1
|
Bombieri C, Corsi A, Trabetti E, Ruggiero A, Marchetto G, Vattemi G, Valenti MT, Zipeto D, Romanelli MG. Advanced Cellular Models for Rare Disease Study: Exploring Neural, Muscle and Skeletal Organoids. Int J Mol Sci 2024; 25:1014. [PMID: 38256087 PMCID: PMC10815694 DOI: 10.3390/ijms25021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Organoids are self-organized, three-dimensional structures derived from stem cells that can mimic the structure and physiology of human organs. Patient-specific induced pluripotent stem cells (iPSCs) and 3D organoid model systems allow cells to be analyzed in a controlled environment to simulate the characteristics of a given disease by modeling the underlying pathophysiology. The recent development of 3D cell models has offered the scientific community an exceptionally valuable tool in the study of rare diseases, overcoming the limited availability of biological samples and the limitations of animal models. This review provides an overview of iPSC models and genetic engineering techniques used to develop organoids. In particular, some of the models applied to the study of rare neuronal, muscular and skeletal diseases are described. Furthermore, the limitations and potential of developing new therapeutic approaches are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (C.B.); (A.C.); (E.T.); (A.R.); (G.M.); (G.V.); (M.T.V.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (C.B.); (A.C.); (E.T.); (A.R.); (G.M.); (G.V.); (M.T.V.)
| |
Collapse
|
2
|
Palomino Lago E, Baird A, Blott SC, McPhail RE, Ross AC, Durward-Akhurst SA, Guest DJ. A Functional Single-Nucleotide Polymorphism Upstream of the Collagen Type III Gene Is Associated with Catastrophic Fracture Risk in Thoroughbred Horses. Animals (Basel) 2023; 14:116. [PMID: 38200847 PMCID: PMC10778232 DOI: 10.3390/ani14010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Fractures caused by bone overloading are a leading cause of euthanasia in Thoroughbred racehorses. The risk of fatal fracture has been shown to be influenced by both environmental and genetic factors but, to date, no specific genetic mechanisms underpinning fractures have been identified. In this study, we utilised a genome-wide polygenic risk score to establish an in vitro cell system to study bone gene regulation in horses at high and low genetic risk of fracture. Candidate gene expression analysis revealed differential expression of COL3A1 and STAT1 genes in osteoblasts derived from high- and low-risk horses. Whole-genome sequencing of two fracture cases and two control horses revealed a single-nucleotide polymorphism (SNP) upstream of COL3A1 that was confirmed in a larger cohort to be significantly associated with fractures. Bioinformatics tools predicted that this SNP may impact the binding of the transcription factor SOX11. Gene modulation demonstrated SOX11 is upstream of COL3A1, and the region binds to nuclear proteins. Furthermore, luciferase assays demonstrated that the region containing the SNP has promoter activity. However, the specific effect of the SNP depends on the broader genetic background of the cells and suggests other factors may also be involved in regulating COL3A1 expression. In conclusion, we have identified a novel SNP that is significantly associated with fracture risk and provide new insights into the regulation of the COL3A1 gene.
Collapse
Affiliation(s)
- Esther Palomino Lago
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; (E.P.L.); (A.C.R.)
| | - Arabella Baird
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK
| | - Sarah C. Blott
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Rhona E. McPhail
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK
| | - Amy C. Ross
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; (E.P.L.); (A.C.R.)
| | - Sian A. Durward-Akhurst
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Deborah J. Guest
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; (E.P.L.); (A.C.R.)
| |
Collapse
|
3
|
Shekari F, Alibhai FJ, Baharvand H, Börger V, Bruno S, Davies O, Giebel B, Gimona M, Salekdeh GH, Martin‐Jaular L, Mathivanan S, Nelissen I, Nolte‐’t Hoen E, O'Driscoll L, Perut F, Pluchino S, Pocsfalvi G, Salomon C, Soekmadji C, Staubach S, Torrecilhas AC, Shelke GV, Tertel T, Zhu D, Théry C, Witwer K, Nieuwland R. Cell culture-derived extracellular vesicles: Considerations for reporting cell culturing parameters. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e115. [PMID: 38939735 PMCID: PMC11080896 DOI: 10.1002/jex2.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 09/17/2023] [Indexed: 06/29/2024]
Abstract
Cell culture-conditioned medium (CCM) is a valuable source of extracellular vesicles (EVs) for basic scientific, therapeutic and diagnostic applications. Cell culturing parameters affect the biochemical composition, release and possibly the function of CCM-derived EVs (CCM-EV). The CCM-EV task force of the Rigor and Standardization Subcommittee of the International Society for Extracellular Vesicles aims to identify relevant cell culturing parameters, describe their effects based on current knowledge, recommend reporting parameters and identify outstanding questions. While some recommendations are valid for all cell types, cell-specific recommendations may need to be established for non-mammalian sources, such as bacteria, yeast and plant cells. Current progress towards these goals is summarized in this perspective paper, along with a checklist to facilitate transparent reporting of cell culturing parameters to improve the reproducibility of CCM-EV research.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP‐TDC), Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | | | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran
| | - Verena Börger
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Stefania Bruno
- Department of Medical Sciences and Molecular Biotechnology CenterUniversity of TorinoTurinItaly
| | - Owen Davies
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Bernd Giebel
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Mario Gimona
- GMP UnitSpinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS) and Research Program “Nanovesicular Therapies” Paracelsus Medical UniversitySalzburgAustria
| | | | - Lorena Martin‐Jaular
- Institut Curie, INSERM U932 and Curie CoreTech Extracellular VesiclesPSL Research UniversityParisFrance
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVICAustralia
| | - Inge Nelissen
- VITO (Flemish Institute for Technological Research), Health departmentBoeretangBelgium
| | - Esther Nolte‐’t Hoen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology LabIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Stefano Pluchino
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResourcesNational Research CouncilNaplesItaly
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae‐Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of MedicineThe University of QueenslandBrisbaneAustralia
| | - Carolina Soekmadji
- School of Biomedical Sciences, Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| | | | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)SPBrazil
| | - Ganesh Vilas Shelke
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Tobias Tertel
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Dandan Zhu
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVICAustralia
| | - Clotilde Théry
- Institut Curie, INSERM U932 and Curie CoreTech Extracellular VesiclesPSL Research UniversityParisFrance
| | - Kenneth Witwer
- Departments of Molecular and Comparative Pathobiology and Neurology and Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Amsterdam University Medical CentersLocation AMC, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
4
|
Thanaskody K, Jusop AS, Tye GJ, Wan Kamarul Zaman WS, Dass SA, Nordin F. MSCs vs. iPSCs: Potential in therapeutic applications. Front Cell Dev Biol 2022; 10:1005926. [PMID: 36407112 PMCID: PMC9666898 DOI: 10.3389/fcell.2022.1005926] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
Over the past 2 decades, mesenchymal stem cells (MSCs) have attracted a lot of interest as a unique therapeutic approach for a variety of diseases. MSCs are capable of self-renewal and multilineage differentiation capacity, immunomodulatory, and anti-inflammatory properties allowing it to play a role in regenerative medicine. Furthermore, MSCs are low in tumorigenicity and immune privileged, which permits the use of allogeneic MSCs for therapies that eliminate the need to collect MSCs directly from patients. Induced pluripotent stem cells (iPSCs) can be generated from adult cells through gene reprogramming with ectopic expression of specific pluripotency factors. Advancement in iPS technology avoids the destruction of embryos to make pluripotent cells, making it free of ethical concerns. iPSCs can self-renew and develop into a plethora of specialized cells making it a useful resource for regenerative medicine as they may be created from any human source. MSCs have also been used to treat individuals infected with the SARS-CoV-2 virus. MSCs have undergone more clinical trials than iPSCs due to high tumorigenicity, which can trigger oncogenic transformation. In this review, we discussed the overview of mesenchymal stem cells and induced pluripotent stem cells. We briefly present therapeutic approaches and COVID-19-related diseases using MSCs and iPSCs.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia,Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia,*Correspondence: Fazlina Nordin,
| |
Collapse
|
5
|
Lilakhunakon C, Suwanpateeb J, Patntirapong S. Inhibitory Effects of Alendronate on Adhesion and Viability of Preosteoblast Cells on Titanium Discs. Eur J Dent 2021; 15:502-508. [PMID: 34100275 PMCID: PMC8382445 DOI: 10.1055/s-0041-1726170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Objective
This study aimed to investigate the effects of alendronate (ALN; a bisphosphonate) on adhesion and viability of preosteoblasts using different cell passages on sandblasted and acid-etched (SLA) Ti surfaces.
Materials and Methods
Preosteoblast, MC3T3, cells (passage 42; P42 and passage 62; P62) were cultured with ALN (1 and 5 µM) on cell culture plate for 7 days. Cells were lifted, counted, and seeded on SLA Ti surfaces. Cells were incubated on the discs for 6 hours to examine cell adhesion by using confocal microscopy and for 24 hours to determine cell viability by using MTT assay.
Results
ALN interfered with cell adhesion on Ti surfaces by reducing the cell number in both cell passages. Nuclei of untreated cells showed oval shape, whereas some nuclei of ALN-treated cells demonstrated crescent and condensed appearance. ALN at 1 and 5 µM significantly decreased nuclear area and perimeter in P42, while ALN at 5 µM reduced nuclear area and perimeter in P62. After 24 hours, cells (P42) grown on Ti surfaces showed decreased cell viability when culturing with 5 µM ALN.
Conclusion
ALN reduced cell adhesion and viability of preosteoblasts on Ti surfaces. ALN treatment seemed to exert higher inhibitory effects on nuclear shape and size as well as cell viability in lower cell passage. This led to the reduction in cell to implant surface interaction after encountering bisphosphonate treatment.
Collapse
Affiliation(s)
- Charukrit Lilakhunakon
- Department of Implantology, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| | - Jintamai Suwanpateeb
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Somying Patntirapong
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
6
|
Simitzi C, Vlahovic M, Georgiou A, Keskin-Erdogan Z, Miller J, Day RM. Modular Orthopaedic Tissue Engineering With Implantable Microcarriers and Canine Adipose-Derived Mesenchymal Stromal Cells. Front Bioeng Biotechnol 2020; 8:816. [PMID: 32775324 PMCID: PMC7388765 DOI: 10.3389/fbioe.2020.00816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/26/2020] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal stromal cells (MSC) hold significant potential for tissue engineering applications. Modular tissue engineering involves the use of cellularized "building blocks" that can be assembled via a bottom-up approach into larger tissue-like constructs. This approach emulates more closely the complexity associated hierarchical tissues compared with conventional top-down tissue engineering strategies. The current study describes the combination of biodegradable porous poly(DL-lactide-co-glycolide) (PLGA) TIPS microcarriers with canine adipose-derived MSC (cAdMSC) for use as implantable conformable building blocks in modular tissue engineering applications. Optimal conditions were identified for the attachment and proliferation of cAdMSC on the surface of the microcarriers. Culture of the cellularized microcarriers for 21 days in transwell insert plates under conditions used to induce either chondrogenic or osteogenic differentiation resulted in self-assembly of solid 3D tissue constructs. The tissue constructs exhibited phenotypic characteristics indicative of successful osteogenic or chondrogenic differentiation, as well as viscoelastic mechanical properties. This strategy paves the way to create in situ tissue engineered constructs via modular tissue engineering for therapeutic applications.
Collapse
Affiliation(s)
- Chara Simitzi
- Centre for Precision Healthcare, Applied Biomedical Engineering Group, UCL Division of Medicine, University College London, London, United Kingdom
| | - Maja Vlahovic
- Centre for Precision Healthcare, Applied Biomedical Engineering Group, UCL Division of Medicine, University College London, London, United Kingdom
| | - Alex Georgiou
- Department of Biomolecular and Sports Sciences, Coventry University, Coventry, United Kingdom
- Cell Therapy Sciences Ltd., University of Warwick Science Park, Coventry, United Kingdom
| | | | - Joanna Miller
- Cell Therapy Sciences Ltd., University of Warwick Science Park, Coventry, United Kingdom
| | - Richard M. Day
- Centre for Precision Healthcare, Applied Biomedical Engineering Group, UCL Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
7
|
Characterization of human telomerase reverse transcriptase immortalized anterior cruciate ligament cell lines. Biomed J 2019; 42:371-380. [PMID: 31948601 PMCID: PMC6962762 DOI: 10.1016/j.bj.2019.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/01/2019] [Accepted: 05/14/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The anterior-cruciate-ligament (ACL) contains mesenchymal stem cells (ACL-MSCs), suggesting the feasibility of regenerative treatments of this tissue. The immortalization of isolated cells results in cell-lines applicable to develop cell-based therapies. Immortal cell lines eliminate the need for frequent cell isolation from donor tissues. The objective of this study was to characterize cell lines that were generated from isolated ACL-MSCs using TERT gene transfer. METHODS We isolated ACL-MSCs from human ACLs derived at the time of ACL reconstruction surgery or total knee arthroplasty. We generated cell lines and compared them to non-immortalized ACL-MSCs. We assessed the cellular morphology and we detected surface antigen expression. The resistance to senescence was inferred using the beta galactosidase activity. Histology, immunohistochemistry, and reverse transcriptase polymerase chain reaction (RT-PCR) were used to evaluate the multilineage differentiation capacity. RESULTS The morphology of hTERT-ACL-MSCs was similar to ACL up to the last assessment at passage eight. We detected a strong surface expression of CD44, CD90, CD105, and STRO-1 in hTERT-ACL-MSCs. No substantial reduction in the ATP activity was observed in hTERT-ACL-MSCs. CONCLUSION Cell lines generated from ACL-MSCs maintain their morphology, surface antigen expression profile, and proliferative capacity; while markers of senescence appear to be reduced. These cell-lines maintained their multilineage differentiation capacity. The demonstrated model systems can be used for further development of new cell-based regenerative approaches in anterior cruciate ligament research, which may lead to new therapeutic strategies in the future.
Collapse
|
8
|
Kowal JM, Schmal H, Halekoh U, Hjelmborg JB, Kassem M. Single-cell high-content imaging parameters predict functional phenotype of cultured human bone marrow stromal stem cells. Stem Cells Transl Med 2019; 9:189-202. [PMID: 31758755 PMCID: PMC6988772 DOI: 10.1002/sctm.19-0171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/17/2019] [Indexed: 12/17/2022] Open
Abstract
Cultured human bone marrow stromal (mesenchymal) stem cells (hBM-MSCs) are heterogenous cell populations exhibiting variable biological properties. Quantitative high-content imaging technology allows identification of morphological markers at a single cell resolution that are determinant for cellular functions. We determined the morphological characteristics of cultured primary hBM-MSCs and examined their predictive value for hBM-MSC functionality. BM-MSCs were isolated from 56 donors and characterized for their proliferative and differentiation potential. We correlated these data with cellular and nuclear morphological features determined by Operetta; a high-content imaging system. Cell area, cell geometry, and nucleus geometry of cultured hBM-MSCs exhibited significant correlation with expression of hBM-MSC membrane markers: ALP, CD146, and CD271. Proliferation capacity correlated negatively with cell and nucleus area and positively with cytoskeleton texture features. In addition, in vitro differentiation to osteoblasts as well as in vivo heterotopic bone formation was associated with decreased ratio of nucleus width to length. Multivariable analysis applying a stability selection procedure identified nuclear geometry and texture as predictors for hBM-MSCs differentiation potential to osteoblasts or adipocytes. Our data demonstrate that by employing a limited number of cell morphological characteristics, it is possible to predict the functional phenotype of cultured hBM-MSCs and thus can be used as a screening test for "quality" of hBM-MSCs prior their use in clinical protocols.
Collapse
Affiliation(s)
- Justyna M Kowal
- Department of Endocrinology and Metabolism, Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Hagen Schmal
- Department of Orthopedics and Traumatology, Odense University Hospital, Odense, Denmark
| | - Ulrich Halekoh
- Department of Epidemiology, Biostatistics and Biodemography, Odense University Hospital, Odense, Denmark
| | - Jacob B Hjelmborg
- Department of Epidemiology, Biostatistics and Biodemography, Odense University Hospital, Odense, Denmark
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark.,Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, Copenhagen, Denmark.,Stem Cell Unit, Faculty of Medicine, King Saud University, Riyadh, KSA
| |
Collapse
|
9
|
Ganguly P, El-Jawhari JJ, Giannoudis PV, Burska AN, Ponchel F, Jones EA. Age-related Changes in Bone Marrow Mesenchymal Stromal Cells: A Potential Impact on Osteoporosis and Osteoarthritis Development. Cell Transplant 2018; 26:1520-1529. [PMID: 29113463 PMCID: PMC5680949 DOI: 10.1177/0963689717721201] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has increased in the past few decades. A decline in the number and "fitness" of mesenchymal stromal cells (MSCs) in the bone marrow (BM) niche has been suggested as one of the factors contributing to bone abnormalities in OP and OA. It is well recognized that MSCs in vitro acquire culture-induced aging features such as gradual telomere shortening, increased numbers of senescent cells, and reduced resistance to oxidative stress as a result of serial population doublings. In contrast, there is only limited evidence that human BM-MSCs "age" similarly in vivo. This review compares the various aspects of in vitro and in vivo MSC aging and suggests how our current knowledge on rejuvenating cultured MSCs could be applied to develop future strategies to target altered bone formation processes in OP and OA.
Collapse
Affiliation(s)
- Payal Ganguly
- 1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Jehan J El-Jawhari
- 1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Peter V Giannoudis
- 1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,2 Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Leeds, United Kingdom
| | - Agata N Burska
- 1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,2 Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Leeds, United Kingdom
| | - Frederique Ponchel
- 1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,2 Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Leeds, United Kingdom
| | - Elena A Jones
- 1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
10
|
Chen YJ, Chang WA, Huang MS, Chen CH, Wang KY, Hsu YL, Kuo PL. Identification of novel genes in aging osteoblasts using next-generation sequencing and bioinformatics. Oncotarget 2017; 8:113598-113613. [PMID: 29371932 PMCID: PMC5768349 DOI: 10.18632/oncotarget.22748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/27/2017] [Indexed: 01/06/2023] Open
Abstract
During the aging process, impaired osteoblastic function is one key factor of imbalanced bone formation and age-related bone loss. The aim of this study is to explore the differentially expressed genes in normal and aged osteoblasts and to identify genes potentially involved in age-related alteration in bone physiology. Based on next generation sequencing and bioinformatics analysis, 12 differentially expressed microRNAs and 22 differentially expressed genes were identified. Up-regulation of miR-204-5p was validated in an array of osteoporotic hip fracture in the Gene Expression Omnibus database (GSE74209). The putative targets for miR-204-5p were Kruppel-like factor 7 (KLF7) and SRY-box 11 (SOX11). Ingenuity Pathway Analysis identified SOX11, involved in osteoarthritis pathway and differentiation of osteoblasts, together with miR-204-5p, a potential upstream regulator, suggesting the critical role of miR-204-5p-SOX11 regulation in the aging process of human bones. In addition, as semaphorin 3A (SEMA3A) and ephrin type-A receptor 5 (EPHA5) were involved in nervous system related biological functions, we postulated a potential linkage between SEMA3A, EPHA5 and development of neurogenic heterotopic ossification. Our findings implicate new candidate genes in the diagnosis of geriatric musculoskeletal disorders, and provide novel insights that may contribute to the elaboration of new biomarkers for neurogenic heterotopic ossification.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-DA Cancer Hospital, Kaohsiung, Taiwan.,School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuan-Yuan Wang
- Division of Geriatrics and Gerontology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Burger MG, Steinitz A, Geurts J, Pippenger BE, Schaefer DJ, Martin I, Barbero A, Pelttari K. Ascorbic Acid Attenuates Senescence of Human Osteoarthritic Osteoblasts. Int J Mol Sci 2017; 18:ijms18122517. [PMID: 29186811 PMCID: PMC5751120 DOI: 10.3390/ijms18122517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/08/2017] [Accepted: 11/20/2017] [Indexed: 12/28/2022] Open
Abstract
The accumulation of senescent cells is implicated in the pathology of several age-related diseases. While the clearance of senescent cells has been suggested as a therapeutic target for patients with osteoarthritis (OA), cellular senescence of bone-resident osteoblasts (OB) remains poorly explored. Since oxidative stress is a well-known inducer of cellular senescence, we here investigated the effect of antioxidant supplementation on the isolation efficiency, expansion, differentiation potential, and transcriptomic profile of OB from osteoarthritic subchondral bone. Bone chips were harvested from sclerotic and non-sclerotic regions of the subchondral bone of human OA joints. The application of 0.1 mM ascorbic acid-2-phosphate (AA) significantly increased the number of outgrowing cells and their proliferation capacity. This enhanced proliferative capacity showed a negative correlation with the amount of senescent cells and was accompanied by decreased expression of reactive oxygen species (ROS) in cultured OB. Expanded cells continued to express differentiated OB markers independently of AA supplementation and demonstrated no changes in their capacity to osteogenically differentiate. Transcriptomic analyses revealed that apoptotic, cell cycle–proliferation, and catabolic pathways were the main pathways affected in the presence of AA during OB expansion. Supplementation with AA can thus help to expand subchondral bone OB in vitro while maintaining their special cellular characteristics. The clearance of such senescent OB could be envisioned as a potential therapeutic target for the treatment of OA.
Collapse
Affiliation(s)
- Maximilian G. Burger
- Department of Biomedicine, University of Basel, University Hospital of Basel, 4031 Basel, Switzerland; (M.G.B.); (A.S.); (I.M.); (K.P.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland;
| | - Amir Steinitz
- Department of Biomedicine, University of Basel, University Hospital of Basel, 4031 Basel, Switzerland; (M.G.B.); (A.S.); (I.M.); (K.P.)
- Departments for Orthopedic Surgery and Traumatology, University Hospital of Basel, 4031 Basel, Switzerland
| | - Jeroen Geurts
- Departments Spine Surgery and Biomedical Engineering, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland; (J.G.); (B.E.P.)
| | - Benjamin E. Pippenger
- Departments Spine Surgery and Biomedical Engineering, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland; (J.G.); (B.E.P.)
| | - Dirk J. Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland;
| | - Ivan Martin
- Department of Biomedicine, University of Basel, University Hospital of Basel, 4031 Basel, Switzerland; (M.G.B.); (A.S.); (I.M.); (K.P.)
| | - Andrea Barbero
- Department of Biomedicine, University of Basel, University Hospital of Basel, 4031 Basel, Switzerland; (M.G.B.); (A.S.); (I.M.); (K.P.)
- Correspondence: ; Tel.: +41-61-265-2384
| | - Karoliina Pelttari
- Department of Biomedicine, University of Basel, University Hospital of Basel, 4031 Basel, Switzerland; (M.G.B.); (A.S.); (I.M.); (K.P.)
| |
Collapse
|
12
|
Dias LD, Casali KR, Ghem C, da Silva MK, Sausen G, Palma PB, Covas DT, Kalil RAK, Schaan BD, Nardi NB, Markoski MM. Mesenchymal stem cells from sternum: the type of heart disease, ischemic or valvular, does not influence the cell culture establishment and growth kinetics. J Transl Med 2017; 15:161. [PMID: 28743269 PMCID: PMC5526254 DOI: 10.1186/s12967-017-1262-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/11/2017] [Indexed: 12/24/2022] Open
Abstract
Background In an attempt to increase the therapeutic potential for myocardial regeneration, there is a quest for new cell sources and types for cell therapy protocols. The pathophysiology of heart diseases may affect cellular characteristics and therapeutic results. Methods To study the proliferative and differentiation potential of mesenchymal stem cells (MSC), isolated from bone marrow (BM) of sternum, we made a comparative analysis between samples of patients with ischemic (IHD) or non-ischemic valvular (VHD) heart diseases. We included patients with IHD (n = 42) or VHD (n = 20), with average age of 60 years and no differences in cardiovascular risk factors. BM samples were collected (16.4 ± 6 mL) and submitted to centrifugation with Ficoll-Paque, yielding 4.5 ± 1.5 × 107 cells/mL. Results Morphology, immunophenotype and differentiation ability had proven that the cultivated sternal BM cells had MSC features. The colony forming unit-fibroblast (CFU-F) frequency was similar between groups (p = 0.510), but VHD samples showed positive correlation to plated cells vs. CFU-F number (r = 0.499, p = 0.049). The MSC culture was established in 29% of collected samples, achieved passage 9, without significant difference in expansion kinetics between groups (p > 0.05). Dyslipidemia and the use of statins was associated with culture establishment for IHD patients (p = 0.049 and p = 0.006, respectively). Conclusions Together, these results show that the sternum bone can be used as a source for MSC isolation, and that ischemic or valvular diseases do not influence the cellular yield, culture establishment or in vitro growth kinetics. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1262-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucinara Dadda Dias
- Programa de Pós-graduação em Ciências da Saúde-Cardiologia, Instituto de Cardiologia/Fundação Universitária de Cardiologia, Avenida Princesa Isabel, n° 370, 3° andar, Porto Alegre, RS, CEP: 90620-001, Brazil
| | | | - Carine Ghem
- Serviço de Patologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Melissa Kristocheck da Silva
- Programa de Pós-graduação em Ciências da Saúde-Cardiologia, Instituto de Cardiologia/Fundação Universitária de Cardiologia, Avenida Princesa Isabel, n° 370, 3° andar, Porto Alegre, RS, CEP: 90620-001, Brazil
| | - Grasiele Sausen
- Programa de Pós-graduação em Ciências da Saúde-Cardiologia, Instituto de Cardiologia/Fundação Universitária de Cardiologia, Avenida Princesa Isabel, n° 370, 3° andar, Porto Alegre, RS, CEP: 90620-001, Brazil
| | - Patrícia Bonini Palma
- Laboratório de Citometria de Fluxo, Centro Regional de Hemoterapia do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto/Universidade de São Paulo, São Paulo, SP, Brazil
| | - Dimas Tadeu Covas
- Laboratório de Citometria de Fluxo, Centro Regional de Hemoterapia do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto/Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renato A K Kalil
- Programa de Pós-graduação em Ciências da Saúde-Cardiologia, Instituto de Cardiologia/Fundação Universitária de Cardiologia, Avenida Princesa Isabel, n° 370, 3° andar, Porto Alegre, RS, CEP: 90620-001, Brazil.,Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Beatriz D Schaan
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nance Beyer Nardi
- Programa de Pós-graduação em Ciências da Saúde-Cardiologia, Instituto de Cardiologia/Fundação Universitária de Cardiologia, Avenida Princesa Isabel, n° 370, 3° andar, Porto Alegre, RS, CEP: 90620-001, Brazil.,Laboratório de Células-Tronco e Engenharia de Tecidos, Universidade Luterana do Brasil, Canoas, RS, Brazil
| | - Melissa Medeiros Markoski
- Programa de Pós-graduação em Ciências da Saúde-Cardiologia, Instituto de Cardiologia/Fundação Universitária de Cardiologia, Avenida Princesa Isabel, n° 370, 3° andar, Porto Alegre, RS, CEP: 90620-001, Brazil. .,Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Jeon OH, Elisseeff J. Orthopedic tissue regeneration: cells, scaffolds, and small molecules. Drug Deliv Transl Res 2016; 6:105-20. [PMID: 26625850 DOI: 10.1007/s13346-015-0266-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Orthopedic tissue regeneration would benefit the aging population or patients with degenerative bone and cartilage diseases, especially osteoporosis and osteoarthritis. Despite progress in surgical and pharmacological interventions, new regenerative approaches are needed to meet the challenge of creating bone and articular cartilage tissues that are not only structurally sound but also functional, primarily to maintain mechanical integrity in their high load-bearing environments. In this review, we discuss new advances made in exploiting the three classes of materials in bone and cartilage regenerative medicine--cells, biomaterial-based scaffolds, and small molecules--and their successes and challenges reported in the clinic. In particular, the focus will be on the development of tissue-engineered bone and cartilage ex vivo by combining stem cells with biomaterials, providing appropriate structural, compositional, and mechanical cues to restore damaged tissue function. In addition, using small molecules to locally promote regeneration will be discussed, with potential approaches that combine bone and cartilage targeted therapeutics for the orthopedic-related disease, especially osteoporosis and osteoarthritis.
Collapse
Affiliation(s)
- Ok Hee Jeon
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, 5031 Smith Building, 400N. Broadway, Baltimore, MD, 21231, USA
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, 5031 Smith Building, 400N. Broadway, Baltimore, MD, 21231, USA.
| |
Collapse
|
14
|
Bae WJ, Auh QS, Kim GT, Moon JH, Kim EC. Effects of sodium tri- and hexameta-phosphate in vitro osteoblastic differentiation in Periodontal Ligament and Osteoblasts, and in vivo bone regeneration. Differentiation 2016; 92:257-269. [DOI: 10.1016/j.diff.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/29/2016] [Accepted: 04/21/2016] [Indexed: 01/08/2023]
|
15
|
Westphal I, Jedelhauser C, Liebsch G, Wilhelmi A, Aszodi A, Schieker M. Oxygen mapping: Probing a novel seeding strategy for bone tissue engineering. Biotechnol Bioeng 2016; 114:894-902. [PMID: 27748516 PMCID: PMC6084321 DOI: 10.1002/bit.26202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/12/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
Bone tissue engineering (BTE) utilizing biomaterial scaffolds and human mesenchymal stem cells (hMSCs) is a promising approach for the treatment of bone defects. The quality of engineered tissue is crucially affected by numerous parameters including cell density and the oxygen supply. In this study, a novel oxygen-imaging sensor was introduced to monitor the oxygen distribution in three dimensional (3D) scaffolds in order to analyze a new cell-seeding strategy. Immortalized hMSCs, pre-cultured in a monolayer for 30-40% or 70-80% confluence, were used to seed demineralized bone matrix (DBM) scaffolds. Real-time measurements of oxygen consumption in vitro were simultaneously performed by the novel planar sensor and a conventional needle-type sensor over 24 h. Recorded oxygen maps of the novel planar sensor revealed that scaffolds, seeded with hMSCs harvested at lower densities (30-40% confluence), exhibited rapid exponential oxygen consumption profile. In contrast, harvesting cells at higher densities (70-80% confluence) resulted in a very slow, almost linear, oxygen decrease due to gradual achieving the stationary growth phase. In conclusion, it could be shown that not only the seeding density on a scaffold, but also the cell density at the time point of harvest is of major importance for BTE. The new cell seeding strategy of harvested MSCs at low density during its log phase could be a useful strategy for an early in vivo implantation of cell-seeded scaffolds after a shorter in vitro culture period. Furthermore, the novel oxygen imaging sensor enables a continuous, two-dimensional, quick and convenient to handle oxygen mapping for the development and optimization of tissue engineered scaffolds. Biotechnol. Bioeng. 2017;114: 894-902. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ines Westphal
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstruction Surgery, University Hospital, Ludwig-Maximillians-University of Munich, Nussbaumstr. 20, Munich 80336, Germany.,LivImplant GmbH, Starnberg, Germany
| | - Claudia Jedelhauser
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstruction Surgery, University Hospital, Ludwig-Maximillians-University of Munich, Nussbaumstr. 20, Munich 80336, Germany
| | | | | | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstruction Surgery, University Hospital, Ludwig-Maximillians-University of Munich, Nussbaumstr. 20, Munich 80336, Germany
| | - Matthias Schieker
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstruction Surgery, University Hospital, Ludwig-Maximillians-University of Munich, Nussbaumstr. 20, Munich 80336, Germany.,LivImplant GmbH, Starnberg, Germany
| |
Collapse
|
16
|
Weng J, Moriarty KE, Baio FE, Chu F, Kim SD, He J, Jie Z, Xie X, Ma W, Qian J, Zhang L, Yang J, Yi Q, Neelapu SS, Kwak LW. IL-15 enhances the antitumor effect of human antigen-specific CD8 + T cells by cellular senescence delay. Oncoimmunology 2016; 5:e1237327. [PMID: 28123872 DOI: 10.1080/2162402x.2016.1237327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/31/2016] [Accepted: 09/10/2016] [Indexed: 01/08/2023] Open
Abstract
Optimal expansion protocols for adoptive human T-cell therapy often include interleukin (IL)-15; however, the mechanism by which IL-15 improves the in vivo antitumor effect of T cells remains to be elucidated. Using human T cells generated from HLA-A2+ donors against novel T-cell epitopes derived from the human U266 myeloma cell line Ig light chain V-region (idiotype) as a model, we found that T cells cultured with IL-15 provided superior resistance to tumor growth in vivo, compared with IL-2, after adoptive transfer into immunodeficient hosts. This effect of IL-15 was associated with delayed/reversed senescence in tumor antigen-specific memory CD8+ T cells mediated through downregulation of P21WAF1, P16INK4a, and P53 expression. Compared to IL-2, IL-15 stimulation dramatically activated JAK3-STAT5 signaling and inhibited the expression of DNA damage genes. Thus, our study elucidates a new mechanism for IL-15 in the regulation of STAT signaling pathways and CD8+ T-cell senescence.
Collapse
Affiliation(s)
- Jinsheng Weng
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kelsey E Moriarty
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Flavio Egidio Baio
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Fuliang Chu
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Sung-Doo Kim
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Jin He
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Wencai Ma
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Jianfei Qian
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Liang Zhang
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Jing Yang
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Qing Yi
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Larry W Kwak
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
17
|
Bone Marrow Stromal Stem Cells for Bone Repair: Basic and Translational Aspects. RECENT ADVANCES IN STEM CELLS 2016. [DOI: 10.1007/978-3-319-33270-3_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems. Adv Drug Deliv Rev 2015; 94:116-25. [PMID: 25817732 DOI: 10.1016/j.addr.2015.03.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/27/2015] [Accepted: 03/20/2015] [Indexed: 01/31/2023]
Abstract
One of the major problems with bone tissue engineering is the development of a rapid vascularization after implantation to supply the growing osteoblast cells with the nutrients to grow and survive as well as to remove waste products. It has been demonstrated that capillary-like structures produced in vitro will anastomose rapidly after implantation and become functioning blood vessels. For this reason, in recent years many studies have examined a variety of human osteoblast and endothelial cell co-culture systems in order to distribute osteoblasts on all parts of the bone scaffold and at the same time provide conditions for the endothelial cells to migrate to form a network of capillary-like structures throughout the osteoblast-colonized scaffold. The movement and proliferation of endothelial cells to form capillary-like structures is known as angiogenesis and is dependent on a variety of pro-angiogenic factors. This review summarizes human 2- and 3-D co-culture models to date, the types and origins of cells used in the co-cultures and the proangiogenic factors that have been identified in the co-culture models.
Collapse
|
19
|
Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. BIOMED RESEARCH INTERNATIONAL 2015; 2015:729076. [PMID: 25883972 PMCID: PMC4391163 DOI: 10.1155/2015/729076] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/27/2015] [Indexed: 11/22/2022]
Abstract
A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described.
Collapse
Affiliation(s)
- Marco A. Velasco
- Studies and Applications in Mechanical Engineering Research Group (GEAMEC), Universidad Santo Tomás, Bogotá, Colombia
| | - Carlos A. Narváez-Tovar
- Studies and Applications in Mechanical Engineering Research Group (GEAMEC), Universidad Santo Tomás, Bogotá, Colombia
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego A. Garzón-Alvarado
- Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
20
|
Weilner S, Grillari-Voglauer R, Redl H, Grillari J, Nau T. The role of microRNAs in cellular senescence and age-related conditions of cartilage and bone. Acta Orthop 2015; 86:92-9. [PMID: 25175665 PMCID: PMC4366666 DOI: 10.3109/17453674.2014.957079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE We reviewed the current state of research on microRNAs in age-related diseases in cartilage and bone. METHODS PubMed searches were conducted using separate terms to retrieve articles on (1) the role of microRNAs on aging and tissue degeneration, (2) specific microRNAs that influence cellular and organism senescence, (3) microRNAs in age-related musculoskeletal conditions, and (4) the diagnostic and therapeutic potential of microRNAs in age-related musculoskeletal conditions. RESULTS An increasing number of studies have identified microRNAs associated with cellular aging and tissue degeneration. Specifically in regard to frailty, microRNAs have been found to influence the onset and course of age-related musculoskeletal conditions such as osteoporosis, osteoarthritis, and posttraumatic arthritis. Both intracellular and extracellular microRNAs may be suitable to function as diagnostic biomarkers. INTERPRETATION The research data currently available suggest that microRNAs play an important role in orchestrating age-related processes and conditions of the musculoskeletal system. Further research may help to improve our understanding of the complexity of these processes at the cellular and extracellular level. The option to develop microRNA biomarkers and novel therapeutic agents for the degenerating diseases of bone and cartilage appears to be promising.
Collapse
Affiliation(s)
- Sylvia Weilner
- Department of Biotechnology, VIBT-BOKU, University of Natural Resources and Life Sciences,Evercyte GmbH
| | - Regina Grillari-Voglauer
- Department of Biotechnology, VIBT-BOKU, University of Natural Resources and Life Sciences,Evercyte GmbH
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology,The Austrian Cluster for Tissue Regeneration
| | - Johannes Grillari
- Department of Biotechnology, VIBT-BOKU, University of Natural Resources and Life Sciences,Evercyte GmbH,Christian Doppler Laboratory for Biotechnology of Skin Aging
| | - Thomas Nau
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology,The Austrian Cluster for Tissue Regeneration,Institute for Musculoskeletal Analysis Research and Therapy (IMSART), Vienna, Austria
| |
Collapse
|
21
|
Turner S, Balain B, Caterson B, Morgan C, Roberts S. Viability, growth kinetics and stem cell markers of single and clustered cells in human intervertebral discs: implications for regenerative therapies. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:2462-72. [PMID: 25095758 DOI: 10.1007/s00586-014-3500-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE There is much interest in the development of a cellular therapy for the repair or regeneration of degenerate intervertebral discs (IVDs) utilising autologous cells, with some trials already underway. Clusters of cells are commonly found in degenerate IVDs and are formed via cell proliferation, possibly as a repair response. We investigated whether these clusters may be more suitable as a source of cells for biological repair than the single cells in the IVD. METHODS Discs were obtained at surgery from 95 patients and used to assess the cell viability, growth kinetics and stem or progenitor cell markers in both the single and clustered cell populations. RESULTS Sixty-nine percent (±15) of cells in disc tissue were viable. The clustered cell population consistently proliferated more slowly in monolayer than single cells, although this difference was only significant at P0-1 and P3-4. Both populations exhibited progenitor or notochordal cell markers [chondroitin sulphate epitopes (3B3(-), 7D4, 4C3 and 6C3), Notch-1, cytokeratin 8 and 19] via immunohistochemical examination; stem cell markers assessed with flow cytometry (CD73, 90 and 105 positivity) were similar to those seen on bone marrow-derived mesenchymal stem cells. CONCLUSIONS These results confirm those of previous studies indicating that progenitor or stem cells reside in adult human intervertebral discs. However, although the cell clusters have arisen via proliferation, there appear to be no greater incidence of these progenitor cells within clusters compared to single cells. Rather, since they proliferate more slowly in vitro than the single cell population, it may be beneficial to avoid the use of clustered cells when sourcing autologous cells for regenerative therapies.
Collapse
Affiliation(s)
- Sarah Turner
- Spinal Studies, TORCH Building, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, SY10 7AG, UK,
| | | | | | | | | |
Collapse
|
22
|
Senescent human periodontal ligament fibroblasts after replicative exhaustion or ionizing radiation have a decreased capacity towards osteoblastic differentiation. Biogerontology 2013; 14:741-51. [PMID: 23934584 DOI: 10.1007/s10522-013-9449-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/02/2013] [Indexed: 01/14/2023]
Abstract
Loss of teeth increases with age or after genotoxic treatments, like head and neck radiotherapy, due to periodontium breakdown. Periodontal ligament fibroblasts represent the main cell type in this tissue and are crucial for the maintenance of homeodynamics and for its regeneration. Here, we have studied the characteristics of human periodontal ligament fibroblasts (hPDLF) that became senescent after replicative exhaustion or after exposure to ionizing radiation, as well as their ability for osteoblastic differentiation. We found that senescent hPDLF express classical markers of senescence, as well as a catabolic phenotype, as shown by the decrease in collagen type I and the increase of MMP-2 expression. In addition, we observed a considerably decreased expression of the major transcription factor for osteoblastic differentiation, i.e. Runx2, a down-regulation which was found to be p53-dependent. In accordance to the above, senescent cells have a significantly decreased alkaline phosphatase gene expression and activity, as well as a reduced ability for osteoblastic differentiation, as found by Alizarin Red staining. Interestingly, cells from both type of senescence express similar characteristics, implying analogous functions in vivo. In conclusion, senescent hPDLF express a catabolic phenotype and express a significantly decreased ability towards an osteoblastic differentiation, thus probably affecting tissue development and integrity.
Collapse
|
23
|
Portalska KJ, Groen N, Krenning G, Georgi N, Mentink A, Harmsen MC, van Blitterswijk C, de Boer J. The effect of donor variation and senescence on endothelial differentiation of human mesenchymal stromal cells. Tissue Eng Part A 2013; 19:2318-29. [PMID: 23676150 DOI: 10.1089/ten.tea.2012.0646] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Application of autologous cells is considered for a broad range of regenerative therapies because it is not surrounded by the immunological and ethical issues of allo- or xenogenic cells. However, isolation, expansion, and application of autologous cells do suffer from variability in therapeutic efficacy due to donor to donor differences and due to prolonged culture. One important source of autologous cells is mesenchymal stromal cells (MSCs), which can differentiate toward endothelial-like cells, thus making them an ideal candidate as cell source for tissue vascularization. Here we screened MSCs from 20 donors for their endothelial differentiation capacity and correlated it with the gene expression profile of the whole genome in the undifferentiated state. Cells of all donors were able to form tubes on Matrigel and induced the expression of endothelial genes, although with quantitative differences. In addition, we analyzed the effect of prolonged in vitro expansion on the multipotency of human MSCs and found that endothelial differentiation is only mildly sensitive to expansion-induced loss of differentiation as compared to osteogenic and adipogenic differentiation. Our results show the robustness of the endothelial differentiation protocol and the gene expression data give insight in the differences in endothelial differentiation between donors.
Collapse
Affiliation(s)
- Karolina Janeczek Portalska
- 1 Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Andersen TL, Abdelgawad ME, Kristensen HB, Hauge EM, Rolighed L, Bollerslev J, Kjærsgaard-Andersen P, Delaisse JM. Understanding coupling between bone resorption and formation: are reversal cells the missing link? THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:235-46. [PMID: 23747107 DOI: 10.1016/j.ajpath.2013.03.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 12/25/2022]
Abstract
Bone remodeling requires bone resorption by osteoclasts, bone formation by osteoblasts, and a poorly investigated reversal phase coupling resorption to formation. Likely players of the reversal phase are the cells recruited into the lacunae vacated by the osteoclasts and presumably preparing these lacunae for bone formation. These cells, called herein reversal cells, cover >80% of the eroded surfaces, but their nature is not identified, and it is not known whether malfunction of these cells may contribute to bone loss in diseases such as postmenopausal osteoporosis. Herein, we combined histomorphometry and IHC on human iliac biopsy specimens, and showed that reversal cells are immunoreactive for factors typically expressed by osteoblasts, but not for monocytic markers. Furthermore, a subpopulation of reversal cells showed several distinctive characteristics suggestive of an arrested physiological status. Their prevalence correlated with decreased trabecular bone volume and osteoid and osteoblast surfaces in postmenopausal osteoporosis. They were, however, virtually absent in primary hyperparathyroidism, in which the transition between bone resorption and formation occurs optimally. Collectively, our observations suggest that arrested reversal cells reflect aborted remodeling cycles that did not progress to the bone formation step. We, therefore, propose that bone loss in postmenopausal osteoporosis does not only result from a failure of the bone formation step, as commonly believed, but also from a failure at the reversal step.
Collapse
Affiliation(s)
- Thomas L Andersen
- Department of Clinical Cell Biology, Institute of Regional Health Services Research, University of Southern Denmark, Vejle-Lillebaelt Hospital, Vejle, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Piper SL, Wang M, Yamamoto A, Malek F, Luu A, Kuo AC, Kim HT. Inducible immortality in hTERT-human mesenchymal stem cells. J Orthop Res 2012; 30:1879-85. [PMID: 22674533 DOI: 10.1002/jor.22162] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 05/09/2012] [Indexed: 02/04/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are attractive candidates for tissue engineering and cell-based therapy because of their multipotentiality and availability in adult donors. However, in vitro expansion and differentiation of these cells is limited by replicative senescence. The proliferative capacity of hMSCs can be enhanced by ectopic expression of telomerase, allowing for long-term culture. However, hMSCs with constitutive telomerase expression demonstrate unregulated growth and even tumor formation. To address this problem, we used an inducible Tet-On gene expression system to create hMSCs in which ectopic telomerase expression can be induced selectively by the addition of doxycycline (i-hTERT hMSCs). i-hTERT hMSCs have inducible hTERT expression and telomerase activity, and are able to proliferate significantly longer than wild type hMSCs when hTERT expression is induced. They stop proliferating when hTERT expression is turned off and can be rescued when expression is re-induced. They retain multipotentiality in vitro even at an advanced age. We also used a selective inhibitor of telomere elongation to show that the mechanism driving immortalization of hMSCs by hTERT is dependent upon maintenance of telomere length. Thanks to their extended lifespan, preserved multipotentiality and controlled growth, i-hTERT hMSCs may prove to be a useful tool for the development and testing of novel stem cell therapies.
Collapse
Affiliation(s)
- Samantha L Piper
- Department of Orthopaedic Surgery, University of California San Francisco, 500 Parnassus Avenue, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Analysis and simulation of division- and label-structured population models : a new tool to analyze proliferation assays. Bull Math Biol 2012; 74:2692-732. [PMID: 23086287 DOI: 10.1007/s11538-012-9774-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
Abstract
In most biological studies and processes, cell proliferation and population dynamics play an essential role. Due to this ubiquity, a multitude of mathematical models has been developed to describe these processes. While the simplest models only consider the size of the overall populations, others take division numbers and labeling of the cells into account. In this work, we present a modeling and computational framework for proliferating cell populations undergoing symmetric cell division, which incorporates both the discrete division number and continuous label dynamics. Thus, it allows for the consideration of division number-dependent parameters as well as the direct comparison of the model prediction with labeling experiments, e.g., performed with Carboxyfluorescein succinimidyl ester (CFSE), and can be shown to be a generalization of most existing models used to describe these data. We prove that under mild assumptions the resulting system of coupled partial differential equations (PDEs) can be decomposed into a system of ordinary differential equations (ODEs) and a set of decoupled PDEs, which drastically reduces the computational effort for simulating the model. Furthermore, the PDEs are solved analytically and the ODE system is truncated, which allows for the prediction of the label distribution of complex systems using a low-dimensional system of ODEs. In addition to modeling the label dynamics, we link the label-induced fluorescence to the measure fluorescence which includes autofluorescence. Furthermore, we provide an analytical approximation for the resulting numerically challenging convolution integral. This is illustrated by modeling and simulating a proliferating population with division number-dependent proliferation rate.
Collapse
|
27
|
Li XY, Ding J, Zheng ZH, Li XY, Wu ZB, Zhu P. Long-term culture in vitro impairs the immunosuppressive activity of mesenchymal stem cells on T cells. Mol Med Rep 2012; 6:1183-9. [PMID: 22923041 DOI: 10.3892/mmr.2012.1039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 08/07/2012] [Indexed: 12/16/2022] Open
Abstract
Improved knowledge of the immunological properties of mesenchymal stem cells (MSCs) creates a potential cell-mediated immunotherapeutic approach for arthritic diseases. The low frequency of MSCs necessitates their in vitro expansion prior to clinical use. As sequential passage has been used as the most popular strategy for expansion of MSCs, the effect of long-term culture on the immunological properties of MSCs is not clear. In this study, we observed that the morphology of MSCs showed the typical characteristics of the Hayflick model of cellular aging during sequential expansion. The growth kinetics of MSCs decreased while the number of MSCs staining positive for SA β-gal (senescence marker) increased in long-term culture. Although long-term culture exerts less of an effect on the immunophenotype of MSCs, the immunosuppressive effects of MSCs on the allogeneic T-cell proliferation, activation-antigen expression (CD69 and CD25) and cytokine production (IFN-γ, TNF-α, IL-10) were significantly impaired following stimulation with phytohemagglutinin (PHA).
Collapse
Affiliation(s)
- Xue-Yi Li
- Department of Clinical Immunology, State Key Discipline of Cell Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Javaheri B, Sunters A, Zaman G, Suswillo RFL, Saxon LK, Lanyon LE, Price JS. Lrp5 is not required for the proliferative response of osteoblasts to strain but regulates proliferation and apoptosis in a cell autonomous manner. PLoS One 2012; 7:e35726. [PMID: 22567110 PMCID: PMC3342322 DOI: 10.1371/journal.pone.0035726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/22/2012] [Indexed: 11/19/2022] Open
Abstract
Although Lrp5 is known to be an important contributor to the mechanisms regulating bone mass, its precise role remains unclear. The aim of this study was to establish whether mutations in Lrp5 are associated with differences in the growth and/or apoptosis of osteoblast-like cells and their proliferative response to mechanical strain in vitro. Primary osteoblast-like cells were derived from cortical bone of adult mice lacking functional Lrp5 (Lrp5(-/-)), those heterozygous for the human G171V High Bone Mass (HBM) mutation (LRP5(G171V)) and their WT littermates (WT(Lrp5), WT(HBM)). Osteoblast proliferation over time was significantly higher in cultures of cells from LRP5(G171V) mice compared to their WT(HBM) littermates, and lower in Lrp5(-/-) cells. Cells from female LRP5(G171V) mice grew more rapidly than those from males, whereas cells from female Lrp5(-/-) mice grew more slowly than those from males. Apoptosis induced by serum withdrawal was significantly higher in cultures from Lrp5(-/-) mice than in those from WT(HBM) or LRP5(G171V) mice. Exposure to a single short period of dynamic mechanical strain was associated with a significant increase in cell number but this response was unaffected by genotype which also did not change the 'threshold' at which cells responded to strain. In conclusion, the data presented here suggest that Lrp5 loss and gain of function mutations result in cell-autonomous alterations in osteoblast proliferation and apoptosis but do not alter the proliferative response of osteoblasts to mechanical strain in vitro.
Collapse
Affiliation(s)
- Behzad Javaheri
- Department of Oral Biology, UMKC School of Dentistry, Kansas City, Missouri, United States of America.
| | | | | | | | | | | | | |
Collapse
|
29
|
Krawetz RJ, Taiani JT, Wu YE, Liu S, Meng G, Matyas JR, Rancourt DE. Collagen I scaffolds cross-linked with beta-glycerol phosphate induce osteogenic differentiation of embryonic stem cells in vitro and regulate their tumorigenic potential in vivo. Tissue Eng Part A 2012; 18:1014-24. [PMID: 22166057 DOI: 10.1089/ten.tea.2011.0174] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Embryonic stem cells (ESCs) have the potential to differentiate into all tissues of the adult organism. This, along with the ability for unlimited self-renewal, positions these cells for regenerative medicine approaches based on tissue engineering strategies. With the objective of developing a treatment regime for skeletal injuries and diseases, this study presents a novel protocol that effectively induces ESC differentiation into osteogenic and chondrogenic lineages while concurrently eliminating observed tumorigenicity during the period of observation after transplantation in vivo. Exposure to a collagen I matrix polymerized with beta-glycerol phosphate (BGP) induced the osteogenic differentiation of the ESCs with an efficiency of >80% without purification and/or lineage-specific cell selection. Furthermore, when the collagen I matrix was supplemented with chondroitin sulfate, chondrogenesis was promoted instead of osteogenesis. Interestingly, without purification of the differentiated cells from the collagen I matrix, these constructs did not lead to the formation of teratomas or tumors when implanted subcutaneously in a severe combined immunodeficiency (SCID). Furthermore, if undifferentiated ESCs were mixed with collagen I and then injected immediately (i.e., without previous in vitro differentiation), again, no teratomas or tumors were observed, whereas undifferentiated ESCs without collagen scaffolds all produced teratomas in this bioassay system. These results suggest that collagen I scaffolds not only induce osteogenic differentiation of ESCs, but also prevent ESCs from producing unwanted tumors when injected in vivo.
Collapse
Affiliation(s)
- Roman J Krawetz
- Department of Surgery, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
30
|
Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region. Front Med 2011; 5:401-13. [PMID: 22198752 DOI: 10.1007/s11684-011-0161-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 12/15/2022]
Abstract
Clinical imperatives for the reconstruction of jaw bone defects or resorbed alveolar ridge require new therapies or procedures instead of autologous/allogeneic bone grafts. Regenerative medicine, based on stem cell science and tissue engineering technology, is considered as an ideal alternative strategy for bone regeneration. In this paper, we review the current choices of cell source and strategies on directing the osteogenic differentiation of stem cells. The preclinical animal models for bone regeneration and the key translational points to clinical success in oral and maxillofacial region are also discussed. We propose comprehensive strategies based on stem cell and tissue engineering researches, allowing for clinical application in oral and maxillofacial region.
Collapse
|
31
|
Park DG, Kim KG, Lee TJ, Kim JY, Sung EG, Ahn MW, Song IH. Optimal supplementation of dexamethasone for clinical purposed expansion of mesenchymal stem cells for bone repair. J Orthop Sci 2011; 16:606-12. [PMID: 21720802 DOI: 10.1007/s00776-011-0114-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 06/06/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Although mesenchymal stem cells (MSCs) are generally considered to represent a very promising tool for bone repair, no optimal protocol has yet been developed for the isolation and expansion of these cells for large-scale clinical applications. METHODS Mesenchymal stem cells were supplemented with four different concentrations of dexamethasone: 0 M (Con), 0.2 × 10(-8) M (D0.2), 1.0 × 10(-8) M (D1.0) and 5.0 × 10(-8) M (D5.0); and analyzed every week for 5 weeks (P1-P5). Cells were analyzed via an alkaline phosphatase assay, DNA quantification, Oil Red stain, and flow cytometry for CD105 and CD90. Additionally, P3 and P5 cells were subcutaneously transplanted into nude mice after seeding in ceramic cubes. RESULTS Proliferation of the cells was significantly higher in the D0.2 group. Alkaline phosphatase activities remained at low levels in the Con and D0.2 groups, but increased to high levels in the D1.0 and D5.0 groups as time elapsed. CD105 expression at P5 was lower than at P1, P2 and P3. Adipocyte differentiation was highest at P3. At the 8th week, in vivo bone formation was enhanced by the MSCs in a dexamethasone-supplemented culture for 3 or 5 weeks, and D0.2 was also higher than Con. CONCLUSIONS The supplementation of MSCs under low-level rather than physiological concentrations (2 × 10(-9) M) of dexamethasone facilitates the culture expansion of these cells for osteogenic purposes by enhancing cell proliferation without diverse differentiation, and also promotes bone formation after in vivo transplantation.
Collapse
Affiliation(s)
- Dae Gyu Park
- Department of Anatomy, College of Medicine, Yeungnam University, 317-1 Daemyung-dong, Daegu, 705-717, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
The use of hTERT-immortalized cells in tissue engineering. Cytotechnology 2011; 45:39-46. [PMID: 19003242 DOI: 10.1007/s10616-004-5124-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2004] [Accepted: 09/21/2004] [Indexed: 12/16/2022] Open
Abstract
The use of human telomerase reverse transcriptase (hTERT)-immortalized cells in tissue engineering protocols is a potentially important application of telomere biology. Several human cell types have been created that overexpress the hTERT gene with enhanced telomerase activity, extended life span and maintained or even improved functional activities. Furthermore, some studies have employed the telomerized cells in tissue engineering protocols with very good results. However, high telomerase activity allows extensive cell proliferation that may be associated with genomic instability and risk for cell transformation. Thus, safety issues should be studied carefully before using the telomerized tissues in the clinic. Alternatively, the development of conditional or intermittent telomerase activation protocols is needed.
Collapse
|
33
|
Abstract
Human aging is associated with bone loss leading to bone fragility and increased risk of fractures. The cellular and molecular causes of age-related bone loss are current intensive topic of investigation with the aim of identifying new approaches to abolish its negative effects on the skeleton. Age-related osteoblast dysfunction is the main cause of age-related bone loss in both men and women beyond the fifth decade and results from two groups of pathogenic mechanisms: extrinsic mechanisms that are mediated by age-related changes in bone microenvironment including changes in levels of hormones and growth factors, and intrinsic mechanisms caused by the osteoblast cellular senescence. The aim of this review is to provide a summary of the intrinsic senescence mechanisms affecting osteoblastic functions and how they can be targeted to abolish age-related osteoblastic dysfunction and bone loss associated with aging.
Collapse
Affiliation(s)
- Moustapha Kassem
- Department of Endocrinology and Metabolism, University Hospital of Odense, Odense, Denmark
| | | |
Collapse
|
34
|
Wu X, Chen S, Orlando SA, Yuan J, Kim ET, Munugalavadla V, Mali RS, Kapur R, Yang FC. p85alpha regulates osteoblast differentiation by cross-talking with the MAPK pathway. J Biol Chem 2011; 286:13512-21. [PMID: 21324896 DOI: 10.1074/jbc.m110.187351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Class IA phosphoinositide 3-kinase (PI3K) is involved in regulating many cellular functions including cell growth, proliferation, cell survival, and differentiation. The p85 regulatory subunit is a critical component of the PI3K signaling pathway. Mesenchymal stem cells (MSC) are multipotent cells that can be differentiated into osteoblasts (OBs), adipocytes, and chondrocytes under defined culture conditions. To determine whether p85α subunit of PI3K affects biological functions of MSCs, bone marrow-derived wild type (WT) and p85α-deficient (p85α(-/-)) cells were employed in this study. Increased cell growth, higher proliferation rate and reduced number of senescent cells were observed in MSCs lacking p85α compare with WT MSCs as evaluated by CFU-F assay, thymidine incorporation assay, and β-galactosidase staining, respectively. These functional changes are associated with the increased cell cycle, increased expression of cyclin D, cyclin E, and reduced expression of p16 and p19 in p85α(-/-) MSCs. In addition, a time-dependent reduction in alkaline phosphatase (ALP) activity and osteocalcin mRNA expression was observed in p85α(-/-) MSCs compared with WT MSCs, suggesting impaired osteoblast differentiation due to p85α deficiency in MSCs. The impaired p85α(-/-) osteoblast differentiation was associated with increased activation of Akt and MAPK. Importantly, bone morphogenic protein 2 (BMP2) was able to intensify the differentiation of osteoblasts derived from WT MSCs, whereas this process was significantly impaired as a result of p85α deficiency. Addition of LY294002, a PI3K inhibitor, did not alter the differentiation of osteoblasts in either genotype. However, application of PD98059, a Mek/MAPK inhibitor, significantly enhanced osteoblast differentiation in WT and p85α(-/-) MSCs. These results suggest that p85α plays an essential role in osteoblast differentiation from MSCs by repressing the activation of MAPK pathway.
Collapse
Affiliation(s)
- Xiaohua Wu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Haenold R, Wassef R, Brot N, Neugebauer S, Leipold E, Heinemann SH, Hoshi T. Protection of vascular smooth muscle cells by over-expressed methionine sulphoxide reductase A: role of intracellular localization and substrate availability. Free Radic Res 2009; 42:978-88. [PMID: 19085252 DOI: 10.1080/10715760802566541] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Methionine sulphoxide reductase A (MSRA) that reduces methionine-S-sulphoxide back to methionine constitutes a catalytic antioxidant mechanism to prevent oxidative damage at multiple sub-cellular loci. This study examined the relative importance of protection of the cytoplasm and mitochondria by MSRA using A-10 vascular smooth muscle cells, a cell type that requires a low level of reactive oxygen species (ROS) for normal function but is readily damaged by higher concentrations of ROS. Adenoviral over-expression of human MSRA variants, targeted to either mitochondria or the cytoplasm, did not change basal viability of non-stressed cells. Oxidative stress caused by treatment with the methionine-preferring oxidizing reagent chloramine-T decreased cell viability in a concentration-dependent manner. Cytoplasmic MSRA preserved cell viability more effectively than mitochondrial MSRA and co-application of S-methyl-L-cysteine, an amino acid that acts as a substrate for MSRA when oxidized, further increased the extent of protection. This suggests an important role for an MSRA catalytic antioxidant cycle for protection of the cytoplasmic compartment against oxidative damage.
Collapse
Affiliation(s)
- Ronny Haenold
- Department of Physiology, University of Pennsylvania, Philadelphia, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhang W, Walboomers XF, van Osch GJVM, van den Dolder J, Jansen JA. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Tissue Eng Part A 2008; 14:285-94. [PMID: 18333781 DOI: 10.1089/tea.2007.0146] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to compare the ability of hard tissue regeneration of four types of stem cells or precursors under both in vitro and in vivo situations. Primary cultures of rat bone marrow, rat dental pulp, human bone marrow, and human dental pulp cells were seeded onto a porous ceramic scaffold material, and then either cultured in an osteogenic medium or subcutaneously implanted into nude mice. For cell culture, samples were collected at weeks 0, 1, 3, and 5. Results were analyzed by measuring cell proliferation rate and alkaline phosphatase activity, scanning electron microscopy, and real-time PCR. Samples from the implantation study were retrieved after 5 and 10 weeks and evaluated by histology and real-time PCR. The results indicated that in vitro abundant cell growth and mineralization of extracellular matrix was observed for all types of cells. However, in vivo matured bone formation was found only in the samples seeded with rat bone marrow stromal cells. Real-time PCR suggested that the expression of Runx2 and the expression osteocalcin were important for the differentiation of bone marrow stromal cells, while dentin sialophosphoprotein contributed to the odontogenic differentiation. In conclusion, the limited hard tissue regeneration ability of dental pulp stromal cells questions their practical application for complete tooth regeneration. Repeated cell passaging may explain the reduction of the osteogenic ability of both bone- and dentinal-derived stem cells. Therefore, it is essential to develop new cell culture methods to harvest the desired cell numbers while not obliterating the osteogenic potential.
Collapse
Affiliation(s)
- Weibo Zhang
- Department of Periodontology and Biomaterials, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS, Glowacki J. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 2008; 7:335-43. [PMID: 18248663 DOI: 10.1111/j.1474-9726.2008.00377.x] [Citation(s) in RCA: 562] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In vivo and in vitro studies indicate that a subpopulation of human marrow-derived stromal cells (MSCs, also known as mesenchymal stem cells) has potential to differentiate into multiple cell types, including osteoblasts. In this study, we tested the hypothesis that there are intrinsic effects of age in human MSCs (17-90 years). We tested the effect of age on senescence-associated beta-galactosidase, proliferation, apoptosis, p53 pathway genes, and osteoblast differentiation in confluent monolayers by alkaline phosphatase activity and osteoblast gene expression analysis. There were fourfold more human bone MSCs (hMSCs) positive for senescence-associated beta-galactosidase in samples from older than younger subjects (P < 0.001; n = 17). Doubling time of hMSCs was 1.7-fold longer in cells from the older than the younger subjects, and was positively correlated with age (P = 0.002; n = 19). Novel age-related changes were identified. With age, more cells were apoptotic (P = 0.016; n = 10). Further, there were age-related increases in expression of p53 and its pathway genes, p21 and BAX. Consistent with other experiments, there was a significant age-related decrease in generation of osteoblasts both in the STRO-1+ cells (P = 0.047; n = 8) and in adherent MSCs (P < 0.001; n = 10). In sum, there is an age-dependent decrease in proliferation and osteoblast differentiation, and an increase in senescence-associated beta-galactosidase-positive cells and apoptosis in hMSCs. Up-regulation of the p53 pathway with age may have a critical role in mediating the reduction in both proliferation and osteoblastogenesis of hMSCs. These findings support the view that there are intrinsic alterations in human MSCs with aging that may contribute to the process of skeletal aging in humans.
Collapse
Affiliation(s)
- Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Mesenchymal stem cells (MSCs) can be derived from adult bone marrow, fat and several foetal tissues. In vitro, MSCs have the capacity to differentiate into multiple mesodermal and non-mesodermal cell lineages. Besides, MSCs possess immunosuppressive effects by modulating the immune function of the major cell populations involved in alloantigen recognition and elimination. The intriguing biology of MSCs makes them strong candidates for cell-based therapy against various human diseases. Type 1 diabetes is caused by a cell-mediated autoimmune destruction of pancreatic β-cells. While insulin replacement remains the cornerstone treatment for type 1 diabetes, the transplantation of pancreatic islets of Langerhans provides a cure for this disorder. And yet, islet transplantation is limited by the lack of donor pancreas. Generation of insulin-producing cells (IPCs) from MSCs represents an attractive alternative. On the one hand, MSCs from pancreas, bone marrow, adipose tissue, umbilical cord blood and cord tissue have the potential to differentiate into IPCs by genetic modification and/or defined culture conditions In vitro. On the other hand, MSCs are able to serve as a cellular vehicle for the expression of human insulin gene. Moreover, protein transduction technology could offer a novel approach for generating IPCs from stem cells including MSCs. In this review, we first summarize the current knowledge on the biological characterization of MSCs. Next, we consider MSCs as surrogate β-cell source for islet transplantation, and present some basic requirements for these replacement cells. Finally, MSCs-mediated therapeutic neovascularization in type 1 diabetes is discussed.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, PR China
| | | |
Collapse
|
39
|
Pignolo RJ, Suda RK, McMillan EA, Shen J, Lee SH, Choi Y, Wright AC, Johnson FB. Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis. Aging Cell 2008; 7:23-31. [PMID: 18028256 DOI: 10.1111/j.1474-9726.2007.00350.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis and the associated risk of fracture are major clinical challenges in the elderly. Telomeres shorten with age in most human tissues, including bone, and because telomere shortening is a cause of cellular replicative senescence or apoptosis in cultured cells, including mesenchymal stem cells (MSCs) and osteoblasts, it is hypothesized that telomere shortening contributes to the aging of bone. Osteoporosis is common in the Werner (Wrn) and dyskeratosis congenita premature aging syndromes, which are characterized by telomere dysfunction. One of the targets of the Wrn helicase is telomeric DNA, but the long telomeres and abundant telomerase in mice minimize the need for Wrn at telomeres, and thus Wrn knockout mice are relatively healthy. In a model of accelerated aging that combines the Wrn mutation with the shortened telomeres of telomerase (Terc) knockout mice, synthetic defects in proliferative tissues result. Here, we demonstrate that deficiencies in Wrn-/- Terc-/- mutant mice cause a low bone mass phenotype, and that age-related osteoporosis is the result of impaired osteoblast differentiation in the context of intact osteoclast differentiation. Further, MSCs from single and Wrn-/- Terc-/- double mutant mice have a reduced in vitro lifespan and display impaired osteogenic potential concomitant with characteristics of premature senescence. These data provide evidence that replicative aging of osteoblast precursors is an important mechanism of senile osteoporosis.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Labelle D, Jumarie C, Moreau R. Capacitative calcium entry and proliferation of human osteoblast-like MG-63 cells. Cell Prolif 2007; 40:866-84. [PMID: 18021176 DOI: 10.1111/j.1365-2184.2007.00477.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
UNLABELLED Adult bone tissue is continuously being remodelled and bone mass is maintained by a balance between osteoclastic bone resorption and osteoblastic bone formation. Alteration of osteoblastic cell proliferation may account in part for lack of balance between these two processes in bone loss of osteoporosis. There is calcium (Ca2+) control in numerous cellular functions; however, involvement of capacitative Ca2+ entry (CCE) in proliferation of bone cells is less well investigated. OBJECTIVES The study described here was aimed to investigate roles of CCE in the proliferation of osteoblast-like MG-63 cells. MATERIALS AND METHODS Pharmacological characterizations of CCE were undertaken in parallel, with evaluation of the expression of transient receptor potential canonical (TRPC) channels and of cell proliferation. RESULTS Intracellular Ca2+ store depletion by thapsigargin induced CCE in MG-63 cells; this was characterized by a rapid transient increase of intracellular Ca2+ followed by significant CCE, induced by conditions that stimulated cell proliferation, namely serum and platelet-derived growth factor. Inhibitors of store-operated Ca2+ channels (2-APB and SKF-96365) prevented CCE, while voltage-dependent Ca2+ channel blockers had no effect. Expression of various TRPC channels was shown in the cells, some having been shown to be responsible for CCE. Voltage-dependent Ca2+ channel blockers had no effect on osteoblast proliferation while thapsigargin, 2-APB and SKF-96395, inhibited it. Cell cycle analysis showed that 2-APB and SKF-96395 lengthen the S and G2/M phases, which would account for the reduction in cell proliferation. CONCLUSIONS Our results indicate that CCE, likely attributed to the activation of TRPCs, might be the main route for Ca2+ influx involved in osteoblast proliferation.
Collapse
Affiliation(s)
- D Labelle
- Laboratoire du métabolisme osseux, Centre BioMed, Université du Québec à Montréal, Québec, Canada
| | | | | |
Collapse
|
41
|
Abed E, Moreau R. Importance of melastatin-like transient receptor potential 7 and cations (magnesium, calcium) in human osteoblast-like cell proliferation. Cell Prolif 2007; 40:849-65. [PMID: 18021175 DOI: 10.1111/j.1365-2184.2007.00476.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Bone tissue in the adult is continuously being remodelled, and overall bone mass is maintained constant by the balance between osteoclastic bone resorption and osteoblastic bone formation. Adequate osteoblastic proliferation is essential for both appropriate formation and for regulation of resorption, and thereby the maintenance of bone remodelling equilibrium. OBJECTIVES Here, we have investigated the roles of melastatin-like transient receptor potential 6 and 7 (TRPM6, TRPM7), which are calcium (Ca2+) and magnesium (Mg2+) conducting channels, during proliferation of human osteoblasts. RESULTS Genetic expression of TRPM6 and TRPM7 was shown in human osteoblast-like MG-63, SaOS and U2-OS cells, and reduction of extracellular Mg2+ or Ca2+ led to a decrease of cell proliferation. Concomitant reduction of both ions further accentuated reduction of cell proliferation. Expression of TRPM7 channels was increased under conditions of reduced extracellular Mg2+ and Ca2+ levels whereas expression of TRPM6 was not modified, suggesting compensatory mechanisms afforded by TRPM7 in order to maintain intracellular ion homeostasis. Pre-incubation of cells in reduced extracellular Mg2+ conditions led to activation of Ca2+ and Mg2+ influx. Reduction of TRPM7 expression by specific siRNA prevented latter influx and inhibited cell proliferation. CONCLUSIONS Our results indicate that extracellular Mg2+ and Ca2+ deficiency reduces the proliferation of human osteoblastic cells. Expression and activity of TRPM7 is modulated by extracellular Mg2+ and Ca2+ availability, indicating that TRPM7 channels are involved in intracellular ion homeostasis and proliferation of osteoblasts.
Collapse
Affiliation(s)
- E Abed
- Laboratoire du Métabolisme Osseux, Centre BioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
42
|
Abstract
Mesenchymal stem cells (MSC) are a group of clonogenic cells present among the bone marrow stroma and capable of multilineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. Due to their ease of isolation and their differentiation potential, MSC are being introduced into clinical medicine in variety of applications and through different ways of administration. Here, we discuss approaches for isolation, characterization and directing differentiation of human mesenchymal stem cells (hMSC). An update of the current clinical use of the cells is also provided.
Collapse
|
43
|
Kassem M, Abdallah BM. Human bone-marrow-derived mesenchymal stem cells: biological characteristics and potential role in therapy of degenerative diseases. Cell Tissue Res 2007; 331:157-63. [PMID: 17896115 DOI: 10.1007/s00441-007-0509-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 09/03/2007] [Indexed: 10/22/2022]
Abstract
Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment of a variety of clinical conditions. The aim of this review is to provide an update regarding the biology of MSC, their identification and culture, and mechanisms controlling their proliferation and differentiation. We also review the current status of their clinical use. Areas in which research is needed to enhance the clinical use of MSC are emphasized.
Collapse
Affiliation(s)
- Moustapha Kassem
- Department of Endocrinology and Metabolism, University Hospital of Odense, 5000, Odense C, Denmark.
| | | |
Collapse
|
44
|
Siddappa R, Licht R, van Blitterswijk C, de Boer J. Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. J Orthop Res 2007; 25:1029-41. [PMID: 17469183 DOI: 10.1002/jor.20402] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth, differentiation and in vivo bone forming ability of hMSCs is a bottleneck for standardization of therapeutic protocols. In this study, we isolated and characterized hMSCs from 19 independent donors, aged between 27 and 85 years, and investigated the extent of heterogeneity of the cells and the extent to which hMSCs can be expanded without loosing multipotency. Dexamethasone-induced ALP expression varied between 1.2- and 3.7-fold, but no correlation was found with age, gender, or source of isolation. The cells from donors with a higher percentage of ALP-positive cells in control and dexamethasone-induced groups showed more calcium deposition than cells with lower percentage of ALP positive cells. Despite the variability in osteogenic gene expression among the donors tested, ALP, Collagen type 1, osteocalcin, and S100A4 showed similar trends during the course of osteogenic differentiation. In vitro expansion studies showed that hMSCs can be effectively expanded up to four passages (approximately 10-12 population doublings from a P0 culture) while retaining their multipotency. Our in vivo studies suggest a correlation between in vitro ALP expression and in vivo bone formation. In conclusion, irrespective of age, gender, and source of isolation, cells from all donors showed osteogenic potential. The variability in ALP expression appears to be a result of sampling method and cellular heterogeneity among the donor population.
Collapse
Affiliation(s)
- Ramakrishnaiah Siddappa
- Institute for BioMedical Technology, Department of Tissue Regeneration, University of Twente, Zuidhorst, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | | | | | | |
Collapse
|
45
|
Gruber R, Koch H, Doll BA, Tegtmeier F, Einhorn TA, Hollinger JO. Fracture healing in the elderly patient. Exp Gerontol 2006; 41:1080-93. [PMID: 17092679 DOI: 10.1016/j.exger.2006.09.008] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/11/2006] [Accepted: 09/12/2006] [Indexed: 01/13/2023]
Abstract
Clinical experience gives rise to the impression that there are differences in fracture healing in different age groups. It is evident that fractures heal more efficiently in children than in adults. However, minimal objective knowledge exists to evaluate this assumption. Temporal, spatial, and cellular quantitative and qualitative interrelationships, as well as signaling molecules and extracellular matrix have not been comprehensively and adequately elucidated for fracture healing in the geriatric skeleton. The biological basis of fracture healing will provide a context for revealing the pathophysiology of delayed or even impaired bone regeneration in the elderly. We will summarize experimental studies on age-related changes at the cellular and molecular level that will add to the pathophysiological understanding of the compromised bone regeneration capacity believed to exist in the elderly patient. We will suggest why this understanding would be useful for therapeutics focused on bone regeneration, in particular fracture healing at an advanced age.
Collapse
Affiliation(s)
- Reinhard Gruber
- Department of Oral Surgery, Medical University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Peter J Hornsby
- Department of Physiology, Sam and Ann Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
47
|
Akintoye SO, Lam T, Shi S, Brahim J, Collins MT, Robey PG. Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone 2006; 38:758-68. [PMID: 16403496 DOI: 10.1016/j.bone.2005.10.027] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/17/2005] [Accepted: 10/26/2005] [Indexed: 01/06/2023]
Abstract
Autologous grafts from axial and appendicular bones commonly used to repair orofacial bone defects often result in unfavorable outcome. This clinical observation, along with the fact that many bone abnormalities are limited to craniofacial bones, suggests that there are significant differences in bone metabolism in orofacial, axial and appendicular bones. It is plausible that these differences are dictated by site-specificity of embryological progenitor cells and osteogenic properties of resident multipotent human bone marrow stromal cells (hBMSCs). This study investigated skeletal site-specific phenotypic and functional differences between orofacial (maxilla and mandible) and axial (iliac crest) hBMSCs in vitro and in vivo. Primary cultures of maxilla, mandible and iliac crest hBMSCs were established with and without osteogenic inducers. Site-specific characterization included colony forming efficiency, cell proliferation, life span before senescence, relative presence of surface markers, adipogenesis, osteogenesis and transplantation in immunocompromised mice to compare bone regenerative capacity. Compared with iliac crest cells, orofacial hBMSCs (OF-MSCs) proliferated more rapidly with delayed senescence, expressed higher levels of alkaline phosphatase and demonstrated more calcium accumulation in vitro. Cells isolated from the three skeletal sites were variably positive for STRO 1, a marker of hBMSCs. OF-MSCs formed more bone in vivo, while iliac crest hBMSCs formed more compacted bone that included hematopoietic tissue and were more responsive in vitro and in vivo to osteogenic and adipogenic inductions. These data demonstrate that hBMSCs from the same individuals differ in vitro and in vivo in a skeletal site-specific fashion and identified orofacial marrow stromal cells as unique cell populations. Further understanding of site-specific properties of hBMSCs and their impact on site-specific bone diseases and regeneration are needed.
Collapse
Affiliation(s)
- Sunday O Akintoye
- Department of Oral Medicine, University of Pennsylvania School of Dental Medicine, The Robert Schattner Center Room 209 240 South 40th Street, Philadelphia, 19104, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Meyers VE, Zayzafoon M, Douglas JT, McDonald JM. RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J Bone Miner Res 2005; 20:1858-66. [PMID: 16160744 PMCID: PMC1351020 DOI: 10.1359/jbmr.050611] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 05/16/2005] [Accepted: 06/20/2005] [Indexed: 01/09/2023]
Abstract
UNLABELLED Spaceflight, aging, and disuse lead to reduced BMD. This study shows that overexpression of constitutively active RhoA restores actin cytoskeletal arrangement, enhances the osteoblastic phenotype, and suppresses the adipocytic phenotype of human mesenchymal stem cells cultured in modeled microgravity. INTRODUCTION Reduced BMD during spaceflight is partly caused by reduced bone formation. However, mechanisms responsible for this bone loss remain unclear. We have previously shown reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells (hMSCs) cultured in modeled microgravity (MMG). The small GTPase, RhoA, regulates actin stress fiber formation and has been implicated in the lineage commitment of hMSCs. We examined the effects of MMG on actin cytoskeletal organization and RhoA activity and the ability of constitutively active RhoA to reverse these effects. MATERIALS AND METHODS hMSCs were seeded onto plastic microcarrier beads at a density of 10(6) and allowed to form aggregates in DMEM containing 10% FBS for 7 days. Aggregates were incubated in DMEM containing 2% FBS for 6 h with or without an adenoviral vector containing constitutively active RhoA at a multiplicity of infection (moi) of 500 and allowed to recover in 10% FBS for 24 h. Cells were transferred to the rotary cell culture system to model microgravity or to be maintained at normal gravity for 7 days in DMEM, 10% FBS, 10 nM dexamethasone, 10 mM beta-glycerol phosphate, and 50 muM ascorbic acid 2-phosphate. RESULTS F-actin stress fibers are disrupted in hMSCs within 3 h of initiation of MMG and are completely absent by 7 days, whereas monomeric G-actin is increased. Because of the association of G-actin with lipid droplets in fat cells, the observed 310% increase in intracellular lipid accumulation in hMSCs cultured in MMG was not unexpected. Consistent with these changes in cellular morphology, 7 days of MMG significantly reduces RhoA activity and subsequent phosphorylation of cofilin by 88+/-2% and 77+/-9%, respectively. Importantly, introduction of an adenoviral construct expressing constitutively active RhoA reverses the elimination of stress fibers, significantly increases osteoblastic gene expression of type I collagen, alkaline phosphatase, and runt-related transcription factor 2, and suppresses adipocytic gene expression of leptin and glucose transporter 4 in hMSCs cultured in MMG. CONCLUSION Suppression of RhoA activity during MMG represents a novel mechanism for reduced osteoblastogenesis and enhanced adipogenesis of hMSCs.
Collapse
Affiliation(s)
- Valerie E Meyers
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Majd Zayzafoon
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joanne T Douglas
- Department of Pathology, Division of Gene Therapy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jay M McDonald
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Veterans Administration Medical Center, Birmingham, Alabama, USA
- Address reprint requests to: Jay M McDonald, MD, Department of Pathology, University of Alabama at Birmingham, 701 19th Street South, LHRB 519, Birmingham, AL 35294-0007, USA, E-mail:
| |
Collapse
|
49
|
von Zglinicki T, Martin-Ruiz CM, Saretzki G. Telomeres, cell senescence and human ageing. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/sita.200400049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Kang SK, Putnam L, Dufour J, Ylostalo J, Jung JS, Bunnell BA. Expression of telomerase extends the lifespan and enhances osteogenic differentiation of adipose tissue-derived stromal cells. Stem Cells 2005; 22:1356-72. [PMID: 15579653 DOI: 10.1634/stemcells.2004-0023] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Expression of TERT, the catalytic protein subunit of the telomerase complex, can be used to generate cell lines that expand indefinitely and retain multilineage potential. We have created immortal adipose stromal cell lines (ATSCs) by stably transducing nonhuman primate-derived ATSCs with a retroviral vector expressing TERT. Transduced cells (ATSC-TERT) had an increased level of telomerase activity and increased mean telomere length in the absence of malignant cellular transformation. Long-term culture of the ATSC-TERT cells demonstrated that the cells retain the ability to undergo differentiation along multiple lineages such as adipogenic, chondrogenic, and neurogenic. Untransduced cells demonstrated markedly reduced multilineage and self-renewal potentials after 12 passages in vitro. To determine the functional role of telomerase during osteogenesis, we examined osteogenic differentiation potential of ATSC-TERT cells in vitro. Compared with naive ATSCs, which typically begin to accumulate calcium after 3-4 weeks of induction by osteogenic differentiation medium, ATSC-TERT cells were found to accumulate significant amounts of calcium after only 1 week of culture in osteogenic induction medium. The cells have increased production of osteoblastic markers, such as AP2, osteoblast-specific factor 2, chondroitin sulfate proteoglycan 4, and the tumor necrosis factor receptor superfamily, compared with control ATSCs, indicating that telomerase expression may aid in maintaining the osteogenic stem cell pool during in vitro expansion. These results show that ectopic expression of the telomerase gene in nonhuman primate ATSCs prevents senescence-associated impairment of osteoblast functions and that telomerase therapy may be a useful strategy for bone regeneration and repair.
Collapse
Affiliation(s)
- Soo Kyung Kang
- Division of Gene Therapy, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA 70433, USA
| | | | | | | | | | | |
Collapse
|