1
|
Zhou Z, Qian D, Minary-Jolandan M. Clustering of hydroxyapatite on a super-twisted collagen microfibril under mechanical tension. J Mater Chem B 2017; 5:2235-2244. [DOI: 10.1039/c6tb02835g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomistic simulation of biomineralization of a super-twisted collagen microfibril reveals that mechanical stimulation facilitates clustering and growth of hydroxyapatite onto collagen.
Collapse
Affiliation(s)
- Zhong Zhou
- Department of Mechanical Engineering
- The University of Texas at Dallas
- Richardson
- USA
| | - Dong Qian
- Department of Mechanical Engineering
- The University of Texas at Dallas
- Richardson
- USA
| | - Majid Minary-Jolandan
- Department of Mechanical Engineering
- The University of Texas at Dallas
- Richardson
- USA
- Alan G. MacDiarmid NanoTech Institute
| |
Collapse
|
2
|
A Direct Electric Field-Aided Biomimetic Mineralization System for Inducing the Remineralization of Dentin Collagen Matrix. MATERIALS 2015; 8:7889-7899. [PMID: 28793685 PMCID: PMC5458896 DOI: 10.3390/ma8115433] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/25/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022]
Abstract
This in vitro study aimed to accelerate the remineralization of a completely demineralized dentine collagen block in order to regenerate the dentinal microstructure of calcified collagen fibrils by a novel electric field-aided biomimetic mineralization system in the absence of non-collagenous proteins. Completely demineralized human dentine slices were prepared using ethylene diamine tetraacetic acid (EDTA) and treated with guanidine hydrochloride to extract the bound non-collagenous proteins. The completely demineralized dentine collagen blocks were then remineralized in a calcium chloride agarose hydrogel and a sodium hydrogen phosphate and fluoride agarose hydrogel. This process was accelerated by subjecting the hydrogels to electrophoresis at 20 mA for 4 and 12 h. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) were used to evaluate the resultant calcification of the dentin collagen matrix. SEM indicated that mineral particles were precipitated on the intertubular dentin collagen matrix; these densely packed crystals mimicked the structure of the original mineralized dentin. However, the dentinal tubules were not occluded by the mineral crystals. XRD and EDX both confirmed that the deposited crystals were fluorinated hydroxyapatite. TEM revealed the existence of intrafibrillar and interfibrillar mineralization of the collagen fibrils. A novel electric field-aided biomimetic mineralization system was successfully developed to remineralize a completely demineralized dentine collagen matrix in the absence of non-collagenous proteins. This study developed an accelerated biomimetic mineralization system which can be a potential protocol for the biomineralization of dentinal defects.
Collapse
|
3
|
Zimmermann EA, Ritchie RO. Bone as a Structural Material. Adv Healthc Mater 2015; 4:1287-304. [PMID: 25865873 DOI: 10.1002/adhm.201500070] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/12/2015] [Indexed: 01/02/2023]
Abstract
As one of the most important natural materials, cortical bone is a composite material comprising assemblies of tropocollagen molecules and nanoscale hydroxyapatite mineral crystals, forming an extremely tough, yet lightweight, adaptive and multi-functional material. Bone has evolved to provide structural support to organisms, and therefore its mechanical properties are vital physiologically. Like many mineralized tissues, bone can resist deformation and fracture from the nature of its hierarchical structure, which spans molecular to macroscopic length-scales. In fact, bone derives its fracture resistance with a multitude of deformation and toughening mechanisms that are active at most of these dimensions. It is shown that bone's strength and ductility originate primarily at the scale of the nano to submicrometer structure of its mineralized collagen fibrils and fibers, whereas bone toughness is additionally generated at much larger, micro- to near-millimeter, scales from crack-tip shielding associated with interactions between the crack path and the microstructure. It is further shown how the effectiveness with which bone's structural features can resist fracture at small to large length-scales can become degraded by biological factors such as aging and disease, which affect such features as the collagen cross-linking environment, the homogeneity of mineralization, and the density of the osteonal structures.
Collapse
Affiliation(s)
| | - Robert O. Ritchie
- Materials Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
- Department of Materials Science & Engineering; University of California; Berkeley CA 94720 USA
| |
Collapse
|
4
|
Li D, Newton SMC, Klebba PE, Mao C. Flagellar display of bone-protein-derived peptides for studying peptide-mediated biomineralization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16338-16346. [PMID: 23148645 PMCID: PMC3508360 DOI: 10.1021/la303237u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A bacterial flagellum is self-assembled primarily from thousands of flagellin (FliC), a protein subunit. A foreign peptide can be fully displayed on the surface of the flagellum through inserting it into every constituent protein subunit. To shed light on the role of bone proteins during the nucleation of hydroxyapatite (HAP), representative domains from type I collagen, including part of the N-,C-terminal, N-,C-zone around the hole zone and an eight repeat unit Gly-Pro-Pro (GPP8) sequence similar to the central sequence of type I collagen, were separately displayed on the surface of the flagella. Moreover, eight negatively charged, contiguous glutamic acid residues (E8) and two other characteristic sequences derived from a representative noncollagenous protein called bone sialoprotein (BSP) were also displayed on flagella. After being incubated in an HAP supersaturated precursor solution, flagella displaying E8 or GPP8 sequences were found to be coated with a layer of HAP nanocrystals. Very weak or no nucleation was observed on flagella displaying other peptides being tested. We also found that calcium ions can induce the assembly of the negatively charged E8 flagella into bundles mimicking collagen fibers, followed by the formation of HAP nanocrystals with the crystallographic c axis preferentially aligned with long axis of flagella, which is similar to that along the collagen fibrils in bone. This work demonstrates that because of the ease of the peptide display on flagella and the self-assembly of flagella, flagella can serve as a platform for studying biomineralization and as a building block to generate bonelike biomaterials.
Collapse
|
5
|
Alexander B, Daulton TL, Genin GM, Lipner J, Pasteris JD, Wopenka B, Thomopoulos S. The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure. J R Soc Interface 2012; 9:1774-86. [PMID: 22345156 PMCID: PMC3385760 DOI: 10.1098/rsif.2011.0880] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/26/2012] [Indexed: 11/12/2022] Open
Abstract
The nanometre-scale structure of collagen and bioapatite within bone establishes bone's physical properties, including strength and toughness. However, the nanostructural organization within bone is not well known and is debated. Widely accepted models hypothesize that apatite mineral ('bioapatite') is present predominantly inside collagen fibrils: in 'gap channels' between abutting collagen molecules, and in 'intermolecular spaces' between adjacent collagen molecules. However, recent studies report evidence of substantial extrafibrillar bioapatite, challenging this hypothesis. We studied the nanostructure of bioapatite and collagen in mouse bones by scanning transmission electron microscopy (STEM) using electron energy loss spectroscopy and high-angle annular dark-field imaging. Additionally, we developed a steric model to estimate the packing density of bioapatite within gap channels. Our steric model and STEM results constrain the fraction of total bioapatite in bone that is distributed within fibrils at less than or equal to 0.42 inside gap channels and less than or equal to 0.28 inside intermolecular overlap regions. Therefore, a significant fraction of bone's bioapatite (greater than or equal to 0.3) must be external to the fibrils. Furthermore, we observe extrafibrillar bioapatite between non-mineralized collagen fibrils, suggesting that initial bioapatite nucleation and growth are not confined to the gap channels as hypothesized in some models. These results have important implications for the mechanics of partially mineralized and developing tissues.
Collapse
Affiliation(s)
- Benjamin Alexander
- Department of Mechanical Engineering and Materials Science, Washington University, Saint Louis MO, 63130, USA
| | - Tyrone L. Daulton
- Department of Physics, Washington University, Saint Louis MO, 63130, USA
- Center for Materials Innovation, Washington University, Saint Louis MO, 63130, USA
| | - Guy M. Genin
- Department of Mechanical Engineering and Materials Science, Washington University, Saint Louis MO, 63130, USA
- Center for Materials Innovation, Washington University, Saint Louis MO, 63130, USA
| | - Justin Lipner
- Department of Orthopaedic Surgery, Washington University, Saint Louis MO, 63130, USA
- Department of Biomedical Engineering, Washington University, Saint Louis MO, 63130, USA
| | - Jill D. Pasteris
- Center for Materials Innovation, Washington University, Saint Louis MO, 63130, USA
- Department of Earth and Planetary Sciences, Washington University, Saint Louis MO, 63130, USA
| | - Brigitte Wopenka
- Center for Materials Innovation, Washington University, Saint Louis MO, 63130, USA
- Department of Earth and Planetary Sciences, Washington University, Saint Louis MO, 63130, USA
| | - Stavros Thomopoulos
- Center for Materials Innovation, Washington University, Saint Louis MO, 63130, USA
- Department of Orthopaedic Surgery, Washington University, Saint Louis MO, 63130, USA
- Department of Biomedical Engineering, Washington University, Saint Louis MO, 63130, USA
| |
Collapse
|
6
|
Nudelman F, Bomans PHH, George A, de With G, Sommerdijk NAJM. The role of the amorphous phase on the biomimetic mineralization of collagen. Faraday Discuss 2012; 159:357-370. [PMID: 25383016 DOI: 10.1039/c2fd20062g] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bone is a hierarchically structured composite material whose basic building block is the mineralized collagen fibril, where the collagen is the scaffold into which the hydroxyapatite (HA) crystals nucleate and grow. Understanding the mechanisms of hydroxyapatite formation inside the collagen is key to unravelling osteogenesis. In this work, we employed a biomimetic in vitro mineralization system to investigate the role of the amorphous precursor calcium phosphate phase in the mineralization of collagen. We observed that the rate of collagen mineralization is highly dependent on the concentration of polyaspartic acid, an inhibitor of hydroxyapatite nucleation and inducer of intrafibrillar mineralization. The lower the concentration of the polymer, the faster the mineralization and crystallization. Addition of the non-collagenous protein C-DMP1, a nucleator of hydroxyapatite, substantially accelerates mineral infiltration as well as HA nucleation. We have also demonstrated that Cu ions interfere with the mineralization process first by inhibiting the entry of the calcium phosphate into the collagen, and secondly by stabilizing the ACP, such that it does not convert into HA. Interestingly, under these conditions mineralization happens preferentially in the overlap regions of the collagen fibril. Our results show that the interactions between the amorphous precursor phase and the collagen fibril play an important role in the control over mineralization.
Collapse
Affiliation(s)
- Fabio Nudelman
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. ; Tel: 31 40 247 5870
| | - Paul H H Bomans
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. ; Tel: 31 40 247 5870
| | - Anne George
- Department of Oral Biology, University of Illinois, Chicago, USA. ; Tel: +1 312 413 0738
| | - Gijsbertus de With
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. ; Tel: 31 40 247 5870
| | - Nico A J M Sommerdijk
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. ; Tel: 31 40 247 5870
| |
Collapse
|
7
|
Silver FH, Landis WJ. Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type I collagen. Connect Tissue Res 2011; 52:242-54. [PMID: 21405976 DOI: 10.3109/03008207.2010.551567] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The positions of charged residues in the primary sequence of amino acids comprising the molecular model of type I collagen, the major extracellular protein found in vertebrate tissues, have been earlier characterized by Chapman and Hardcastle [Chapman, J.A., and Hardcastle, R.A. (1974). The staining pattern of collagen fibrils. II. A comparison with patterns computer-generated from the amino acid sequence. Connect. Tissue Res. 2:151-159]. When the sequence of residues is packed in the quarter-staggered arrangement described originally by Hodge and Petruska [Hodge, A.J., and Petruska, J.A. (1963). Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule. In Aspects of Protein Structure, G.N. Ramachandran (ed.) pp. 289-300. New York: Academic Press] in two dimensions and in the quasi-hexagonal model of microfibrillar assembly and molecular packing structure in three dimensions detailed recently by Orgel et al. (Orgel, J.P.R.O., Miller, A., Irving, T.C., Fischetti, R.F., Hammersley, A.P., and Wess, T.J. (2001). The in situ supermolecular structure of type I collagen. Structure 9:1061-1069; Orgel, J.P.R.O., Irving, T.C., Miller, A., and Wess, T.J. (2006). Microfibrillar structure of type I collagen in situ. Proc. Natl. Acad. Sci. U.S.A. 103: 9001-9005], the common sites of charged amino acids, specifically glutamic and aspartic acid, lysine and arginine, and hydroxylysine and histidine, of type I collagen have been examined in the present study and their locations determined in relation to one another. The respective positions of these amino acid residues are notable in several features in two dimensions within a single collagen triple helix as well as in adjacent helices. There are, first, numerous sites in which the same amino acid is adjacent in each of the three collagen helices. Second, many sites exist in which two of the same amino acids and one of the same charge are adjacent in the three helices. Third, the same two or three glutamic and/or aspartic amino acids are found in close proximity to amino acids with their counterparts, aspartic and glutamic acid, respectively. Fourth, several sites occur in which the same two or three amino acids of one charge are present in close proximity to the same two or three amino acids of opposite charge (glutamic acid and lysine or arginine residues or aspartic acid and lysine or arginine residues). Fifth, there are several sites where hydroxylysine contributes charged groups in place of one of the three lysine or arginine residues common in adjacent collagen helices. The strikingly repetitive and close nature of these specific charged groups in two dimensions is even more apparent when the molecular packing structure is investigated in three dimensions. In this instance, the most recent model of Orgel et al. [Orgel, J.P.R.O., Irving, T.C., Miller, A., and Wess, T.J. (2006). Microfibrillar structure of type I collagen in situ. Proc. Natl. Acad. Sci. U.S.A. 103: 9001-9005] has been correlated for the first time with the model of Landis et al. [Landis, W.J., Song, M.J., Leith, A., McEwen, L., and McEwen, B. (1993). Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high voltage electron microscopic tomography and graphic image reconstruction. J. Struct. Biol. 110: 39-54] showing channels traversing molecular arrays of collagen. Here, many of the charged amino acid sites correspond to the known type I collagen hole zones defined by Hodge and Petruska [Hodge, A.J., and Petruska, J.A. (1963). Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule. In Aspects of Protein Structure, G.N. Ramachandran (ed.) pp. 289-300. New York: Academic Press]. As such, these residues present the locations highly likely to bind Ca(2+) and [Formula: see text] ions in stereochemical configurations that could serve directly as nucleation centers for the subsequent growth and development of apatite crystals representing initial events in vertebrate mineralization. Based on these results, type I collagen appears to provide a molecular framework for direct formation of apatite without the necessary intervention or mediation of other molecules in extracellular matrices of vertebrate calcifying tissues.
Collapse
Affiliation(s)
- Frederick H Silver
- Department of Pathology and Laboratory Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | |
Collapse
|
8
|
Nudelman F, Pieterse K, George A, Bomans PHH, Friedrich H, Brylka LJ, Hilbers PAJ, de With G, Sommerdijk NAJM. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. NATURE MATERIALS 2010; 9:1004-9. [PMID: 20972429 PMCID: PMC3084378 DOI: 10.1038/nmat2875] [Citation(s) in RCA: 727] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 09/07/2010] [Indexed: 05/18/2023]
Abstract
Bone is a composite material in which collagen fibrils form a scaffold for a highly organized arrangement of uniaxially oriented apatite crystals. In the periodic 67 nm cross-striated pattern of the collagen fibril, the less dense 40-nm-long gap zone has been implicated as the place where apatite crystals nucleate from an amorphous phase, and subsequently grow. This process is believed to be directed by highly acidic non-collagenous proteins; however, the role of the collagen matrix during bone apatite mineralization remains unknown. Here, combining nanometre-scale resolution cryogenic transmission electron microscopy and cryogenic electron tomography with molecular modelling, we show that collagen functions in synergy with inhibitors of hydroxyapatite nucleation to actively control mineralization. The positive net charge close to the C-terminal end of the collagen molecules promotes the infiltration of the fibrils with amorphous calcium phosphate (ACP). Furthermore, the clusters of charged amino acids, both in gap and overlap regions, form nucleation sites controlling the conversion of ACP into a parallel array of oriented apatite crystals. We developed a model describing the mechanisms through which the structure, supramolecular assembly and charge distribution of collagen can control mineralization in the presence of inhibitors of hydroxyapatite nucleation.
Collapse
Affiliation(s)
- Fabio Nudelman
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Koen Pieterse
- Biomodeling and Bioinformatics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anne George
- Department of Oral Biology, University of Illinois, Chicago, USA
| | - Paul H. H. Bomans
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Heiner Friedrich
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Laura J. Brylka
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter A. J. Hilbers
- Biomodeling and Bioinformatics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Gijsbertus de With
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Nico A. J. M. Sommerdijk
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Correspondence and requests for materials should be addressed to N.A.J.M.S.
| |
Collapse
|
9
|
Landis WJ, Silver FH, Freeman JW. Collagen as a scaffold for biomimetic mineralization of vertebrate tissues. ACTA ACUST UNITED AC 2006. [DOI: 10.1039/b505706j] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Nyman JS, Reyes M, Wang X. Effect of ultrastructural changes on the toughness of bone. Micron 2005; 36:566-82. [PMID: 16169742 DOI: 10.1016/j.micron.2005.07.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Revised: 06/27/2005] [Accepted: 07/04/2005] [Indexed: 11/20/2022]
Abstract
The ultrastructure of bone can be considered as a conjunction between the biology and the biomechanics of the tissue. It is the result of cellular and molecular activities of bone formation, and its organization dominates the mechanical behavior of bone. Following this perspective, the objective of this review is to provide a current understanding of bone ultrastructure and its relationships with the toughness of the tissue. Therefore, we first provide a discussion on the organization of bone constituents, namely collagen, mineral, and water. Then, we present evidence on how the toughness of bone relates to its ultrastructure through the formation of micro damage. In addition, attention is given to how damage accumulation serves as a toughening mechanism. Finally, we describe how changes in the ultrastructure-caused by osteogenesis imperfecta, gamma irradiation, fluoride treatment, and aging affect the toughness and competence of bone.
Collapse
Affiliation(s)
- Jeffry S Nyman
- Mechanical Engineering and Biomechanics, University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
11
|
Landis WJ, Silver FH. The structure and function of normally mineralizing avian tendons. Comp Biochem Physiol A Mol Integr Physiol 2002; 133:1135-57. [PMID: 12485697 DOI: 10.1016/s1095-6433(02)00248-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The leg tendons of certain avian species normally calcify. The gastrocnemius, or Achilles, tendon of the domestic turkey, Meleagris gallopavo, is one such example. Its structure and biomechanical properties have been studied to model the adaptive nature of this tendon to external forces, including the means by which mineral deposition occurs and the functional role mineralization may play in this tissue. Structurally, the distal rounded, thick gastrocnemius bifurcates into two smaller proximal segments that mineralize with time. Mineral deposition occurs at or near the bifurcation, proceeding in a distal-to-proximal direction along the segments toward caudal and medial muscle insertions of the bird hip. Mineral formation appears mediated first by extracellular matrix vesicles and later by type I collagen fibrils. Biomechanical analyses indicate lower tensile strength and moduli for the thick distal gastrocnemius compared to narrow, fan-shaped proximal segments. Tendon mineralization here appears to be strain-induced, the muscle forces causing matrix deformation leading conceptually to calcium binding through the exposure of charged groups on collagen, release of sequestered calcium by proteoglycans, and increased diffusion. Functionally, the mineralized tendons limit further tendon deformation, reduce tendon strain at a given stress, and provide greater load-bearing capacity to the tissue. They also serve as important and efficient elastic energy storage reservoirs, increasing the amount of stored elastic energy by preventing flexible type I collagen regions from stretching and preserving muscle energy during locomotion of the animals.
Collapse
Affiliation(s)
- William J Landis
- Department of Biochemistry and Molecular Pathology, Northeastern Ohio Universities College of Medicine, Rootstown, OH 44272, USA.
| | | |
Collapse
|
12
|
Abstract
Structural characteristics of normally calcifying leg tendons of the domestic turkey Meleagris gallopavo have been observed for the first time by tapping mode atomic force microscopy (TMAFM), and phase as well as corresponding topographic images were acquired to gain insight into the features of mineralizing collagen fibrils and fibers. Analysis of different regions of the tendon has yielded new information concerning the structural interrelationships in vivo between collagen fibrils and fibers and mineral crystals appearing in the form of plates and plate aggregates. TMAFM images show numerous mineralized collagen structures exhibiting characteristic periodicity (54-70 nm), organized with their respective long axes parallel to each other. In some instances, mineral plates (30-40 nm thick) are found interspersed between and in intimate contact with the mineralized collagen. The edges of such plates lie parallel to the neighboring collagen. Many of these plates appear to be aligned to form larger aggregates (475-600 nm long x 75-90 nm thick) that also retain collagen periodicity along their exposed edges. Intrinsic structural properties of the mineralizing avian tendon have not previously been described on the scale reported in this study. These data provide the first visual evidence supporting the concept that larger plates form from parallel association of smaller ones, and the data fill a gap in knowledge between macromolecular- and anatomic-scale studies of the mineralization of avian tendon and connective tissues in general. The observed organization of mineralized collagen, plates, and plate aggregates maintaining a consistently parallel nature demonstrates the means by which increasing structural complexity may be achieved in a calcified tissue over greater levels of hierarchical order.
Collapse
Affiliation(s)
- L M Siperko
- Department of Biochemistry and Molecular Pathology, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272, USA
| | | |
Collapse
|
13
|
Abstract
OBJECTIVE This study examined, with the use of transmission electron microscopy (TEM), the aggressiveness of three self-etching adhesive systems in penetrating dentin smear layers of different thickness. METHODS Dentin disks were produced from extracted human third molars. For the control group, the middle dentin surface was cryofractured to create a bonding surface that was devoid of a smear layer. The experimental teeth were polished with wet 600 or 60-grit SiC paper to produce bonding surfaces with thin and thick smear layers. They were bonded using one of the three self-etching systems: Clearfil Mega Bond (Kuraray), Non-Rinse Conditioner and Prime&Bond NT (Dentsply DeTrey) and Prompt L-Pop (ESPE). Bonded specimens were then demineralized and embedded in epoxy resin for TEM examination. RESULTS For Mega Bond, thin authentic hybrid layers between 0.4-0.5 microm were found. Smear layer and smear plugs were retained as part of the hybridized complex. For Non-Rinse Conditioner/Prime&Bond NT, the authentic hybrid layers were between 1.2-2.2 microm thick. Smear layer and smear plugs were completely dissolved in dentin with thin smear layers, but were partially retained as part of the hybridized complex in those with thick smear layers. For Prompt L-Pop, authentic hybrid layers were 2.5-5 microm thick and smear layer and smear plugs were completely dissolved even in dentin with thick smear layers. SIGNIFICANCE Contemporary self-etching systems may be classified as mild, moderate and aggressive based on their ability to penetrate dentin smear layers and their depth of demineralization into the subsurface dentin. The more aggressive system completely solubilized the smear layer and smear plugs and formed hybrid layers with a thickness approaching those of phosphoric acid conditioned dentin.
Collapse
Affiliation(s)
- F R Tay
- Conservative Dentistry, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR, China
| | | |
Collapse
|
14
|
Campbell BG, Wootton JA, MacLeod JN, Minor RR. Sequence of normal canine COL1A1 cDNA and identification of a heterozygous alpha1(I) collagen Gly208Ala mutation in a severe case of canine osteogenesis imperfecta. Arch Biochem Biophys 2000; 384:37-46. [PMID: 11147834 DOI: 10.1006/abbi.2000.2099] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sequence of canine COL1A1 cDNA was determined from four overlapping COL1A1 RT-PCR products generated from canine fibroblast RNA. In the translated region, nucleotide identity between canine and human COL1A1 cDNA was 93.2%, although the canine sequence lacked nucleotides 204 to 215 in the region coding for the N-propeptide. Amino acid identity was 97.7%. Total RNA and type I collagen were collected from cultured skin fibroblasts of a 12-week-old male golden retriever with pathologic fractures suggestive of osteogenesis imperfecta (OI) and dentinogenesis imperfecta. Sequential, overlapping approximately 1,000-bp fragments of COL1A1 and COL1A2 cDNA were each amplified by RT-PCR using primers containing 5' T7 polymerase sites. These PCR products were transcribed with T7 RNA polymerase, hybridized into RNA duplexes, and cleaved at mismatch sites with RNase. The proband had an unique cleavage pattern for the fragment of COL1A1 mRNA spanning nucleotides 709 to 1,531. Sequence analysis identified a G to C point mutation for nucleotide 1,276, predicting a codon change from glycine (GGA) to alanine (GCA) for amino acid 208. This change disrupts the normal Gly-X-Y pattern of the collagen triple helix. Restriction enzyme digestion of the RT-PCR product was consistent with a heterozygous COL1A1 mutation. Type I collagen was labeled with 3H-proline, salt precipitated, and analyzed by SDS-PAGE. Pepsin digested alpha chains were over-hydroxylated, and procollagen processing was delayed. Thus, canine and human OI appear homologous in terms of clinical presentation, etiology, and pathogenesis.
Collapse
Affiliation(s)
- B G Campbell
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
15
|
Beniash E, Traub W, Veis A, Weiner S. A transmission electron microscope study using vitrified ice sections of predentin: structural changes in the dentin collagenous matrix prior to mineralization. J Struct Biol 2000; 132:212-25. [PMID: 11243890 DOI: 10.1006/jsbi.2000.4320] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The assembly of the collagenous organic matrix prior to mineralization is a key step in the formation of bones and teeth. This process was studied in the predentin of continuously forming rat incisors, using unstained vitrified ice sections examined in the transmission electron microscope. Progressing from the odontoblast surface to the mineralization front, the collagen fibrils thicken to ultimately form a dense network, and their repeat D-spacings and banding patterns vary. Using immunolocalization, the most abundant noncollagenous protein in dentin, phosphophoryn, was mapped to the boundaries between the gap and overlap zones along the fibrils nearest the mineralization front. It thus appears that the premineralized collagen matrix undergoes dynamic changes in its structure. These may be mediated by the addition and interaction with the highly anionic noncollagenous proteins associated with collagen. These changes presumably create a collagenous framework that is able to mineralize.
Collapse
Affiliation(s)
- E Beniash
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | |
Collapse
|
16
|
Iijima M, Moriwaki Y, Kuboki Y. Oriented and lengthwise growth of octacalcium phosphate on collagenous matrix in vitro. Connect Tissue Res 1997; 36:51-61. [PMID: 9298623 DOI: 10.3109/03008209709160213] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A correlation among the oriented growth of octacalcium phosphate (OCP), the arrangement of the collagen fibrils in a collagenous matrix and direction of ionic flow was studied in vitro at pH7.0 and at 37 degrees, using two types of collagen disks made from sliced bovine Achilles tendon. Disk A and disk B were made from slices cut perpendicular and parallel to the collagen fibrils, respectively. The products on the collagen fibrils were a mixture of OCP and apatite in the both disks, but the relative amounts of apatite and OCP could not be determined. Short plate-like or flake-like OCP crystals grew parallel to the collagen fibrils and ionic flow on the Ca-side of the disk A. On the contrary, ribbon-like or rectangular OCP crystals grew along the collagen fibrils lying on the disk B. Apatite also grew with the same orientation as OCP in the both cases. The oriented and length-wise growth of OCP crystals on the disk B was ascribed to the arrangement of the collagen fibrils in the disk.
Collapse
Affiliation(s)
- M Iijima
- Asahi University School of Dentistry, Dental Materials and Technology, Gifu, Japan
| | | | | |
Collapse
|
17
|
Iijima M, Moriwaki Y, Kuboki Y. Oriented growth of octacalcium phosphate on and inside the collagenous matrix in vitro. Connect Tissue Res 1995; 33:197-202. [PMID: 7554955 DOI: 10.3109/03008209509017002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To investigate the factors which regulate the growth of apatite in a collagenous matrix, a calcification experiment was carried out in a model system, where Ca2+ and PO43- ions diffused into a slice of Achilles tendon from mutually opposite grew on the Ca-side of the collagenous matrix, while small plate-like OCP crystals (< 1 micron) grew inside the matrix. The major part of crystals grew with the c-axis parallel to the collagen fibers. Others grew with the c-axis parallel to the collagen bands or perpendicular to the fibrils. Crystals grew with orientation on collagen fibrils from the beginning. It was concluded that collagen fibrils and property of the collagenous matrix played a regulatory role in the deposition and growth of OCP in the collagenous matrix.
Collapse
Affiliation(s)
- M Iijima
- Asahi University, School of Dentistry, Gifu, Japan
| | | | | |
Collapse
|
18
|
Kirkham J, Brookes SJ, Shore RC, Bonass WA, Robinson C. The effect of glycosylaminoglycans on the mineralization of sheep periodontal ligament in vitro. Connect Tissue Res 1995; 33:23-9. [PMID: 7554959 DOI: 10.3109/03008209509016977] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effect of removal of glycosylaminoglycans on the mineralization of sheep periodontal ligament was determined using enzyme digests followed by incubation in solutions supersaturated with respect to hydroxyapatite at pH 7.4. TEM revealed that control periodontal ligament remained unmineralized. However, tissue from which glycosylaminoglycans had been removed contained plate-like crystals arranged parallel to and within the collagen fibrils. Electron probe and electron diffraction studies suggested that the crystals were apatitic with a similar order of crystallinity to dentine, and a Ca:P ratio of 1.61. In addition, the glycosylaminoglycan content of periodontal ligament, cementum and alveolar bone was compared using cellulose acetate electrophoresis. Periodontal ligament contained predominantly dermatan sulfate while cementum and alveolar bone contained mostly chondroitin sulfate. A role for glycosylaminoglycans in maintaining the unmineralized state of the periodontal ligament is suggested. Control of expression of specific proteoglycan species on a spatially restricted basis is presumably central to this role.
Collapse
Affiliation(s)
- J Kirkham
- Division of Oral Biology, Leeds Dental Institute, University of Leeds, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Substitution of an aspartic acid for glycine 700 in the alpha 2(I) chain of type I collagen in a recurrent lethal type II osteogenesis imperfecta dramatically affects the mineralization of bone. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36689-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Traub W, Arad T, Weiner S. Origin of mineral crystal growth in collagen fibrils. MATRIX (STUTTGART, GERMANY) 1992; 12:251-5. [PMID: 1435508 DOI: 10.1016/s0934-8832(11)80076-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Collagen fibrils from young turkey-leg tendons, just beginning to mineralize, were stained with uranyl acetate and examined by electron microscopy. Small needle-like mineral crystals were observed and located, in relation to the collagen banding pattern, as originating at the e band in the gap region and near the surface of the fibrils. These are evidently the sites of crystal nucleation. They lie near binding locations on collagen fibrils of two glycosylated proteins believed to be implicated in the mineralization process, as well as the sites of early crystals in embryonic fowl bones.
Collapse
Affiliation(s)
- W Traub
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
21
|
Abstract
Bone and several other vertebrate mineralized tissues are formed by the organized growth of crystals of carbonated apatite within a matrix of type 1 collagen fibers. The development of this process in isolated fibrils of young turkey leg tendons has been studied by transmission electron microscopy. Collagen banding, presumably due to ion concentration, precedes the appearance of any crystals. The smallest crystals observed are short needles in bands near the surface of the fibrils. Longer needles, up to the length of the collagen gap regions, were also seen, and, evidently at a later stage, single crystal belts extending partly or wholly through the fibrils. Finally, in mature tendon crystal platelets, seemingly derived from the cracking of belts, extend partly into the collagen overlap zone. In the least mineralized tendon, extrafibrillar mineral-containing vesicles have occasionally been observed adjacent to regions of radiating needle crystal growth in the fibrils, and, more commonly, smaller particles adjacent to bands of very small needles.
Collapse
Affiliation(s)
- W Traub
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
22
|
Arsenault AL. Image analysis of mineralized and non-mineralized type I collagen fibrils. JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE 1991; 18:262-8. [PMID: 1880599 DOI: 10.1002/jemt.1060180308] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Turkey leg tendons at an early stage of mineralization have been thin sectioned and imaged by electron microscopy. At this stage collagen-associated mineral apatite was found to be present within both the gap and overlap zones. The earliest apatite occurs in a microcrystalline form which gives a rather generalized and characteristic density to both the gap and overlap zones; with subsequent development larger defined apatite crystals arise which span gap/overlap zones. Fourier transformation of such images revealed the major 67 nm axial repeat of the gap/overlap zone plus four other maxima corresponding to repeat spacings of 22, 16, 13, and 11 nm respectively. Computer imaging techniques were used to reconstruct images by using selected spatial frequencies from such transforms. In this manner the subperiodic distributions of mineral were visually enhanced. These subperiodicities are positioned in an asymmetric fashion over the entire D unit repeat aligning with the molecular orientation of the fibril. Analyses of both negatively stained collagen and computer-generated maps of collagen hydrophobicity were compared to the mineral distribution of collagen. Densitometric comparisons showed a positional correlation between the axial banding patterns of mineralized fibrils and those of negatively stained non-mineralized fibrils. Comparable spatial frequencies were also present in transforms between hydrophobic maps and mineral distribution of collagen. These results suggest that the lateral clusterings of hydrophobic residues which span the fibril at specific sites in both the gap and overlap zones serve to prohibit early mineral deposition. This observed hydrophobic influence in combination with the gap space appear as contributing factors in the observed axial distribution of mineral within collagen.
Collapse
Affiliation(s)
- A L Arsenault
- Electron Microscopic Facility, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|