1
|
Mustard oil and cardiovascular health: Why the controversy? J Clin Lipidol 2021; 16:13-22. [PMID: 34924350 DOI: 10.1016/j.jacl.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death in the United States (US) and worldwide. Among South Asians living in the US, ASCVD risk is four-fold higher than the local population. Cardioprotective dietary patterns necessitate replacement of dietary saturated fats with healthier oils such as canola, corn, olive, soybean, safflower, and sunflower oil. Mustard oil is a liquid oil that is low in saturated fat and is popular in South Asia.It contains a large proportion of erucic acid, a fatty acid associated with myocardial lipidosis in rodents. This evidence prompted the US Food and Drug Administration (FDA) to ban the use of mustard oil for cooking. However, Australia, New Zealand and the European Union (27 countries) have established upper limits for tolerable intake of mustard oil. In contrast mustard oil is one of the most popular cooking oils in Asia, particularly in India where it is recommended as a heart-healthy oil by the Lipid Association of India (LAI). The conflict between various guidelines warrants clarification, particularly because use of mustard oil in cooking is increasing among both Americans and Indian immigrants in the US, despite the FDA ban on human consumption of mustard oil. Hence, we endeavored to: (1) Review current evidence regarding potentially harmful versus beneficial effects of cooking with mustard oil, (2) Clarify the basis for disparities between the FDA ban on human consumption of mustard oil and dietary recommendations from the LAI and other groups, and (3) Provide practical suggestions for Indians and other South Asians who are accustomed to consuming mustard oil on ways to incorporate alternate heart-healthy oils (E.g. Canola, Olive, Sunflower, Soybean oil) in the diet while enhancing flavor and texture of food. A new FDA review is recommended on the safety limits of erucic acid because 29 countries have allow limited amounts of mustard oil (erucic acid) for human consumption and also because there are some health benefits that have been reported for mustard oil in humans.
Collapse
|
2
|
Lietzow J. Biologically Active Compounds in Mustard Seeds: A Toxicological Perspective. Foods 2021; 10:2089. [PMID: 34574199 PMCID: PMC8472142 DOI: 10.3390/foods10092089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Mustard plants have been widely cultivated and used as spice, medicine and as source of edible oils. Currently, the use of the seeds of the mustard species Sinapis alba (white mustard or yellow mustard), Brassica juncea (brown mustard) and Brassica nigra (black mustard) in the food and beverage industry is immensely growing due to their nutritional and functional properties. The seeds serve as a source for a wide range of biologically active components including isothiocyanates that are responsible for the specific flavor of mustard, and tend to reveal conflicting results regarding possible health effects. Other potentially undesirable or toxic compounds, such as bisphenol F, erucic acid or allergens, may also occur in the seeds and in mustard products intended for human consumption. The aim of this article is to provide comprehensive information about potentially harmful compounds in mustard seeds and to evaluate potential health risks as an increasing use of mustard seeds is expected in the upcoming years.
Collapse
Affiliation(s)
- Julika Lietzow
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
3
|
Paula EM, da Silva LG, Brandao VLN, Dai X, Faciola AP. Feeding Canola, Camelina, and Carinata Meals to Ruminants. Animals (Basel) 2019; 9:E704. [PMID: 31546983 PMCID: PMC6826546 DOI: 10.3390/ani9100704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 01/19/2023] Open
Abstract
Soybean meal (SBM) is a byproduct from the oil-industry widely used as protein supplement to ruminants worldwide due to its nutritional composition, high protein concentration, and availability. However, the dependency on monocultures such as SBM is problematic due to price fluctuation, availability and, in some countries, import dependency. In this context, oilseeds from the mustard family such as rapeseed/canola (Brassica napus and Brassica campestris), camelina (Camelina sativa), and carinata (Brassica carinata) have arisen as possible alternative protein supplements for ruminants. Therefore, the objective of this comprehensive review was to summarize results from studies in which canola meal (CM), camelina meal (CMM), and carinata meal (CRM) were fed to ruminants. This review was based on published peer-reviewed articles that were obtained based on key words that included the oilseed plant in question and words such as "ruminal fermentation and metabolism, animal performance, growth, and digestion". Byproducts from oil and biofuel industries such as CM, CMM, and CRM have been evaluated as alternative protein supplements to ruminants in the past two decades. Among the three plants reviewed herein, CM has been the most studied and results have shown an overall improvement in nitrogen utilization when animals were fed CM. Camelina meal has a comparable amino acids (AA) profile and crude protein (CP) concentration to CM. It has been reported that by replacing other protein supplements with CMM in ruminant diets, similar milk and protein yields, and average daily gain have been observed. Carinata meal has protein digestibility similar to SBM and its CP is highly degraded in the rumen. Overall, we can conclude that CM is at least as good as SBM as a protein supplement; and although studies evaluating the use of CMN and CRM for ruminants are scarce, it has been demonstrated that both oilseeds may be valuable feedstuff for livestock animals. Despite the presence of erucic acid and glucosinolates in rapeseed, no negative effect on animal performance was observed when feeding CM up to 20% and feeding CMN and CRM up to 10% of the total diet.
Collapse
Affiliation(s)
| | | | | | - Xiaoxia Dai
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA.
| | | |
Collapse
|
4
|
Beszterda M, Nogala‐Kałucka M. Current Research Developments on the Processing and Improvement of the Nutritional Quality of Rapeseed (
Brassica napus
L.). EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Monika Beszterda
- Department of Biochemistry and Food AnalysisPoznan University of Life SciencesMazowiecka 4860‐623PoznanPoland
| | - Małgorzata Nogala‐Kałucka
- Department of Biochemistry and Food AnalysisPoznan University of Life SciencesMazowiecka 4860‐623PoznanPoland
| |
Collapse
|
5
|
Brandao VLN, Dai X, Paula EM, Silva LG, Marcondes MI, Shenkoru T, Poulson SR, Faciola AP. Effect of replacing calcium salts of palm oil with camelina seed at 2 dietary ether extract levels on digestion, ruminal fermentation, and nutrient flow in a dual-flow continuous culture system. J Dairy Sci 2018. [PMID: 29525304 DOI: 10.3168/jds.2017-13558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Camelina is a drought- and salt-tolerant oil seed, which in total ether extract (EE) contains up to 74% polyunsaturated fatty acids. The objective of this study was to assess the effects of replacing calcium salts of palm oil (Megalac, Church & Dwight Co. Inc., Princeton, NJ) with camelina seed (CS) on ruminal fermentation, digestion, and flows of fatty acids (FA) and AA in a dual-flow continuous culture system when supplemented at 5 or 8% dietary EE. Diets were randomly assigned to 8 fermentors in a 2 × 2 factorial arrangement of treatments in a replicated 4 × 4 Latin square design, with four 10-d experimental periods consisting of 7 d for diet adaptation and 3 d for sample collection. Treatments were (1) calcium salts of palm oil supplementation at 5% EE (MEG5); (2) calcium salts of palm oil supplementation at 8% EE (MEG8); (3) 7.7% CS supplementation at 5% EE (CS5); and (4) 17.7% CS supplementation at 8% EE (CS8). Diets contained 55% orchardgrass hay, and fermentors were fed 72 g of dry matter/d. On d 8, 9, and 10 of each period, digesta effluent samples were taken for ruminal NH3, volatile fatty acids, nitrogen metabolism analysis, and long-chain FA and AA flows. Statistical analysis was performed using the MIXED procedure (SAS Institute Inc., Cary, NC). We detected an interaction between FA source and dietary EE level for acetate, where MEG8 had the greatest molar proportion of acetate. Molar proportions of propionate were greater and total volatile fatty acids were lower on CS diets. Supplementation of CS decreased overall ruminal nutrient true digestibility, but dietary EE level did not affect it. Diets containing CS had greater biohydrogenation of 18:2 and 18:3; however, biohydrogenation of 18:1 was greater in MEG diets. Additionally, CS diets had greater ruminal concentrations of trans-10/11 18:1 and cis-9,trans-11 conjugated linoleic acid. Dietary EE level at 8% negatively affected flows of NH3-N (g/d), nonammonia N, and bacterial N as well as the overall AA outflow. However, treatments had minor effects on individual ruminal AA digestibility. The shift from acetate to propionate observed on diets containing CS may be advantageous from an energetic standpoint. Moreover, CS diets had greater ruminal outflow of trans-10/11 18:1 and cis-9,trans-11 conjugated linoleic acid than MEG diets, suggesting a better FA profile available for postruminal absorption. However, dietary EE at 8% was deleterious to overall N metabolism and AA outflow, indicating that CS can be fed at 5% EE without compromising N metabolism.
Collapse
Affiliation(s)
- V L N Brandao
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - X Dai
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - E M Paula
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno 89557
| | - L G Silva
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - M I Marcondes
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil, 36570-900
| | - T Shenkoru
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno 89557
| | - S R Poulson
- Department of Geological Sciences and Engineering, University of Nevada, Reno 89557
| | - A P Faciola
- Department of Animal Sciences, University of Florida, Gainesville 32611.
| |
Collapse
|
6
|
Kok W, Mainal A, Chuah C, Cheng S. Content of Erucic Acid in Edible Oils and Mustard by Quantitative
13
C NMR. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wai‐Ming Kok
- Unit of Research on Lipids (URL) Department of Chemistry Faculty of ScienceUniversity of Malaya50603 Kuala LumpurMalaysia
| | - Azizah Mainal
- Unit of Research on Lipids (URL) Department of Chemistry Faculty of ScienceUniversity of Malaya50603 Kuala LumpurMalaysia
| | - Cheng‐Hock Chuah
- Unit of Research on Lipids (URL) Department of Chemistry Faculty of ScienceUniversity of Malaya50603 Kuala LumpurMalaysia
| | - Sit‐Foon Cheng
- Unit of Research on Lipids (URL) Department of Chemistry Faculty of ScienceUniversity of Malaya50603 Kuala LumpurMalaysia
| |
Collapse
|
7
|
Dai X, Weimer PJ, Dill-McFarland KA, Brandao VLN, Suen G, Faciola AP. Camelina Seed Supplementation at Two Dietary Fat Levels Change Ruminal Bacterial Community Composition in a Dual-Flow Continuous Culture System. Front Microbiol 2017; 8:2147. [PMID: 29163431 PMCID: PMC5675879 DOI: 10.3389/fmicb.2017.02147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/20/2017] [Indexed: 12/26/2022] Open
Abstract
This experiment aimed to determine the effects of camelina seed (CS) supplementation at different dietary fat levels on ruminal bacterial community composition and how it relates to changes in ruminal fermentation in a dual-flow continuous culture system. Diets were randomly assigned to 8 fermenters (1,200–1,250 mL) in a 2 × 2 factorial arrangement of treatments in a replicated 4 × 4 Latin square with four 10-day experimental periods that consisted of 7 days for diet adaptation and 3 days for sample collection. Treatments were: (1) no CS at 5% ether extract (EE, NCS5); (2) no CS at 8% EE (NCS8); (3) 7.7% CS at 5% EE (CS5); and (4) 17.7% CS at 8% EE (CS8). Megalac was used as a control to adjust EE levels. Diets contained 55% orchardgrass hay and 45% concentrate, and fermenters were equally fed a total of 72 g/day (DM basis) twice daily. The bacterial community was determined by sequencing the V4 region of the 16S rRNA gene using the Illumina MiSeq platform. Sequencing data were analyzed using mothur and statistical analyses were performed in R and SAS. The most abundant phyla across treatments were the Bacteroidetes and Firmicutes, accounting for 49 and 39% of the total sequences, respectively. The bacterial community composition in both liquid and solid fractions of the effluent digesta changed with CS supplementation but not by dietary EE. Including CS in the diets decreased the relative abundances of Ruminococcus spp., Fibrobacter spp., and Butyrivibrio spp. The most abundant genus across treatments, Prevotella, was reduced by high dietary EE levels, while Megasphaera and Succinivibrio were increased by CS supplementation in the liquid fraction. Correlatively, the concentration of acetate was decreased while propionate increased; C18:0 was decreased and polyunsaturated fatty acids, especially C18:2 n-6 and C18:3 n-3, were increased by CS supplementation. Based on the correlation analysis between genera and fermentation end products, this study revealed that CS supplementation could be energetically beneficial to dairy cows by increasing propionate-producing bacteria and suppressing ruminal bacteria associated with biohydrogenation. However, attention should be given to avoid the effects of CS supplementation on suppressing cellulolytic bacteria.
Collapse
Affiliation(s)
- Xiaoxia Dai
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Paul J Weimer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.,Agricultural Research Service, United States Department of Agriculture, Madison, WI, United States
| | | | - Virginia L N Brandao
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Antonio P Faciola
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Dinovi M, Edler L, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Nebbia CS, Oswald I, Petersen A, Rose M, Roudot A, Schwerdtle T, Vollmer G, Wallace H, Cottrill B, Dogliotti E, Laakso J, Metzler M, Velasco L, Baert K, Ruiz JAG, Varga E, Dörr B, Sousa R, Vleminckx C. Erucic acid in feed and food. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4593] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
9
|
|
10
|
Ganderup NC, Harvey W, Mortensen JT, Harrouk W. The minipig as nonrodent species in toxicology--where are we now? Int J Toxicol 2012; 31:507-28. [PMID: 23134714 DOI: 10.1177/1091581812462039] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Over the past 3 decades minipigs have moved from being an obscure alternative to dogs and nonhuman primates to being a standard animal model in regulatory toxicity studies. This article covers the use of minipigs as a model in the context of nonclinical drug safety and provides an overview of the minipig's developmental history and relates minipigs to other animal species commonly used in toxicology; and the minipig's translational power is supported by 43 case studies of marketed drug products covered. Special focus is given to criteria for selecting minipigs in nonclinical programs supporting the development of new medicines; the use of swine in the assessment of food additives, agrochemicals, and pesticides; as well as a regulatory perspective on the use of minipigs in Food and Drug Administration (FDA)-regulated products. This article presents the main points conveyed at a symposium held at the 2010 American College of Toxicology meeting in Baltimore, Maryland.
Collapse
|
11
|
Cappellozza BI, Cooke RF, Bohnert DW, Cherian G, Carroll JA. Effects of camelina meal supplementation on ruminal forage degradability, performance, and physiological responses of beef cattle. J Anim Sci 2012; 90:4042-54. [PMID: 22585784 DOI: 10.2527/jas.2011-4664] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Three experiments compared ruminal, physiological, and performance responses of beef steers consuming hay ad libitum and receiving grain-based supplements without (control) or with (CAM) the inclusion of camelina meal. In Exp. 1, 9 steers fitted with ruminal cannulas received CAM (2.04 kg of DM/d; n = 5) or control (2.20 kg of DM/d; n = 4). Steers receiving CAM had reduced (P = 0.01) total DMI and tended to have reduced (P = 0.10) forage DMI compared with control. No treatment effects were detected (P ≥ 0.35) for ruminal hay degradability parameters. In Exp. 2, 14 steers fed CAM (1.52 kg of DM/d; n = 7) or control (1.65 kg of DM/d; n = 7) were assigned to a corticotropin-releasing hormone (CRH; 0.1 μg/kg of BW) and a thyrotropin-releasing hormone (TRH; 0.33 μg/kg of BW) challenge. Steers fed CAM had greater (P < 0.05) serum concentrations of PUFA compared with control before challenges. Upon CRH infusion, plasma haptoglobin concentrations tended (P = 0.10) to be reduced and ceruloplasmin concentrations increased at a lesser rate in CAM steers compared with control (treatment × time; P < 0.01). Upon TRH infusion, no treatment effects were detected (P ≥ 0.55) for serum thyrotropin-stimulating hormone, triiodothyronine, and thyroxine. In Exp. 3, 60 steers were allocated to 20 pens. Pens were assigned randomly to receive CAM (2.04 kg of DM/steer daily; n = 10) or control (2.20 kg of DM/steer daily; n = 10) during preconditioning (PC; d -28 to 0). On d 0, steers were transported for 24 h. Upon arrival, pens were assigned randomly to receive CAM or control during feedlot receiving (FR; d 1 to 29). During PC, CAM steers had reduced (P < 0.01) forage and total DMI, and tended to have reduced (P = 0.10) ADG compared with control. Plasma linolenic acid concentrations increased during PC for CAM steers, but not for control (treatment × day; P = 0.02). During FR, steers fed CAM during PC had reduced (P < 0.01) forage and total DMI, but tended (P = 0.10) to have greater G:F compared with control. Steers fed CAM during FR had greater (P < 0.05) plasma concentrations of PUFA, and reduced rectal temperature and concentrations of haptoglobin and ceruloplasmin during FR compared with control. In summary, CAM supplementation to steers impaired forage and total DMI, did not alter thyroid gland function, increased circulating concentrations of PUFA, and lessened the acute-phase protein reaction elicited by neuroendocrine stress responses.
Collapse
Affiliation(s)
- B I Cappellozza
- Oregon State University - Eastern Oregon Agricultural Research Center, Burns, OR 97720, USA
| | | | | | | | | |
Collapse
|
12
|
Moriel P, Nayigihugu V, Cappellozza BI, Gonçalves EP, Krall JM, Foulke T, Cammack KM, Hess BW. Camelina meal and crude glycerin as feed supplements for developing replacement beef heifers. J Anim Sci 2011; 89:4314-24. [PMID: 21821818 DOI: 10.2527/jas.2010-3630] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Angus × Gelbvieh rotationally crossbred yearling heifers (n = 99, yr 1; n = 105, yr 2) were used in a 2-yr randomized complete block design experiment with repeated measures to determine the effect of feeding camelina biodiesel coproducts (meal and crude glycerin) on serum concentrations of triiodothyronine, thyroxine, insulin, β-hydroxybutyrate, and glucose, as well as on growth and reproductive performance. Heifers were assigned to 1 of 15 pens, and pens were assigned initially to receive 7.03 k·•heifer(-1)·d(-1) of bromegrass hay plus 0.95 kg·heifer(-1)·d(-1) of 1 of 3 supplements for 60 d before breeding: 1) control (50% ground corn and 50% soybean meal, as-fed basis); 2) mechanically extracted camelina meal; or 3) crude glycerin (50% soybean meal, 33% ground corn, 15% crude glycerin, 2% corn gluten meal; as-fed basis). Preprandial blood samples were collected via the jugular vein on d 0, 30, and 60 of the feeding period. A 2-injection PGF(2α) protocol (d 60 and 70 of the study) was used to synchronize estrus. Heifers were artificially inseminated 12 h after estrus was first detected. Heifers not detected in estrus within 66 h received a GnRH injection and were artificially inseminated. Dietary treatment × sampling period interactions were not detected (P = 0.17 to 0.87). Dietary treatment did not affect BW (P = 0.44 to 0.59) or serum concentrations of thyroxine (P = 0.96), β-hydroxybutyrate (P = 0.46), glucose (P = 0.59), or insulin (P = 0.44). Serum concentrations of triiodothyronine were greater (P = 0.05) in heifers fed camelina meal. Additionally, dietary treatment did not affect the percentage of heifers detected in estrus before timed AI (P = 0.83), first-service pregnancy rates of those heifers detected in estrus (P = 0.97), or overall first-service pregnancy rates (P = 0.58). Heifers fed camelina meal, however, had greater (P = 0.05) first-service pregnancy rates to timed AI than did heifers fed the control and crude glycerin supplements. The cost per pregnancy was similar for heifers fed the crude glycerin or the control supplement, whereas the cost per pregnancy was the least for heifers fed camelina meal. We conclude that camelina coproducts can replace conventional corn-soybean meal supplements in the diets of developing replacement beef heifers.
Collapse
Affiliation(s)
- P Moriel
- Department of Animal Science, University of Wyoming, Laramie, Wyoming 82071, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Murphy CC, Murphy EJ, Golovko MY. Erucic Acid is Differentially Taken up and Metabolized in Rat Liver and Heart. Lipids 2008; 43:391-400. [DOI: 10.1007/s11745-008-3168-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Accepted: 02/26/2008] [Indexed: 11/29/2022]
|
14
|
Bettger WJ, DiMichelle-Ranalli E, Dillingham B, Blackadar CB. Nervonic acid is transferred from the maternal diet to milk and tissues of suckling rat pups. J Nutr Biochem 2003; 14:160-5. [PMID: 12742544 DOI: 10.1016/s0955-2863(02)00280-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Three experiments were designed to investigate the metabolism of dietary nervonic acid (24:1n-9, NA) during reproduction in the rat. The first experiment determined the effect of early development on the sphingomyelin (SM) composition of rat heart and liver tissues. Rats were fed a standard chow diet and the SM fatty acid composition of the hearts and livers were analyzed of 18-20 day old fetuses, 14 day old sucklings and adult rats. The 18:0 content of SM decreases with age, while 23:0 and iso 24:0 increase with age. In the second experiment pregnant rats were fed diets supplemented with either canola, corn or peanut oil to determine the effect of diets high in 24:1n-9 and 24:0 on liver and heart SM at birth and after 14 days of suckling. Pups from the dams fed the corn oil diet had elevated 24:2n-6 in SM from heart and liver at birth, but the content of NA was not altered by dietary fat type. In the third experiment oil mixtures were designed to provide elevated levels of 22:1 and 24:1 (canola-N25), 22:0 and 24:0 (peanut-flax) or <0.01% of these fatty acids (olive-flax) and were supplemented to the diets of lactating rats. Canola-N25 oil supplemented to lactating rats resulted in increased 24:1n-9 and 24:1/24:0 with decreased 22:0 and 24:0 in milk SM relative to the other groups. The SM composition of livers of the suckling rats showed significant changes reflecting the changes in milk SM composition after 6 days of milk consumption. These experiments suggest that dietary NA and is not readily transferred across the placental barrier but does readily cross the mammary epithelium and is incorporated into milk SM. In addition, NA in milk appears to cross the intestinal epithelium where it is incorporated into the SM of heart and liver of suckling rats.
Collapse
Affiliation(s)
- William J Bettger
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
15
|
Bettger WJ, McCorquodale ML, Blackadar CB. The effect of a Tropaeolum speciosum oil supplement on the nervonic acid content of sphingomyelin in rat tissues. J Nutr Biochem 2001; 12:492-496. [PMID: 11834208 DOI: 10.1016/s0955-2863(01)00166-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The lipids of Tropaeolum speciosum (T. speciosum) are a rich source of naturally occurring nervonic acid (24:1n-9). We report that adding a T. speciosum oil supplement to a semi-purified diet significantly increased the amount of 24:1n-9 in liver and heart, but not brain, sphingomyelin (SM) of young rats. The bioavailability of 24:1n-9 from the lipids of T. speciosum was similar to that of 24:1n-9 ethyl ester in this rat bioassay.
Collapse
Affiliation(s)
- W J. Bettger
- Department of Human Biology and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
16
|
Green TJ, Innis SM. Low erucic acid canola oil does not induce heart triglyceride accumulation in neonatal pigs fed formula. Lipids 2000; 35:607-12. [PMID: 10901421 DOI: 10.1007/s11745-000-0563-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Canola oil is not approved for use in infant formula largely because of concerns over possible accumulation of triglyceride in heart as a result of the small amounts of erucic acid (22:1n-9) in the oil. Therefore, the concentration and composition of heart triglyceride were determined in piglets fed from birth for 10 (n = 4-6) or 18 (n = 6) d with formula containing about 50% energy fat as 100% canola oil (0.5% 22:1n-9) or 100% soybean oil, or 26% canola oil or soy oil (blend) with palm, high-oleic sunflower and coconut oil, providing amounts of 16:0 and 18:1 closer to milk, or a mix of soy, high-oleic sunflower and flaxseed oils with C16 and C18 fatty acids similar to canola oil but without 22:1. Biochemical analysis found no differences in heart triglyceride concentrations among the groups at 10 or 18 d. Assessment of heart triglycerides using Oil Red O staining in select treatments confirmed no differences between 10-d-old piglets fed formula with 100% canola oil (n = 4), 100% soy oil (n = 4), or the soy oil blend (n = 2). Levels of 22:1n-9 in heart triglyceride and phospholipid, however, were higher (P<0.01) in piglets fed 100% canola oil or the canola oil blend, with higher levels found in triglycerides compared with phospholipids. The modest accumulation of 22:1n-9 associated with feeding canola oil was not associated with biochemical evidence of heart triglyceride accumulation at 10 and 18 d.
Collapse
Affiliation(s)
- T J Green
- Department of Paediatrics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
17
|
Goustard-Langelier B, Guesnet P, Durand G, Antoine JM, Alessandri JM. n-3 and n-6 fatty acid enrichment by dietary fish oil and phospholipid sources in brain cortical areas and nonneural tissues of formula-fed piglets. Lipids 1999; 34:5-16. [PMID: 10188591 DOI: 10.1007/s11745-999-331-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Sufficient availability of both n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFA) is required for optimal structural and functional development in infancy. The question has been raised as to whether infant formulae would benefit from enrichment with 20 and 22 carbon fatty acids. To address this issue, we determined the effect of fish oil and phospholipid (LCPUFA) sources on the fatty acid composition of brain cortical areas and nonneural tissues of newborn piglets fed artificially for 2 wk. They were fed sow milk, a control formula, or the formula enriched with n-3 fatty acids from a low-20:5n-3 fish oil added at a high or a low concentration, or the formula enriched with n-3 and n-6 fatty acids from either egg yolk- or pig brain-phospholipids. Both the fish oil- and the phospholipid-enriched formula produced significantly higher plasma phospholipid 22:6n-3 concentrations than did the control formula. The 22:6n-3 levels in the brain, hepatic, and intestinal phospholipids were significantly correlated with plasma values, whereas cardiac 22:6n-3 content appeared to follow a saturable dose-response. Feeding sow milk resulted in a much higher 20:4n-6 content in nonneural tissues than did feeding formula. Supplementation with egg phospholipid increased the 20:4n-6 content in the heart, red blood cells, plasma, and intestine in comparison to the control formula, while pig brain phospholipids exerted this effect in the heart only. The addition of 4.5% fish oil in the formula was associated with a decline in 20:4n-6 in the cortex, cerebellum, heart, liver, and plasma phospholipids, whereas using this source at 1.5% limited the decline to the cerebellum, liver, and plasma. Whatever the dietary treatment, the phosphatidylethanolamine 20:4n-6 level was 10-20% higher in the brain temporal lobe than in the parietal, frontal, and occipital lobes in the temporal lobe by administering the formula enriched with egg or brain phospholipids. In conclusion, feeding egg phospholipids to neonatal pigs increased both the 22:6n-3 content in the brain and the 20:4n-6 content in the temporal lobe cortex. This source also increased the 22:6n-3 levels in nonneural tissues with only minor alterations of 20:4n-6. These data support the notion that infant formulae should be supplemented with both 22:6n-3 and 20:4n-6 rather than with 22:6n-3 alone.
Collapse
Affiliation(s)
- B Goustard-Langelier
- Institut National de la Recherche Agronomique, Laboratoire de Nutrition et Sécurité Alimentaire, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
18
|
Cook C, Barnett J, Coupland K, Sargent J. Effects of feeding Lunaria oil rich in nervonic and erucic acids on the fatty acid compositions of sphingomyelins from erythrocytes, liver, and brain of the quaking mouse mutant. Lipids 1998; 33:993-1000. [PMID: 9832079 DOI: 10.1007/s11745-998-0297-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Feeding an oil from Lunaria biennis rich in 22:1n-9 and 24:1n-9 to homozygous quaking (qk.qk) mice caused a large increase in the percentage of 24:1n-9 and corresponding decreases in the percentage of 24:0 and 22:0 in sphingomyelins from liver, erythrocytes, and milk. Brain sphingomyelin from 2-wk-old qk.qk pups born to qk.qk mothers maintained on the Lunaria oil had essentially normal percentage of 24:1n-9 and 18:0, in contrast to pups born to mothers maintained on a control oil rich in 18:1n-9 whose brain sphingomyelin had a markedly reduced percentage of 24:1n-9 and an increased percentage of 18:0. After 2 wk and up to and beyond weaning, the qk.qk pups from Lunaria-fed mothers weaned on to the Lunaria diet had a markedly decreased percentage of 24:1n-9 in their brain sphingomyelin, accompanied by an increased percentage of 18:0, as compared to heterozygous quaking mice. However, the percentage of 24:1n-9 in brain sphingomyelin in qk.qk pups weaned on to the Lunaria diet continued throughout this period (2-8 wk postbirth) to be significantly higher than in qk.qk pups weaned on to the control diet. We conclude that dietary 24:1n-9 influences the fatty acid composition of brain sphingomyelin in qk.qk mice, but only via the mother in pre- or early postnatal animals. We further consider that the dietary effects may be elicited mainly in the sphingomyelin of nonmyelinated brain cells, and that the nervonic acid in myelin sphingomyelin may be formed mainly by chain elongation in oligodendrocytes from shorter chain fatty acid precursors.
Collapse
Affiliation(s)
- C Cook
- Department of Biological and Molecular Sciences, University of Stirling, United Kingdom
| | | | | | | |
Collapse
|
19
|
Kramer JK, Sauer FD, Farnworth ER, Stevenson D, Rock GA. Hematological and lipid changes in newborn piglets fed milk-replacer diets containing erucic acid. Lipids 1998; 33:1-10. [PMID: 9470168 DOI: 10.1007/s11745-998-0174-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Canola oil is not presently permitted in infant formulations in the United States because of lack of information concerning the effects of feeding canola oil to the newborn. We have previously reported a transient decrease in platelet counts and an increase in platelet size in newborn piglets fed canola oil for 4 wk, and have confirmed this in the present study. In canola oil-fed piglets, changes in platelet size and number were overcome by adding either long-chain saturated fatty acids from cocoa butter (16:0 and 18:0), or shorter-chain saturates from coconut oil (12:0 and 14:0). Feeding a high erucic acid rape-seed (HEAR) oil, with 20% 22:1n-9, led to an even greater platelet reduction and increased platelet size throughout the 4-wk trial. Bleeding times were longer in piglets fed canola oil or HEAR oil compared to sow-reared and soybean oil-fed piglets. There were no other diet-related changes. Diet-induced platelet changes were not related to platelet lipid class composition, but there were fatty acid changes. The incorporation of 22:1n-9 into platelet phospholipids of piglets fed canola oil was low (0.2-1.2%), and even for the HEAR oil group ranged from only 0.2% in phosphatidylinositol to 2.4% in phosphatidylserine. A much greater change was observed in the concentration of 24:1n-9 and in the 24:1n-9/24:0 ratio in platelet sphingomyelin (SM). The 24:1n-9 increased to 49% in the HEAR oil group compared to about 12% in animals fed the control diets (sow-reared piglets and soybean oil-fed group), while the 24:1n-9/24:0 ratio increased from about 1 to 12. Even feeding canola oil, prepared to contain 2% 22:1n-9, led to a marked increase in 24:1n-9 to 29% and had a 24:1n-9/24:0 ratio of 5. The canola oil/cocoa butter group, which also contained 2% 22:1n-9, showed a lower level of 24:1n-9 (20%) and the 24:1n-9/24:0 ratio (3) compared to the canola oil group. The results suggest that the diet-related platelet changes in newborn piglets may be related to an increase in 24:1n-9 in platelet SM, resulting from chain elongation of 22:1n-9. The inclusion of canola oil as the sole source of fat in the milk-replacer diets of newborn piglets resulted in significant platelet and lipid changes.
Collapse
Affiliation(s)
- J K Kramer
- Center for Food and Animal Research, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
20
|
Jensen CL, Prager TC, Fraley JK, Chen H, Anderson RE, Heird WC. Effect of dietary linoleic/alpha-linolenic acid ratio on growth and visual function of term infants. J Pediatr 1997; 131:200-9. [PMID: 9290604 DOI: 10.1016/s0022-3476(97)70154-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To determine the effect of alpha-linolenic acid (ALA) intake (or the dietary linoleic acid [LA]/ALA ratio) on the growth and visual function of term infants. STUDY DESIGN Normal term infants were assigned randomly and in masked fashion at birth to receive formulas with approximately 16% of total fatty acids as LA and 0.4%, 1.0%, 1.7%, or 3.2% of fatty acids as ALA (LA/ALA ratios of 44, 18.2, 9.7, and 4.8) for the first 4 months of life. The fatty acid pattern of plasma phospholipids was determined shortly after birth and at approximately 21, 60, and 120 days of age. Anthropometric data were obtained at the same times and also at approximately 240 days of age. Transient visual evoked responses (VERs) were measured at approximately 120 and 240 days of age. For comparisons, anthropometric and VER data also were obtained in infants who were exclusively breast-fed for the first 4 months of life. RESULTS Infants who received the formula with 3.2% ALA (LA/ALA ratio, 4.8) had higher plasma concentrations of phospholipid docosahexaenoic acid (DHA) but lower concentrations of arachidonic acid at 21, 60, and 120 days of age. Mean weight of this group at 120 days of age was 760 gm less (p < 0.05) than the mean weight of the group that received the formula with 0.4% ALA (LA/ALA ratio, 44). Despite differences in plasma phospholipid DHA contents among groups, neither VER latency nor amplitude differed significantly among formula groups or between any formula group and age-matched, breast-fed infants. CONCLUSIONS The highest versus the lowest ALA intake (or the lowest vs the highest LA/ALA ratio) resulted in higher plasma phospholipid DHA content from 21 to 120 days of age but was not associated with improved visual function as assessed by transient VER. Moreover, mean body weight of infants who received the highest versus lowest ALA intake was less at 120 days (p < 0.05). These data suggest that the lower LA/ALA ratios currently recommended for infant formulas should not be adopted until the effect of such ratios on growth are evaluated more completely.
Collapse
Affiliation(s)
- C L Jensen
- U.S. Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, University of Texas, Houston, USA
| | | | | | | | | | | |
Collapse
|
21
|
Bettger WJ, Blackadar CB. Dietary very long chain fatty acids directly influence the ratio of tetracosenoic (24:1) to tetracosanoic (24:0) acids of sphingomyelin in rat liver. Lipids 1997; 32:51-5. [PMID: 9075193 DOI: 10.1007/s11745-997-0008-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Twenty-one groups of weanling male Wistar rats were fed semipurified diets containing 5% (w/w) of different dietary fats. After 2 wk, liver sphingomyelin (SM) fatty acid composition was determined. The ratio of 24:1 to 24:0 in liver SM varied over a tenfold range in response to dietary fat type. Step-wise multiple regression analysis indicated that dietary 24:1, 24:0, and 22:1 were the most significant factors in predicting the 24:1/24:0 ratio of liver SM. The mathematical relation between the dietary fatty acid composition and liver SM 24:1/24:0 was y = 1.88 (24:1) -1.49 (24:0) +0.21 (22:1) +0.01 (18:1) +0.26, r2 = 0.95, P < 0.0001. These results were confirmed by a second experiment in which the rats were fed olive oil-based diets supplemented with various fatty acid ethyl esters.
Collapse
Affiliation(s)
- W J Bettger
- Department of Human Biology and Nutritional Sciences, University of Guelph, ON, Canada
| | | |
Collapse
|
22
|
Reyes H, Ribalta J, Hernández I, Arrese M, Pak N, Wells M, Kirsch RE. Is dietary erucic acid hepatotoxic in pregnancy? an experimental study in rats and hamsters. Hepatology 1995. [PMID: 7737644 DOI: 10.1002/hep.1840210522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Affiliation(s)
- H Reyes
- Department of Medicine, University of Chile School of Medicine, Santiago
| | | | | | | | | | | | | |
Collapse
|
23
|
Kramer JK, Sauer FD, Farnworth ER, Wolynetz MS, Jones G, Rock GA. Hematological and lipid changes in newborn piglets fed milk replacer diets containing vegetable oils with different levels of n-3 fatty acids. Lipids 1994; 29:859-68. [PMID: 7854012 DOI: 10.1007/bf02536254] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To test if linolenic acid (18:3n-3) from vegetable oils would affect bleeding times and platelet counts in newborns, piglets were used as a model fed milk replacer diets containing 25% (by wt) vegetable oils or oil mixtures for 28 d and compared to sow-reared piglets. The oils tested included soybean, canola, olive, high oleic sunflower (HOAS), a canola/coconut mixture and a mixture of oils mimicking canola in fatty acid composition. All piglets fed the milk replacer diets showed normal growth. Bleeding times increased after birth from 4-6 min to 7-10 min by week 4 (P < 0.001), and were higher in pigs fed diets containing 18:3n-3, as well as in sow-reared piglets receiving n-3 polyunsaturated fatty acids (PUFA) in the milk, as compared to diets low in 18:3n-3. Platelet numbers increased within the first week in newborn piglets from 300 to 550 x 10(9)/L, and remained high thereafter. Milk replacer diets, containing vegetable oils, generally showed a transient delay in the rise of platelet numbers, which was partially associated with an increased platelet volume. The oils showed differences in the length of delay, but by the third week of age, all platelet counts were > 500 x 10(9)/L. The delay in rise in platelet counts appeared to be related to the fatty acid composition of the oil, as the effect was reproduced by a mixture of oils with a certain fatty acid profile, and disappeared upon the addition of saturated fatty acids to the vegetable oil. There were no alterations in the coagulation factors due to the dietary oils. Blood plasma, platelets and red blood cell membranes showed increased levels of 18:3n-3 and long-chain n-3 PUFA in response to dietary 18:3n-3. The level of saturated fatty acids in blood lipids was generally lower in canola and HOAS oil-fed piglets as compared to piglets fed soybean oil or reared with the sow. The results suggest that consumption of milk replacer diets containing vegetable oils rich in 18:3n-3 does not represent a bleeding risk, and that the transient lower platelet count can be counterbalanced by the addition of saturated fatty acids to the vegetable oils.
Collapse
Affiliation(s)
- J K Kramer
- Center for Food and Animal Research, Agriculture and Agri-Food Canada, Ottawa, Ontario
| | | | | | | | | | | |
Collapse
|
24
|
Kramer JK, Sauer FD, Wolynetz MS, Farnworth ER, Johnston KM. Effects of dietary saturated fat on erucic acid induced myocardial lipidosis in rats. Lipids 1992; 27:619-23. [PMID: 1383668 DOI: 10.1007/bf02536120] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Male Sprague-Dawley rats were fed for one week diets containing 20% by weight fat/oil mixtures with different levels of erucic acid (22:1n-9) (approximately 2.5 or 9%) and total saturated fatty acids (approximately 8 or 35%). Corn oil and high erucic acid rapeseed (HEAR) oil were fed as controls. The same hearts were evaluated histologically using oil red O staining and chemically for cardiac triacylglycerol (TAG) and 22:1n-9 content in cardiac TAG to compare the three methods for assessing lipid accumulation in rat hearts. Rats fed corn oil showed trace myocardial lipidosis by staining, and a cardiac TAG content of 3.6 mg/g wet weight in the absence of dietary 22:1n-9. An increase in dietary 22:1n-9 resulted in significantly increased myocardial lipidosis as assessed histologically and by an accumulation of 22:1n-9 in heart lipids; there was no increase in cardiac TAG except when HEAR oil was fed. An increase in saturated fatty acids showed no changes in myocardial lipid content assessed histologically, the content of cardiac TAG or the 22:1n-9 content of TAG at either 2.5 or 9% dietary 22:1n-9. The histological staining method was more significantly correlated to 22:1n-9 in cardiac TAG (r = 0.49; P less than 0.001) than to total cardiac TAG (r = 0.40; P less than 0.05). The 22:1n-9 content was highest in cardiac TAG and free fatty acids. Among the cardiac phospholipids, the highest incorporation was observed into phosphatidylserine, followed by sphingomyelin. With the addition of saturated fat, the fatty acid composition showed decreased accumulation of 22:1n-9 and increased levels of arachidonic and docosahexaenoic acids in most cardiac phospholipids, despite decreased dietary concentrations of their precursor fatty acids, linoleic and linolenic acids.
Collapse
Affiliation(s)
- J K Kramer
- Center for Food and Animal Research, Agriculture Canada, Ottawa, Ontario
| | | | | | | | | |
Collapse
|