Aspergillus niger has been studied. For this purpose, a protease-deficient A. niger strain and different expression cassettes have been used. Northern blotting experiments indicated high steady-state mRNA levels for the recombinant genes. Manganese peroxidase was secreted into the culture medium as an active protein. The recombinant protein showed specific activity and a spectrum profile similar to those of the native enzyme, was correctly processed at its N terminus, and had a slightly lower mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Recombinant MnP production could be increased up to 100 mg/liter upon hemoglobin supplementation of the culture medium. Lignin peroxidase was also secreted into the extracellular medium, although the protein was not active, presumably due to incorrect processing of the secreted enzyme. Expression of the lipA and mnp1 genes fused to the A. niger glucoamylase gene did not result in improved production yields.
Collapse
Affiliation(s)
- A Conesa
- Department of Molecular Genetics and Gene Technology, TNO Nutrition and Food Research Institute, 3704 HE Zeist, The Netherlands
| | | | | |
Collapse
|
41
|
Vasil’chenko LG, Koroleva OV, Stepanova EV, Landesman EO, Rabinovich ML. Isolation and characterization of a micromycete, a producer of neutral catechol oxidases, from tropical soils with elevated dioxine content. APPL BIOCHEM MICRO+ 2000. [DOI: 10.1007/bf02738042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Ryu WR, Shim SH, Jang MY, Jeon YJ, Oh KK, Cho MH. Biodegradation of pentachlorophenol by white rot fungi under ligninolytic and nonligninolytic conditions. BIOTECHNOL BIOPROC E 2000. [DOI: 10.1007/bf02936597] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Zacchi L, Burla G, Zuolong D, Harvey PJ. Metabolism of cellulose by Phanerochaete chrysosporium in continuously agitated culture is associated with enhanced production of lignin peroxidase. J Biotechnol 2000; 78:185-92. [PMID: 10725541 DOI: 10.1016/s0168-1656(00)00209-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Production of the extracellular heme protein lignin peroxidase (LiP) by Phanerochaete chrysosporium is currently associated with a number of requirements, namely exposure of the cultures to oxygen; limiting nutrient nitrogen or carbon and static or semi-static culture conditions. To obtain LiP activity in continuously agitated liquid culture requires the inclusion of a surfactant. However, using cellulose as the carbon source, we obtained high titres (0.2-0.4 U ml(-1)) of LiP in submerged liquid cultures under conditions of continuous agitation, without substrate limitation or the need to add oxygen or surfactant. Comparison of the morphological and physiological traits of hyphae maintained on either cellulose or free glucose supports observations that the synthesis of extracellular polysaccharide in the cultures grown on glucose, restricts oxygen diffusion into the hyphae, which is necessary for LiP induction. They also suggest that isozymes of LiP synthesised under these conditions may be triggered in response to oxidant stress.
Collapse
Affiliation(s)
- L Zacchi
- School of Chemical and Life Sciences, University of Greenwich, Wellington Street, London, UK
| | | | | | | |
Collapse
|
44
|
Zacchi L, Morris I, Harvey PJ. Disordered ultrastructure in lignin-peroxidase-secreting hyphae of the white-rot fungus Phanerochaete chrysosporium. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 3):759-765. [PMID: 10746780 DOI: 10.1099/00221287-146-3-759] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The practice of exposing liquid cultures of the white-rot fungus Phanerochaete chrysosporium to a pure oxygen atmosphere under conditions of nutrient starvation has been widely adopted to induce lignin peroxidase (LiP) synthesis. Transmission electron microscopy was used to examine hyphal cells of carbon-limited cultures that had been exposed to an atmosphere of pure oxygen, and revealed evidence of a major loss in organization of cellular ultrastructure, which may be attributed to oxygen toxicity. Under some conditions (continuous agitation in air with cellulose as the carbon source) cultures will produce LiP without needing to be exposed to a pure oxygen atmosphere. A similar major loss of cellular ultrastructure was found in hyphal cells from such cultures upon examination. Investigation of the levels of H2O2, catalase and carbonyl content of intracellular proteins suggests that the latter cultures developed a hyperoxidant state because the rate of supply of carbon from cellulose hydrolysis was insufficient for oxygen homeostasis. The association of LiP with these cultures and with those exposed to an atmosphere of pure oxygen infers that LiP may be triggered in response to oxidant stress.
Collapse
Affiliation(s)
- Laura Zacchi
- School of Chemical and Life Sciences, University of Greenwich, Wellington Street, London SE18 6PF, UK1
| | - Ian Morris
- Department of Biology, Imperial College of Science Technology & Medicine, Prince Consort Road, London SW7 2BB, UK2
| | - Patricia J Harvey
- School of Chemical and Life Sciences, University of Greenwich, Wellington Street, London SE18 6PF, UK1
| |
Collapse
|
45
|
Yagüe S, Terrón MC, González T, Zapico E, Bocchini P, Galletti GC, González AE. Biotreatment of tannin-rich beer-factory wastewater with white-rot basidiomycete Coriolopsis gallica monitored by pyrolysis/gas chromatography/mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2000; 14:905-910. [PMID: 10825255 DOI: 10.1002/(sici)1097-0231(20000530)14:10<905::aid-rcm963>3.0.co;2-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Some fractions of beer-factory wastewaters represent an important environmental concern owing to their high content of polyphenols and dark-brown color. The capacity of Coriolopsis gallica to preferentially degrade lignin has been successfully applied in our laboratory to the biotreatment and decolorization of paper-industry effluents. In this work, the ability of this white-rot fungus to degrade high-tannin-containing wastewaters is evaluated. Under all the conditions studied, effluent decolorization and chemical oxygen demand reduction achieved by C. gallica at day 12 of incubation were close to 50 and 65%, respectively. No adhesion of dark color to the fungal mycelium was observed suggesting that decolorization could be ascribed to C. gallica degradation systems. Mycelium dry-weight values showed that C. gallica is tolerant to relatively high tannin content present in the effluent samples. In the sample containing the highest effluent concentration (60% v/v), dry-weight values suggested an inhibition of fungal growth at day 6 of incubation and a further adaptation of the fungus to the stressing tannin effect at day 12 of fungal treatment. Pyrolysis/gas chromatography/mass spectrometry results showed a decrease of polyphenols pyrolysis products, mainly phenol and guaiacol, with the incubation time. All these results indicate the potential use of C. gallica in bioremediation of tannin-containing industrial wastewaters and in other applications where a reduction in polyphenols content is required.
Collapse
Affiliation(s)
- S Yagüe
- Centro de Investigaciones Biológicas, CSIC, Velázquez 144, E-28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
González T, Terrón MC, Yagüe S, Zapico E, Galletti GC, González AE. Pyrolysis/gas chromatography/mass spectrometry monitoring of fungal-biotreated distillery wastewater using Trametes sp. I-62 (CECT 20197). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2000; 14:1417-1424. [PMID: 10920364 DOI: 10.1002/1097-0231(20000815)14:15<1417::aid-rcm41>3.0.co;2-i] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Distillery wastewaters generated by ethanol production from fermentation of sugar-cane molasses, named vinasses, lead to important ecological impact due to their high content of soluble organic matter and their intense dark-brown color. Taking advantage of the well-known ability of white-rot fungi to degrade an extensive variety of organic pollutants, the capacity of Trametes sp. I-62 (CECT 20197) to detoxify this type of effluents was evaluated. In this work, pyrolysis/gas chromatography/mass spectrometry was applied to the chemical characterization of several fractions of Cuban distillery wastewater as well as to monitoring the changes which occurred after fungal treatment with this white-rot basidiomycete. Maximum effluent decolorization values and chemical oxygen demand reduction attained after seven days of fungal treatment were 73.3 and 61.7%, respectively, when 20% (v/v) of distillery vinasses was added to the culture medium. Under these conditions a 35-fold increase in laccase production by Trametes sp. I-62 was measured, but no manganese peroxidase activity could be detected. The pyrolysis/gas chromatography/mass spectrometry results showed a decrease in a number of pyrolysis products after seven days of fungal treatment, mainly furan derivatives. The decrease in the relative areas of these compounds could be related to the vinasse color-removal associated with melanoidin degradation. All these results indicated the potential use ofTrametes sp. I-62 in the detoxification of recalcitrant distillery vinasses.
Collapse
Affiliation(s)
- T González
- ICIDCA, Instituto Cubano de los Derivados de la Caña de Azúcar. Via Blanca 804 esq. Carretera Central, Apdo. 4026. C.P. 11000. La Habana, Cuba
| | | | | | | | | | | |
Collapse
|
47
|
Guiraud P, Steiman R, Ait-Laydi L, Seigle-Murandi F. Degradation of phenolic and chloroaromatic compounds by Coprinus spp. CHEMOSPHERE 1999; 38:2775-2789. [PMID: 10214715 DOI: 10.1016/s0045-6535(98)00479-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three species of Coprinus: C. sp, C. cinereus and C. micaceus were compared on solid media for some aspects of their physiological behaviour and cultural requirements (temperature, pH, substrate). Constitutive extracellular enzymatic activities were also determined. The Coprinus spp. exhibited different physiological and cultural features. Cultures of the 3 Coprinus species in synthetic liquid medium showed an efficient degradation of phenolic lignin model compounds (catechol, ferulic acid, guaiacol, phenol, protocatechuic acid syringic acid and vanillic acid) and pentachloronitrobenzene, while pentachlorophenol was not metabolized after 5 days perhaps because of a strong adsorption on mycelial biomass. It was suggested that phenoloxidases were not necessarily required for the metabolization of these compounds. Coprinus species may share a common degrading system for monomeric phenolic and chloroaromatic compounds.
Collapse
Affiliation(s)
- P Guiraud
- Groupe pour l'Etude du Devenir des Xénobiotiques dans l'Environnement (GEDEXE), Université J. Fourier Grenoble, UFR de Pharmacie, Meylan, France
| | | | | | | |
Collapse
|
48
|
Grabski AC, Grimek HJ, Burgess RR. Immobilization of manganese peroxidase fromLentinula edodes and its biocatalytic generation of MnIII-chelate as a chemical oxidant of chlorophenols. Biotechnol Bioeng 1998. [DOI: 10.1002/(sici)1097-0290(19981020)60:2<204::aid-bit8>3.0.co;2-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Rode U, Müller R. Transformation of the ionic X-ray contrast agent diatrizoate and related triiodinated benzoates by Trametes versicolor. Appl Environ Microbiol 1998; 64:3114-7. [PMID: 9687487 PMCID: PMC106829 DOI: 10.1128/aem.64.8.3114-3117.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iodinated X-ray contrast agents are considered to be nondegradable by microorganisms. The decomposition of the ionic X-ray contrast agents Diatrizoate (3,5-di(acetamido)-2,4,6-triiodobenzoic acid) and Iodipamide (3,3'-adipoyl-diimino-di(2,4,6-triiodobenzoic acid) and related triiodinated benzoates (Acetrizoate [3-acetylamino-2,4, 6-triiodobenzoic acid] and Aminotrizoate [3-amino-2,4, 6-triiodobenzoic acid]) by Trametes versicolor has been investigated. The fungus was able to transform all tested triiodinated benzoates cometabolically. During transformation of these compounds, iodide was released, but deiodination was not complete. T. versicolor liberated traces of 14CO2 from uniformly ring-14C-labeled Diatrizoate (3,5-di(acetamido)-2,4,6-triiodobenzoate). Various extracellular metabolites were detected during transformation of the different substances. In the transformation of Diatrizoate, the three main metabolites were identified as 3,5-di(acetamido)-2, 6-diiodobenzoic acid, 3,5-di(acetamido)-2,4-diiodobenzoic acid, and 3,5-di(acetamido)-2-iodobenzoic acid, suggesting reductive deiodinations in steps as initial transformation steps.
Collapse
Affiliation(s)
- U Rode
- Biotechnologie II, Technische Universität Hamburg-Harburg, D-21071 Hamburg, Germany
| | | |
Collapse
|
50
|
Kotterman MJ, Vis EH, Field JA. Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenous microflora. Appl Environ Microbiol 1998; 64:2853-8. [PMID: 9687440 PMCID: PMC106782 DOI: 10.1128/aem.64.8.2853-2858.1998] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
White rot fungi can oxidize high-molecular-weight polycyclic aromatic hydrocarbons (PAH) rapidly to polar metabolites, but only limited mineralization takes place. The objectives of this study were to determine if the polar metabolites can be readily mineralized by indigenous microflora from several inoculum sources, such as activated sludge, forest soils, and PAH-adapted sediment sludge, and to determine if such metabolites have decreased mutagenicity compared to the mutagenicity of the parent PAH. 14C-radiolabeled benzo[a]pyrene was subjected to oxidation by the white rot fungus Bjerkandera sp. strain BOS55. After 15 days, up to 8.5% of the [14C]benzo[a]pyrene was recovered as 14CO2 in fungal cultures, up to 73% was recovered as water-soluble metabolites, and only 4% remained soluble in dibutyl ether. Thin-layer chromatography analysis revealed that many polar fluorescent metabolites accumulated. Addition of indigenous microflora to fungal cultures with oxidized benzo[a]pyrene on day 15 resulted in an initially rapid increase in the level of 14CO2 recovery to a maximal value of 34% by the end of the experiments (>150 days), and the level of water-soluble label decreased to 16% of the initial level. In fungal cultures not inoculated with microflora, the level of 14CO2 recovery increased to 13.5%, while the level of recovery of water-soluble metabolites remained as high as 61%. No large differences in 14CO2 production were observed with several inocula, showing that some polar metabolites of fungal benzo[a]pyrene oxidation were readily degraded by indigenous microorganisms, while other metabolites were not. Of the inocula tested, only PAH-adapted sediment sludge was capable of directly mineralizing intact benzo[a]pyrene, albeit at a lower rate and to a lesser extent than the mineralization observed after combined treatment with white rot fungi and indigenous microflora. Fungal oxidation of benzo[a]pyrene resulted in rapid and almost complete elimination of its high mutagenic potential, as observed in the Salmonella typhimurium revertant test performed with strains TA100 and TA98. Moreover, no direct mutagenic metabolite could be detected during fungal oxidation. The remaining weak mutagenic activity of fungal cultures containing benzo[a]pyrene metabolites towards strain TA98 was further decreased by subsequent incubations with indigenous microflora.
Collapse
Affiliation(s)
- M J Kotterman
- Division of Industrial Microbiology, Department of Food Science, Wageningen Agricultural University, 6700 EV Wageningen, The Netherlands.
| | | | | |
Collapse
|