1
|
Granzymes in cardiovascular injury and disease. Cell Signal 2020; 76:109804. [PMID: 33035645 DOI: 10.1016/j.cellsig.2020.109804] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
Chronic inflammation and impaired wound healing play important roles in the pathophysiology of cardiovascular diseases. Moreover, the aberrant secretion of proteases plays a critical role in pathological tissue remodeling in chronic inflammatory conditions. Human Granzymes (Granule secreted enzymes - Gzms) comprise a family of five (GzmA, B, H, K, M) cell-secreted serine proteases. Although each unique in function and substrate specificities, Gzms were originally thought to share redundant, intracellular roles in cytotoxic lymphocyte-induced cell death. However, an abundance of evidence has challenged this dogma. It is now recognized, that individual Gzms exhibit unique substrate repertoires and functions both intracellularly and extracellularly. In the extracellular milieu, Gzms contribute to inflammation, vascular dysfunction and permeability, reduced cell adhesion, release of matrix-sequestered growth factors, receptor activation, and extracellular matrix cleavage. Despite these recent findings, the non-cytotoxic functions of Gzms in the context of cardiovascular disease pathogenesis remain poorly understood. Minimally detected in tissues and bodily fluids of normal individuals, GzmB is elevated in patients with acute coronary syndromes, coronary artery disease, and myocardial infarction. Pre-clinical animal models have exemplified the importance of GzmB in atherosclerosis, aortic aneurysm, and cardiac fibrosis as animals deficient in GzmB exhibit reduced tissue remodeling, improved disease phenotypes and increased survival. Although a role for GzmB in cardiovascular disease is described, further work to elucidate the mechanisms that underpin the remaining human Gzms activity in cardiovascular disease is necessary. The present review provides a summary of the pre-clinical and clinical evidence, as well as emerging areas of research pertaining to Gzms in tissue remodeling and cardiovascular disease.
Collapse
|
2
|
Yang J, Vrettou C, Connelley T, Morrison WI. Identification and annotation of bovine granzyme genes reveals a novel granzyme encoded within the trypsin-like locus. Immunogenetics 2018; 70:585-597. [PMID: 29947943 PMCID: PMC6096847 DOI: 10.1007/s00251-018-1062-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/09/2018] [Indexed: 11/26/2022]
Abstract
Granzymes are a family of serine proteases found in the lytic granules of cytotoxic T lymphocytes and natural killer (NK) cells, which are involved in killing of susceptible target cells. Most information on granzymes and their enzymatic specificities derive from studies in humans and mice. Although granzymes shared by both species show a high level of conservation, the complement of granzyme genes differs between the species. The aim of this study was to identify granzyme genes expressed in cattle, determine their genomic locations and analyse their sequences to predict likely functional specificities. Orthologues of the five granzyme genes found in humans (A, B, H, K and M) were identified, as well a novel gene designated granzyme O, most closely related to granzyme A. An orthologue of granzyme O was found in pigs and a non-function version was detected in the human genome. Use of specific PCRs demonstrated that all of these genes, including granzyme O, are expressed in activated subsets of bovine lymphocytes, with particularly high levels in CD8 T cells. Consistent with findings in humans and mice, the granzyme-encoding genes were located on three distinct genomic loci, which correspond to different proteolytic enzymatic activities, namely trypsin-like, chymotrypsin-like and metase-like. Analysis of amino acid sequences indicated that the granzyme proteins have broadly similar enzymatic specificities to their human and murine counterparts but indicated that granzyme B has a different secondary specificity. These findings provide the basis for further work to examine their role in the cytotoxic activity of bovine CD8 T cells.
Collapse
Affiliation(s)
- Jie Yang
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH8 9YL, UK.,Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2QG, UK
| | - Christina Vrettou
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - Tim Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - W Ivan Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH8 9YL, UK.
| |
Collapse
|
3
|
Vahedi F, Fraleigh N, Vlasschaert C, McElhaney J, Hanifi-Moghaddam P. Human granzymes: Related but far apart. Med Hypotheses 2014; 83:688-93. [DOI: 10.1016/j.mehy.2014.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/12/2014] [Indexed: 11/30/2022]
|
4
|
Blessing or curse? Proteomics in granzyme research. Proteomics Clin Appl 2014; 8:351-81. [DOI: 10.1002/prca.201300096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/29/2013] [Accepted: 12/21/2013] [Indexed: 01/08/2023]
|
5
|
Joeckel LT, Bird PI. Are all granzymes cytotoxic in vivo? Biol Chem 2014; 395:181-202. [DOI: 10.1515/hsz-2013-0238] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 08/30/2013] [Indexed: 01/01/2023]
Abstract
Abstract
Granzymes are serine proteases mainly found in cytotoxic lymphocytes. The most-studied member of this group is granzyme B, which is a potent cytotoxin that has set the paradigm that all granzymes are cyototoxic. In the last 5 years, this paradigm has become controversial. On one hand, there is a plethora of sometimes contradictory publications showing mainly caspase-independent cytotoxic effects of granzyme A and the so-called orphan granzymes in vitro. On the other hand, there are increasing numbers of reports of granzymes failing to induce cell death in vitro unless very high (potentially supra-physiological) concentrations are used. Furthermore, experiments with granzyme A or granzyme M knock-out mice reveal little or no deficit in their cytotoxic lymphocytes’ killing ability ex vivo, but indicate impairment in the inflammatory response. These findings of non-cytotoxic effects of granzymes challenge dogma, and thus require alternative or additional explanations to be developed of the role of granzymes in defeating pathogens. Here we review evidence for granzyme cytotoxicity, give an overview of their non-cytotoxic functions, and suggest technical improvements for future investigations.
Collapse
|
6
|
Granzyme M: behind enemy lines. Cell Death Differ 2014; 21:359-68. [PMID: 24413154 DOI: 10.1038/cdd.2013.189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/12/2013] [Accepted: 11/27/2013] [Indexed: 11/08/2022] Open
Abstract
The granule-exocytosis pathway is the major mechanism via which cytotoxic lymphocytes eliminate virus-infected and tumor cells. In this pathway, cytotoxic lymphocytes release granules containing the pore-forming protein perforin and a family of serine proteases known as granzymes into the immunological synapse. Pore-formation by perforin facilitates entry of granzymes into the target cell, where they can activate various (death) pathways. Humans express five different granzymes, of which granzymes A and B have been most extensively characterized. However, much less is known about granzyme M (GrM). Recently, structural analysis and advanced proteomics approaches have determined the primary and extended specificity of GrM. GrM functions have expanded over the past few years: not only can GrM efficiently induce cell death in tumor cells, it can also inhibit cytomegalovirus replication in a noncytotoxic manner. Finally, a role for GrM in lipopolysaccharide-induced inflammatory responses has been proposed. In this review, we recapitulate the current status of GrM expression, substrate specificity, functions, and inhibitors.
Collapse
|
7
|
Abstract
Cytotoxic lymphocytes are armed with granules that are released in the granule-exocytosis pathway to kill tumor cells and virus-infected cells. Cytotoxic granules contain the pore-forming protein perforin and a family of structurally homologues serine proteases called granzymes. While perforin facilitates the entry of granzymes into a target cell, the latter initiate distinct apoptotic routes. Granzymes are also implicated in extracellular functions such as extracellular matrix degradation, immune regulation, and inflammation. The family of human granzymes consists of five members, of which granzyme A and B have been studied most extensively. Recently, elucidation of the specific characteristics of the other three human granzymes H, K, and M, also referred to as orphan granzymes, have started. In this review, we summarize and discuss what is currently known about the biology of the human orphan granzymes.
Collapse
Affiliation(s)
- Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | | |
Collapse
|
8
|
Anthony DA, Andrews DM, Watt SV, Trapani JA, Smyth MJ. Functional dissection of the granzyme family: cell death and inflammation. Immunol Rev 2010; 235:73-92. [DOI: 10.1111/j.0105-2896.2010.00907.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Praveen K, Leary JH, Evans DL, Jaso-Friedmann L. Nonspecific cytotoxic cells of teleosts are armed with multiple granzymes and other components of the granule exocytosis pathway. Mol Immunol 2006; 43:1152-62. [PMID: 16137766 DOI: 10.1016/j.molimm.2005.07.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Indexed: 11/29/2022]
Abstract
Granzymes are members of the serine protease family and major components of cytotoxic granules of professional killer cells. Multiple granzymes have been identified from human and rodents with different substrate specificities. Although the significance of granzymes A and B in cell-mediated cytotoxicity has been extensively investigated, recent reports suggest that other granzymes may have either equal or greater importance in mediating cell death. Studies on the evolution of these closely related proteases were hindered by the lack of sequence and biochemical information of granzymes from "lower vertebrates." Here we report the generation of a catalytically active recombinant granzyme identified in the cytotoxic cells of an ectothermic vertebrate. Fully active, soluble recombinant catfish granzyme-1 (CFGR-1) was generated using a yeast-based expression system. In vitro enzyme kinetic assays using various thiobenzyl ester substrates verified its tryptase activity in full agreement with previous observations by sequence comparison and molecular modeling. The tryptase activity that was secreted from catfish NCC during an in vitro cytotoxicity assay strongly correlated with the cytotoxicity induced by these cells. Evidence for additional granzymes with different substrate specificities in NCC was obtained by analysis of the protease activity of supernatants collected from in vitro cytotoxicity assays. Searches of the catfish EST database further confirmed the presence of teleost granzymes with different substrate specificities. Granzyme activity measurements suggested a predominance of chymase and tryptase activities in NCC. Further proof that the granule exocytosis pathway is one of the cytotoxic mechanisms in NCC was provided by the expression of granule components perforin, granulysin and serglycin detected by RT-PCR analysis. These results demonstrate the evidence for a parallel evolution of effector molecules of cell-mediated cytotoxicity in teleosts.
Collapse
Affiliation(s)
- Kesavannair Praveen
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Agriculture Drive, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
10
|
Praveen K, Leary JH, Evans DL, Jaso-Friedmann L. Molecular characterization and expression of a granzyme of an ectothermic vertebrate with chymase-like activity expressed in the cytotoxic cells of Nile tilapia (Oreochromis niloticus). Immunogenetics 2006; 58:41-55. [PMID: 16467988 DOI: 10.1007/s00251-005-0063-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 11/06/2005] [Indexed: 11/24/2022]
Abstract
We have identified the gene coding for a novel serine protease with close similarities to mammalian granzymes from nonspecific cytotoxic cells of a teleost fish Oreochromis niloticus. The genomic organization of tilapia granzyme-1 (TLGR-1) has the signature five-exon-four-intron structure shared by all granzymes and similar hematopoietic Ser proteases. Molecular modeling studies suggested a granzyme-like structure for this protein with four disulfide linkages and two additional Cys residues. The expression of this gene is found to be restricted to cytotoxic cell populations with a low level of constitutive expression when compared to similar granzymes in other teleost species. High levels of transcriptional activation of TLGR-1 with different stimuli suggested that this gene is highly induced during immune reactions. Triplet residues around the active site Ser of TLGR, which determines the primary substrate specificity of granzymes, differ significantly from that of other granzymes. Recombinant TLGR-1 was expressed in the mature and proenzyme forms using pPICZ-alpha vector in the Pichia pastoris expression system. Recombinant TLGR-1 was used to determine the primary substrate specificity of this protease using various synthetic thiobenzyl ester substrates. In vitro enzyme kinetics assays suggested a preference for residues with bulky side chains at the P1 site, indicating a chymase-like activity for this protease. These results indicate the presence of novel granzymes in cytotoxic cells from ectothermic vertebrates.
Collapse
Affiliation(s)
- Kesavannair Praveen
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Agriculture Drive, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
11
|
Smyth MJ, Cretney E, Kelly JM, Westwood JA, Street SEA, Yagita H, Takeda K, van Dommelen SLH, Degli-Esposti MA, Hayakawa Y. Activation of NK cell cytotoxicity. Mol Immunol 2005; 42:501-10. [PMID: 15607806 DOI: 10.1016/j.molimm.2004.07.034] [Citation(s) in RCA: 461] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural killer (NK) cells are innate effector lymphocytes necessary for defence against stressed, microbe-infected, or malignant cells. NK cells kill target cells by either of two major mechanisms that require direct contact between NK cells and target cells. In the first pathway, cytoplasmic granule toxins, predominantly a membrane-disrupting protein known as perforin, and a family of structurally related serine proteases (granzymes) with various substrate specificities, are secreted by exocytosis and together induce apoptosis of the target cell. The granule-exocytosis pathway potently activates cell-death mechanisms that operate through the activation of apoptotic cysteine proteases (caspases), but can also cause cell death in the absence of activated caspases. The second pathway involves the engagement of death receptors (e.g. Fas/CD95) on target cells by their cognate ligands (e.g. FasL) on NK cells, resulting in classical caspase-dependent apoptosis. The comparative role of these pathways in the pathophysiology of many diseases is being dissected by analyses of gene-targeted mice that lack these molecules, and humans who have genetic mutations affecting these pathways. We are also now learning that the effector function of NK cells is controlled by interactions involving specific NK cell receptors and their cognate ligands, either on target cells, or other cells of the immune system. This review will discuss the functional importance of NK cell cytotoxicity and the receptor/ligand interactions that control these processes.
Collapse
Affiliation(s)
- Mark J Smyth
- Cancer Immunology Program, Trescowthick Laboratories, Peter MacCallum Cancer Centre, Vic. 8006, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Takano N, Matusi H, Takahashi T. Granzyme N, a Novel Granzyme, Is Expressed in Spermatocytes and Spermatids of the Mouse Testis1. Biol Reprod 2004; 71:1785-95. [PMID: 15269100 DOI: 10.1095/biolreprod.104.030452] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We cloned a cDNA for a novel granzyme, granzyme N (Gzmn), from a mouse testes cDNA library. The testes contained two distinct species of Gzmn mRNA, one of which codes for a complete protein of 248 amino acids with three essential residues required for catalytic activity. The Gzmn mRNA was specifically expressed in the testes of adult mice. The Gzmn expression was found to initiate in the testes at 3 wk of age and to become more prominent as the animal reached sexual maturity. In situ hybridization analysis revealed that both spermatocytes and spermatids of the adult mouse testes express Gzmn mRNA. Consistent with these findings, the protein was immunohistochemically detected in the spermatocytes and spermatids, although some of the germ cells showed no positive staining. Gzmn was demonstrated to be a secretory and N-glycosylated protein that exists in two protein forms in the testes extract. In the cryptorchid testes, the expression of Gzmn transcript was drastically reduced on Postoperative Day 10, whereas the protein level was gradually decreased starting on Day 6. The local heating (43 degrees C, 20 min) of the testes did not change the Gzmn expression level at either 8 or 16 h after treatment. These results suggest that Gzmn is not involved in the process of germ cell apoptosis induced by heat shock, but that it may be involved in spermatogenesis in the mouse testes.
Collapse
Affiliation(s)
- Naoharu Takano
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | | | | |
Collapse
|
13
|
Mahrus S, Kisiel W, Craik CS. Granzyme M Is a Regulatory Protease That Inactivates Proteinase Inhibitor 9, an Endogenous Inhibitor of Granzyme B. J Biol Chem 2004; 279:54275-82. [PMID: 15494398 DOI: 10.1074/jbc.m411482200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Granzyme M is a trypsin-fold serine protease that is specifically found in the granules of natural killer cells. This enzyme has been implicated recently in the induction of target cell death by cytotoxic lymphocytes, but unlike granzymes A and B, the molecular mechanism of action of granzyme M is unknown. We have characterized the extended substrate specificity of human granzyme M by using purified recombinant enzyme, several positional scanning libraries of coumarin substrates, and a panel of individual p-nitroanilide and coumarin substrates. In contrast to previous studies conducted using thiobenzyl ester substrates (Smyth, M. J., O'Connor, M. D., Trapani, J. A., Kershaw, M. H., and Brinkworth, R. I. (1996) J. Immunol. 156, 4174-4181), a strong preference for leucine at P1 over methionine was demonstrated. The extended substrate specificity was determined to be lysine = norleucine at P4, broad at P3, proline > alanine at P2, and leucine > norleucine > methionine at P1. The enzyme activity was found to be highly dependent on the length and sequence of substrates, indicative of a regulatory function for human granzyme M. Finally, the interaction between granzyme M and the serpins alpha(1)-antichymotrypsin, alpha(1)-proteinase inhibitor, and proteinase inhibitor 9 was characterized by using a candidate-based approach to identify potential endogenous inhibitors. Proteinase inhibitor 9 was effectively hydrolyzed and inactivated by human granzyme M, raising the possibility that this orphan granzyme bypasses proteinase inhibitor 9 inhibition of granzyme B.
Collapse
Affiliation(s)
- Sami Mahrus
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143-2280, USA
| | | | | |
Collapse
|
14
|
Kelly JM, Waterhouse NJ, Cretney E, Browne KA, Ellis S, Trapani JA, Smyth MJ. Granzyme M Mediates a Novel Form of Perforin-dependent Cell Death. J Biol Chem 2004; 279:22236-42. [PMID: 15028722 DOI: 10.1074/jbc.m401670200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell death is mediated by cytotoxic lymphocytes through various granule serine proteases released with perforin. The unique protease activity, restricted expression, and distinct gene locus of granzyme M suggested this enzyme might have a novel biological function or trigger a novel form of cell death. Herein, we demonstrate that in the presence of perforin, the protease activity of granzyme M rapidly and effectively induces target cell death. In contrast to granzyme B, cell death induced by granzyme M does not feature obvious DNA fragmentation, occurs independently of caspases, caspase activation, and perturbation of mitochondria and is not inhibited by overexpression of Bcl-2. These data raise the likelihood that granzyme M represents a third major and specialized perforin-dependent cell death pathway that plays a significant role in death mediated by NK cells.
Collapse
Affiliation(s)
- Janice M Kelly
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett St, 8006 Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Rukamp BJ, Kam CM, Natarajan S, Bolton BW, Smyth MJ, Kelly JM, Powers JC. Subsite specificities of granzyme M: a study of inhibitors and newly synthesized thiobenzyl ester substrates. Arch Biochem Biophys 2004; 422:9-22. [PMID: 14725853 DOI: 10.1016/j.abb.2003.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Granzyme M is a member of a family of granule serine proteases that participate in target cell death initiated by cytotoxic lymphocytes. The enzyme is almost exclusively expressed in NK cell types. Granzyme M cleaves at the carboxy side of amino acids with long, hydrophobic side chains like Met, Leu, and Nle. To further study the substrate specificity of the enzyme, a series of peptide thiobenzyl esters was synthesized. The hydrolysis of the substrates with murine and human recombinant forms of granzyme M was observed. The results show that the enzyme has a strong preference for Pro at the P2 position and Ala, Ser, or Asp at the P3 position. These results suggest that the protein residues of the S2 and S3 subsites form important binding interactions that aid in the selection of specific natural substrates for granzyme M. A series of inhibitors was also tested with granzyme M. None of the inhibitors were effective inactivators of granzyme M, including the general serine protease inhibitor, 3,4-dichloroisocoumarin, which is usually a potent inactivator of serine proteases. This suggests that inhibition of granzyme M may be difficult. Also reported for the first time is the method utilized to isolate granzyme M used in this and previous publications. The observations in this paper will be valuable in development of new potent inhibitors for granzyme M as well as assist in determining the biological function of the enzyme.
Collapse
Affiliation(s)
- Brian J Rukamp
- The School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Grossman WJ, Revell PA, Lu ZH, Johnson H, Bredemeyer AJ, Ley TJ. The orphan granzymes of humans and mice. Curr Opin Immunol 2003; 15:544-52. [PMID: 14499263 DOI: 10.1016/s0952-7915(03)00099-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The granzyme/perforin pathway is a central pathway for lymphocyte-mediated killing in both the innate and adaptive immune systems. This pathway is important in a variety of host defenses, including viral clearance and tumor cell killing, and its dysregulation results in several human and rodent diseases. To date, the majority of reports in this field have concentrated on the functions of granzymes A and B. Recent reports, however, suggest that the non-A/non-B 'orphan' granzymes found in both humans and mice are potentially significant. Although the functions of these orphan granzymes have yet to be fully established, initial data suggests their importance in both immune and nonimmune cells.
Collapse
Affiliation(s)
- William J Grossman
- Department of Pediatrics, Hale Irwin Center for Pediatric Oncology, #1 St Louis Children's Hospital, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
17
|
Hamilton JV, Munks RJL, Lehane SM, Lehane MJ. Association of midgut defensin with a novel serine protease in the blood-sucking fly Stomoxys calcitrans. INSECT MOLECULAR BIOLOGY 2002; 11:197-205. [PMID: 12000638 DOI: 10.1046/j.1365-2583.2002.00325.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Using ELISA we provide direct evidence that the midgut defensins of the blood-sucking fly Stomoxys calcitrans are secreted into the gut lumen. We show that midgut defensin peptide levels increase up to fortyfold in response to a blood meal but not to a sugar meal. The data suggests the midgut defensin genes are post-transcriptionally regulated and that their function is protection of the stored blood meal from bacterial attack while it awaits digestion. Using recombinant defensins produced in Pichia pastoris we demonstrate that while in the gut cells the midgut defensins are bound in an SDS-stable complex to proteins with an apparent molecular weight of > 26 kDa from which they are released when secreted into the gut lumen. This > 26 kDa protein (Ssp3) has been cloned and sequenced and is a member of the serine protease S1 family with homologies to multiple insect proteases and to vertebrate trypsins and elastases.
Collapse
Affiliation(s)
- J V Hamilton
- School of Biological Sciences, University of Wales, Bangor UK
| | | | | | | |
Collapse
|
18
|
Kam CM, Hudig D, Powers JC. Granzymes (lymphocyte serine proteases): characterization with natural and synthetic substrates and inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:307-23. [PMID: 10708866 DOI: 10.1016/s0167-4838(99)00282-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Natural killer (NK) and cytotoxic T-lymphocytes (CTLs) kill cells within an organism to defend it against viral infections and the growth of tumors. One mechanism of killing involves exocytosis of lymphocyte granules which causes pores to form in the membranes of the attacked cells, fragments nuclear DNA and leads to cell death. The cytotoxic granules contain perforin, a pore-forming protein, and a family of at least 11 serine proteases termed granzymes. Both perforin and granzymes are involved in the lytic activity. Although the biological functions of most granzymes remain to be resolved, granzyme B clearly promotes DNA fragmentation and is directly involved in cell death. Potential natural substrates for Gr B include procaspases and other proteins involved in cell death. Activated caspases are involved in apoptosis. The search continues for natural substrates for the other granzymes. The first granzyme crystal structure remains to be resolved, but in the interim, molecular models of granzymes have provided valuable structural information about their substrate binding sites. The information has been useful to predict the amino acid sequences that immediately flank each side of the scissile peptide bond of peptide and protein substrates. Synthetic substrates, such as peptide thioesters, nitroanilides and aminomethylcoumarins, have also been used to study the substrate specificity of granzymes. The different granzymes have one of four primary substrate specificities: tryptase (cleaving after Arg or Lys), Asp-ase (cleaving after Asp), Met-ase (cleaving after Met or Leu), and chymase (cleaving after Phe, Tyr, or Trp). Natural serpins and synthetic inhibitors (including isocoumarins, peptide chloromethyl ketones, and peptide phosphonates) inhibit granzymes. Studies of substrate and inhibitor kinetics are providing valuable information to identify the most likely natural granzyme substrates and provide tools for the study of key reactions in the cytolytic mechanism.
Collapse
Affiliation(s)
- C M Kam
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | | | | |
Collapse
|
19
|
Taniguchi M, Tani N, Suemoto T, Ishimoto I, Shiosaka S, Yoshida S. High expression of alternative transcript of granzyme M in the mouse retina. Neurosci Res 1999; 34:115-23. [PMID: 10498337 DOI: 10.1016/s0168-0102(99)00036-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have isolated cDNAs to two transcripts, granzyme M and alternative granzyme M mRNA from the mouse eye. Analysis of genomic DNA revealed these transcripts were derived from alternative transcription initiations. Northern blot analysis and reverse transcription-polymerase chain reactions revealed that both transcripts were expressed in the eye, though the alternative form was the major type. In situ hybridization studies demonstrated that alternative granzyme M mRNA localized exclusively in the photoreceptor cells in the retina and expressed only after the opening of the eye, suggesting that these transcripts are related to the maintenance of the retinal structure or functions of matured photoreceptor cells rather than the development or differentiation of retinal cells.
Collapse
Affiliation(s)
- M Taniguchi
- Division of Structural Cell Biology, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Trapani JA. Dual mechanisms of apoptosis induction by cytotoxic lymphocytes. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 182:111-92. [PMID: 9522460 DOI: 10.1016/s0074-7696(08)62169-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytotoxic T lymphocytes and natural killer cells together comprise the means by which the immune system detects and rids higher organisms of virus-infected or transformed cells. Although differing considerably in the way they detect foreign or mutated antigens, these cells utilize highly analogous mechanisms for inducing target cell death. Both types of effector lymphocytes utilize two principal contact-dependent cytolytic mechanisms. The first of these, the granule exocytosis mechanism, depends on the synergy of a calcium-dependent pore-forming protein, perforin, and a battery of proteases (granzymes), and it results in penetration by effector molecules into the target cell cytoplasm and nucleus. The second, which requires binding of FasL (CD95L) on the effector cell with trimeric Fas (CD95) molecules on receptive target cells, is calcium independent and functions by generating a death signal at the inner leaflet of the target cell membrane. Exciting recent developments have indicated that both cytolytic mechanisms impinge on an endogenous signaling pathway that is strongly conserved in species as diverse as helminths and humans and dictates the death or survival of all cells.
Collapse
Affiliation(s)
- J A Trapani
- John Connell Cellular Cytotoxicity Laboratory, Austin Research Institute, Heidelberg, Australia
| |
Collapse
|
21
|
Shresta S, Goda P, Wesselschmidt R, Ley TJ. Residual cytotoxicity and granzyme K expression in granzyme A-deficient cytotoxic lymphocytes. J Biol Chem 1997; 272:20236-44. [PMID: 9242702 DOI: 10.1074/jbc.272.32.20236] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytotoxic lymphocytes contain granules that have the ability to induce apoptosis in susceptible target cells. The granule contents include perforin, a pore-forming molecule, and several granzymes, including A and B, which are the most abundant serine proteases in these granules. Granzyme B-deficient cytotoxic T lymphocytes (CTL) have a severe defect in their ability to rapidly induce apoptosis in their targets, but have an intact late cytotoxicity pathway that is in part perforin-dependent. In this report, we have created mice that are deficient for granzyme A and characterized their phenotype. These mice have normal growth and development and normal lymphocyte development, activation, and proliferation. Granzyme A-deficient CTL have a small but reproducible defect in their ability to induce 51Cr and 125I-UdR release from susceptible allogeneic target cells. Since other granzyme A-like tryptases could potentially account for the residual cytotoxicity in granzyme A-deficient CTL, we cloned the murine granzyme K gene, which is linked to granzyme A in humans, and proved that it is also tightly linked with murine granzyme A. The murine granzyme K gene (which encodes a tryptase similar to granzyme A) is expressed at much lower levels than granzyme A in CTL and LAK cells, but its expression is unaltered in granzyme A-/- mice. The minimal cytotoxic defect in granzyme A-/- CTL could be due to the existence of an intact, functional early killing pathway (granzyme B dependent), or to the persistent expression of additional granzyme tryptases like granzyme K.
Collapse
Affiliation(s)
- S Shresta
- Department of Internal Medicine, Washington University School of Medicine, Campus Box 8007, St. Louis, Missouri 63110-1093, USA
| | | | | | | |
Collapse
|