1
|
Medvinsky AB, Nurieva NI, Adamovich BV, Radchikova NP, Rusakov AV. Direct input of monitoring data into a mechanistic ecological model as a way to identify the phytoplankton growth-rate response to temperature variations. Sci Rep 2023; 13:10124. [PMID: 37349488 PMCID: PMC10287759 DOI: 10.1038/s41598-023-36950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
We present an approach (knowledge-and-data-driven, KDD, modeling) that allows us to get closer to understanding the processes that affect the dynamics of plankton communities. This approach, based on the use of time series obtained as a result of ecosystem monitoring, combines the key features of both the knowledge-driven modeling (mechanistic models) and data-driven (DD) modeling. Using a KDD model, we reveal the phytoplankton growth-rate fluctuations in the ecosystem of the Naroch Lakes and determine the degree of phase synchronization between fluctuations in the phytoplankton growth rate and temperature variations. More specifically, we estimate a numerical value of the phase locking index (PLI), which allows us to assess how temperature fluctuations affect the dynamics of phytoplankton growth rates. Since, within the framework of KDD modeling, we directly include the time series obtained as a result of field measurements in the model equations, the dynamics of the phytoplankton growth rate obtained from the KDD model reflect the behavior of the lake ecosystem as a whole, and PLI can be considered as a holistic parameter.
Collapse
Affiliation(s)
- Alexander B Medvinsky
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia, 142290.
| | - Nailya I Nurieva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia, 142290
| | - Boris V Adamovich
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia, 142290
- Belarusian State University, 220010, Minsk, Belarus
| | - Nataly P Radchikova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia, 142290
- Moscow State University of Psychology and Education, Moscow, Russia, 127051
| | - Alexey V Rusakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia, 142290
| |
Collapse
|
2
|
Klick SA, Pitula JS, Bryant RB, Collick AS, Hashem FM, Allen AL, May EB. Seasonal and temporal factors leading to urea-nitrogen accumulation in surface waters of agricultural drainage ditches. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:185-197. [PMID: 33111360 DOI: 10.1002/jeq2.20173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Urea-nitrogen (N) is commonly applied to crop fields, yet it is not routinely monitored despite its association with reduced water quality and its ability to increase toxicity of certain phytoplankton species. The purpose of this work was to characterize temporal fluctuations in urea-N concentrations and associated environmental conditions to infer sources of urea-N in agricultural drainage ditches. Physicochemical properties and N forms in ditch waters were measured weekly during the growing seasons of 2015-2018. Fertilizer application was only associated with spring peaks of urea-N concentrations in ditches next to cornfields, whereas summer peaks in ditches adjacent to corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] fields were not associated with fertilizer applications. Environmental conditions of warmer temperatures, lower dissolved oxygen concentrations, and lower redox potentials were correlated with higher urea-N concentrations. In 2018, peaks of urea-N and ammonium-N during the summer co-occurred with peaks of dissolved organic N and total dissolved N, suggesting they might be associated with the breakdown of organic matter and with the turnover of the organic N pool. Although the highest urea-N concentrations occurred when ditch surface waters were hydrologically disconnected from nearby streams, heavy rainfalls can potentially flush accumulated urea-N into coastal waters, where it may affect algal bloom toxicity. Therefore, implementation of available drainage ditch management practices is recommended, but these strategies need to be optimized for targeting periods with high rainfall that coincide with fertilizer additions as well as for periods with low rainfall that promote stagnant water conditions.
Collapse
Affiliation(s)
- Sabrina A Klick
- Univ. of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Joseph S Pitula
- Univ. of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Ray B Bryant
- USDA-ARS, Pasture Systems and Watershed Management Research Unit, University Park, PA, 16802, USA
| | - Amy S Collick
- Univ. of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Fawzy M Hashem
- Univ. of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Arthur L Allen
- Univ. of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Eric B May
- Univ. of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| |
Collapse
|
3
|
Abstract
Recent increases in global urea usage, including its incorporation in slow-release fertilizers commonly used in lawn care in Florida, have the potential to alter the form and amount of nitrogen inputs to coastal waters. This shift may, in turn, impact phytoplankton community diversity and nutrient cycling processes. An autonomous water quality monitoring and sampling platform containing meteorological and water quality instrumentation, including urea and phycocyanin sensors, was deployed between June and November of 2009 in Sarasota Bay, Florida. This shallow, lagoonal bay is characterized by extensive and growing urban and suburban development and limited tidal exchange and freshwater inputs. During the monitoring period, three high-biomass (up to 40 µg chlorophyll-a·L−1) phytoplankton blooms dominated by picocyanobacteria or picoeukaryotes were observed. Each bloom was preceded by elevated (up to 20 μM) urea concentrations. The geolocation of these three parameters suggests that “finger canals” lining the shore of Sarasota Bay were the source of urea pulses and there is a direct link between localized urea inputs and downstream picoplankton blooms. Furthermore, high frequency sampling is required to detect the response of plankton communities to pulsed events.
Collapse
|
4
|
Spatiotemporal Urea Distribution, Sources, and Indication of DON Bioavailability in Zhanjiang Bay, China. WATER 2020. [DOI: 10.3390/w12030633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In marine environments, urea is an important component of the biogeochemical cycle of nitrogen. The autochthonous and allochthonous sources (rivers, aquaculture, waste water input, etc.) of urea play a key role in urea cycles in adjacent coastal waters. Because urea is a specific marker to trace the sewage fluxes in coastal waters, we investigated urea associated with terrestrial source input and coastal water in Zhanjiang Bay (ZJB) during the time from November 2018 to July 2019, and the spatiotemporal urea distribution and the bioavailability of dissolved organic nitrogen (DON) based on urea concentration in the ZJB were explored. The results showed that the urea enrichment in coastal water was mainly due to discharge from urban sewage systems, rivers, and coastal aquaculture. The concentration of urea ranged from 1.14 to 5.53 μmol·L−1, and its mean value was 3.13 ± 1.02 μmol·L−1 in the ZJB. The urea concentration showed a significantly different seasonal variation in the ZJB (p < 0.05), and the highest and lowest concentrations were found in November 2018 and April 2019, respectively. Its high value appeared in the north and northeast of the ZJB, which were polluted by coastal aquaculture and agriculture fertilizer utilization. The range of urea concentration of terrestrial source inputs in the ZJB was 1.31–10.29 μmol·L−1, and the average urea concentration reached 3.22 ± 0.82 μmol·L−1. Moreover, the total urea flux surrounding the ZJB was 2905 tons·year−1. The seasonal terrestrial source of urea flux contributions had significant seasonal variation in wet, normal, and dry seasons (p < 0.05). The ZJB was subjected to a large flux of urea by estuaries and sewage outlet discharges. The seasonal urea concentration in all stations (>1 μmol·L−1) indicated that urea in the ZJB may have a bioavailable DON source. As a bioavailable nitrogen source, the ability of terrestrial source-derived urea to increase eutrophication should not be ignored in ZJB.
Collapse
|
5
|
Lu K, Liu Z, Dai R, Gardner WS. Urea dynamics during Lake Taihu cyanobacterial blooms in China. HARMFUL ALGAE 2019; 84:233-243. [PMID: 31128808 DOI: 10.1016/j.hal.2019.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 01/04/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Lake Taihu, the third largest freshwater lake in China, suffers from harmful cyanobacteria blooms caused by Microcystis spp., which do not fix nitrogen (N). Reduced N (i.e., NH4+, urea and other labile organic N compounds) is an important factor affecting the growth of Microcystis. As the world use of urea as fertilizer has escalated during the past decades, an understanding of how urea cycling relates to blooms of Microcystis is critical to predicting, controlling and alleviating the problem. In this study, the cycling rates of urea-N in Lake Taihu ranged from non-detectable to 1.37 μmol N L-1 h-1 for regeneration, and from 0.042 μmol N L-1 h-1 to 2.27 μmol N L-1 h-1 for potential urea-N removal. The fate of urea-N differed between light and dark incubations. Increased 15NH4+ accumulated and higher quantities of the removed urea-15N remained in the 15NH4+ form were detected in the dark than in the light. A follow-up incubation experiment with 15N-urea confirmed that Microcystis can grow on urea but its effects on urea dynamics were minor, indicating that Microcystis was not the major factor causing the observed fates of urea under different light conditions in Lake Taihu. Bacterial community composition and predicted functional gene data suggested that heterotrophic bacteria metabolized urea, even though Microcystis spp. was the dominant bloom organism.
Collapse
Affiliation(s)
- Kaijun Lu
- The University of Texas at Austin, Marine Science Institute, Port Aransas, TX, 78373, USA.
| | - Zhanfei Liu
- The University of Texas at Austin, Marine Science Institute, Port Aransas, TX, 78373, USA
| | - Ruihua Dai
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Wayne S Gardner
- The University of Texas at Austin, Marine Science Institute, Port Aransas, TX, 78373, USA
| |
Collapse
|
6
|
Biscéré T, Ferrier-Pagès C, Grover R, Gilbert A, Rottier C, Wright A, Payri C, Houlbrèque F. Enhancement of coral calcification via the interplay of nickel and urease. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:247-256. [PMID: 29803165 DOI: 10.1016/j.aquatox.2018.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Corals are the main reef builders through the formation of calcium carbonate skeletons. In recent decades, coral calcification has however been impacted by many global (climate change) and local stressors (such as destructive fishing practices and changes in water quality). In this particular context, it is crucial to identify and characterize the various factors that promote coral calcification. We thus performed the first investigation of the effect of nickel and urea enrichment on the calcification rates of three coral species. These two factors may indeed interact with calcification through the activity of urease, which catalyzes the hydrolysis of urea to produce inorganic carbon and ammonia that are involved in the calcification process. Experiments were performed with the asymbiotic coral Dendrophyllia arbuscula and, to further assess if urea and/or nickel has an indirect link with calcification through photosynthesis, results were compared with those obtained with two symbiotic corals, Acropora muricata and Pocillopora damicornis, for which we also measured photosynthetic rates. Ambient and enriched nickel (0.12 and 3.50 μg L-1) combined with ambient and enriched urea concentrations (0.26 and 5.52 μmol L-1) were tested during 4 weeks in aquaria. We demonstrate in the study that a nickel enrichment alone or combined with a urea enrichment strongly stimulated urea uptake rates of the three tested species. In addition, this enhancement of urea uptake and hydrolysis significantly increased the long-term calcification rates (i.e. growth) of the three coral species investigated, inducing a 1.49-fold to 1.64-fold increase, respectively for D. arbuscula and P. damicornis. Since calcification was greatly enhanced by nickel in the asymbiotic coral species - i.e. in absence of photosynthesis - we concluded that the effect of increased urease activity on calcification was mainly direct. According to our results, it can be assumed that corals in some fringing reefs, benefiting from seawater enriched in nickel may have advantages and might be able to use urea more effectively as a carbon and nitrogen source. It can also be suggested that urea, for which hotspots are regularly measured in reef waters may alleviate the negative consequences of thermal stress on corals.
Collapse
Affiliation(s)
- T Biscéré
- IRD, ENTROPIE (UMR 9220), BP A5, 98848 Nouméa Cedex, New Caledonia; Ginger Soproner, BP 3583, 98846 Nouméa Cedex, New Caledonia.
| | - C Ferrier-Pagès
- Centre Scientifique de Monaco, Ecophysiology Team, 8 quai Antoine 1er, 98000 Monaco, France
| | - R Grover
- Centre Scientifique de Monaco, Ecophysiology Team, 8 quai Antoine 1er, 98000 Monaco, France
| | - A Gilbert
- Ginger Soproner, BP 3583, 98846 Nouméa Cedex, New Caledonia
| | - C Rottier
- Centre Scientifique de Monaco, Ecophysiology Team, 8 quai Antoine 1er, 98000 Monaco, France
| | - A Wright
- Koniambo Nickel SAS, BP679, 98860 Koné Cedex, New Caledonia
| | - C Payri
- IRD, ENTROPIE (UMR 9220), BP A5, 98848 Nouméa Cedex, New Caledonia
| | - F Houlbrèque
- IRD, ENTROPIE (UMR 9220), BP A5, 98848 Nouméa Cedex, New Caledonia
| |
Collapse
|
7
|
Jing X, Lin S, Zhang H, Koerting C, Yu Z. Utilization of urea and expression profiles of related genes in the dinoflagellate Prorocentrum donghaiense. PLoS One 2017; 12:e0187837. [PMID: 29117255 PMCID: PMC5678928 DOI: 10.1371/journal.pone.0187837] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/26/2017] [Indexed: 01/23/2023] Open
Abstract
Urea has been shown to contribute more than half of total nitrogen (N) required by phytoplankton in some estuaries and coastal waters and to provide a substantial portion of the N demand for many harmful algal blooms (HABs) of dinoflagellates. In this study, we investigated the physiological and transcriptional responses in Prorocentrum donghaiense to changes in nitrate and urea availability. We found that this species could efficiently utilize urea as sole N source and achieve comparable growth rate and photosynthesis capability as it did under nitrate. These physiological parameters were markedly lower in cultures grown under nitrate- or urea-limited conditions. P. donghaiense N content was similarly low under nitrate- or urea-limited culture condition, but was markedly higher under urea-replete condition than under nitrate-replete condition. Carbon (C) content was consistently elevated under N-limited condition. Consequently, the C:N ratio was as high as 21:1 under nitrate- or urea-limitation, but 7:1 under urea-replete condition and 9:1 to 10:1 under nitrate-replete condition. Using quantitative reverse transcription PCR, we investigated the expression pattern for four genes involved in N transport and assimilation. The results indicated that genes encoding nitrate transport, urea hydrolysis, and nickel transporter gene were sensitive to changes in general N nutrient availability whereas the urea transporter gene responded much more strongly to changes in urea concentration. Taken together, our study shows the high bioavailability of urea, its impact on C:N stoichiometry, and the sensitivity of urea transporter gene expression to urea availability.
Collapse
Affiliation(s)
- Xiaoli Jing
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Department of Marine Sciences, University of Connecticut, Groton, United States of America
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, United States of America
| | - Huan Zhang
- Department of Marine Sciences, University of Connecticut, Groton, United States of America
| | - Claudia Koerting
- Department of Marine Sciences, University of Connecticut, Groton, United States of America
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Chemical Theory and Technology, Ministry of Education, Qingdao, China
| |
Collapse
|
8
|
Moschonas G, Gowen RJ, Paterson RF, Mitchell E, Stewart BM, McNeill S, Glibert PM, Davidson K. Nitrogen dynamics and phytoplankton community structure: the role of organic nutrients. BIOGEOCHEMISTRY 2017; 134:125-145. [PMID: 32025070 PMCID: PMC6979524 DOI: 10.1007/s10533-017-0351-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 06/07/2017] [Indexed: 06/01/2023]
Abstract
Dissolved organic nitrogen (DON) is recognised as an important N source for phytoplankton. However, its relative importance for phytoplankton nutrition and community composition has not been studied comprehensively. This study, conducted in a typical Scottish fjord, representative of near-pristine coastal environments, evaluates the utilisation of DON and dissolved inorganic nitrogen (DIN) by different microbial size fractions and the relationship of phytoplankton community composition with DON and other parameters. The study demonstrated that DON was important in supporting phytoplankton throughout the yearly production cycle. The higher-than-expected urea uptake rates and large fraction of the spring bloom production supported by DON suggested that organic N not only contributes to regenerated production and to the nutrition of the small phytoplankton fraction, but can also contribute substantially to new production of the larger phytoplankton in coastal waters. Multivariate statistical techniques revealed two phytoplankton assemblages with peaks in abundance at different times of the year: a spring group dominated by Skeletonema spp., Thalassiosira spp., and Pseudo-nitzschia spp. group delicatissima; and a summer/autumn group dominated by Chaetoceros spp., Scrippsiella spp., and Pseudo-nitzschia spp. group seriata. The multivariate pattern in community composition and abundance of these taxa was significantly correlated with the multivariate pattern of DON, urea, dissolved free amino acids, DIN, temperature, salinity, and daylength, with daylength and urea being particularly important, suggesting both physical and chemical controls on community composition.
Collapse
Affiliation(s)
- Grigorios Moschonas
- Scottish Association for Marine Science, Argyll, Oban, PA37 1QA Scotland, UK
| | - Richard J. Gowen
- Scottish Association for Marine Science, Argyll, Oban, PA37 1QA Scotland, UK
- Fisheries and Aquatic Ecosystems Branch, Agriculture Food and Environmental Science Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX UK
| | - Ruth F. Paterson
- Scottish Association for Marine Science, Argyll, Oban, PA37 1QA Scotland, UK
| | - Elaine Mitchell
- Scottish Association for Marine Science, Argyll, Oban, PA37 1QA Scotland, UK
| | - Brian M. Stewart
- Fisheries and Aquatic Ecosystems Branch, Agriculture Food and Environmental Science Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX UK
| | - Sharon McNeill
- Scottish Association for Marine Science, Argyll, Oban, PA37 1QA Scotland, UK
| | - Patricia M. Glibert
- Horn Point Laboratory, University of Maryland Center for Environmental Science, PO Box 775, Cambridge, MD 21613 USA
| | - Keith Davidson
- Scottish Association for Marine Science, Argyll, Oban, PA37 1QA Scotland, UK
| |
Collapse
|
9
|
Jauzein C, Couet D, Blasco T, Lemée R. Uptake of dissolved inorganic and organic nitrogen by the benthic toxic dinoflagellate Ostreopsis cf. ovata. HARMFUL ALGAE 2017; 65:9-18. [PMID: 28526122 DOI: 10.1016/j.hal.2017.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Environmental factors that shape dynamics of benthic toxic blooms are largely unknown. In particular, for the toxic dinoflagellate Ostreopsis cf. ovata, the importance of the availability of nutrients and the contribution of the inorganic and organic pools to growth need to be quantified in marine coastal environments. The present study aimed at characterizing N-uptake of dissolved inorganic and organic sources by O. cf. ovata cells, using the 15N-labelling technique. Experiments were conducted taking into account potential interactions between nutrient uptake systems as well as variations with the diel cycle. Uptake abilities of O. cf. ovata were parameterized for ammonium (NH4+), nitrate (NO3-) and N-urea, from the estimation of kinetic and inhibition parameters. In the range of 0 to 10μmolNL-1, kinetic curves showed a clear preference pattern following the ranking NH4+>NO3->N-urea, where the preferential uptake of NH4+ relative to NO3- was accentuated by an inhibitory effect of NH4+ concentration on NO3- uptake capabilities. Conversely, under high nutrient concentrations, the preference for NH4+ relative to NO3- was largely reduced, probably because of the existence of a low-affinity high capacity inducible NO3- uptake system. Ability to take up nutrients in darkness could not be defined as a competitive advantage for O. cf. ovata. Species competitiveness can also be defined from nutrient uptake kinetic parameters. A strong affinity for NH4+ was observed for O. cf. ovata cells that may partly explain the success of this toxic species during the summer season in the Bay of Villefranche-sur-mer (France).
Collapse
Affiliation(s)
- Cécile Jauzein
- Sorbonne Universités, UPMC Univ Paris 06, INSU-CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche sur mer, France; IFREMER, Centre de Brest, DYNECO PELAGOS, F-29280 Plouzané, France.
| | - Douglas Couet
- Sorbonne Universités, UPMC Univ Paris 06, INSU-CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche sur mer, France
| | - Thierry Blasco
- Sorbonne Universités, UPMC Univ Paris 06, INSU-CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche sur mer, France
| | - Rodolphe Lemée
- Sorbonne Universités, UPMC Univ Paris 06, INSU-CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche sur mer, France
| |
Collapse
|
10
|
King MD, Bryant RB, Saporito LS, Buda AR, Allen AL, Hughes LA, Hashem FM, Kleinman PJA, May EB. Urea Release by Intermittently Saturated Sediments from a Coastal Agricultural Landscape. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:302-310. [PMID: 28380555 DOI: 10.2134/jeq2016.08.0304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Urea-N is linked to harmful algal blooms in lakes and estuaries, and urea-N-based fertilizers have been implicated as a source. However, the export of urea-N-based fertilizers appears unlikely, as high concentrations of urea-N are most commonly found in surface waters outside periods of fertilization. To evaluate possible autochthonous production of urea-N, we monitored urea-N released from drainage ditch sediments using mesocosms. Sediments from a cleaned (recently dredged) drainage ditch, uncleaned ditch, forested ditch, riparian wetland, and an autoclaved sand control were isolated in mesocosms and flooded for 72 h to quantify urea-N, NH-N, and NO-N in the floodwater. Sediments were flooded with different N-amended solutions (distilled HO, 1.5 mg L NH-N, 3.0 mg L NH-N, 2.6 mg L NO-N, or 5.1 mg L NO-N) and incubated at three water temperatures (16, 21, and 27°C). Urea-N concentrations in mesocosms representing uncleaned and cleaned drainage ditches were significantly greater than nonagricultural sediments and controls. While flooding sediments with N-enriched solution had no clear effect on urea-N, warmer (27°C) temperatures resulted in significantly higher urea-N. Data collected from field ditches that were flooded by a summer rainstorm showed increases in urea-N that mirrored the mesocosm experiment. We postulate that concentrations of urea-N in ditches that greatly exceed environmental thresholds are mediated by biological production in sediments and release to stagnant surface water. Storm-driven urea-N export from ditches could elevate the risk of harmful algal blooms downstream in receiving waters despite the dilution effect.
Collapse
|
11
|
Matantseva O, Skarlato S, Vogts A, Pozdnyakov I, Liskow I, Schubert H, Voss M. Superposition of Individual Activities: Urea-Mediated Suppression of Nitrate Uptake in the Dinoflagellate Prorocentrum minimum Revealed at the Population and Single-Cell Levels. Front Microbiol 2016; 7:1310. [PMID: 27610101 PMCID: PMC4996987 DOI: 10.3389/fmicb.2016.01310] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/08/2016] [Indexed: 12/23/2022] Open
Abstract
Dinoflagellates readily use diverse inorganic and organic compounds as nitrogen sources, which is advantageous in eutrophied coastal areas exposed to high loads of anthropogenic nutrients, e.g., urea, one of the most abundant organic nitrogen substrates in seawater. Cell-to-cell variability in nutritional physiology can further enhance the diversity of metabolic strategies among dinoflagellates of the same species, but it has not been studied in free-living microalgae. We applied stable isotope tracers, isotope ratio mass spectrometry and nanoscale secondary ion mass spectrometry (NanoSIMS) to investigate the response of cultured nitrate-acclimated dinoflagellates Prorocentrum minimum to a sudden input of urea and the effect of urea on the concurrent nitrate uptake at the population and single-cell levels. We demonstrate that inputs of urea lead to suppression of nitrate uptake by P. minimum, and urea uptake exceeds the concurrent uptake of nitrate. Individual dinoflagellate cells within a population display significant heterogeneity in the rates of nutrient uptake and extent of the urea-mediated inhibition of the nitrate uptake, thus forming several groups characterized by different modes of nutrition. We conclude that urea originating from sporadic sources is rapidly utilized by dinoflagellates and can be used in biosynthesis or stored intracellularly depending on the nutrient status; therefore, sudden urea inputs can represent one of the factors triggering or supporting harmful algal blooms. Significant physiological heterogeneity revealed at the single-cell level is likely to play a role in alleviation of intra-population competition for resources and can affect the dynamics of phytoplankton populations and their maintenance in natural environments.
Collapse
Affiliation(s)
- Olga Matantseva
- Institute of Cytology, Russian Academy of Sciences St. Petersburg, Russia
| | - Sergei Skarlato
- Institute of Cytology, Russian Academy of Sciences St. Petersburg, Russia
| | - Angela Vogts
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Ilya Pozdnyakov
- Institute of Cytology, Russian Academy of Sciences St. Petersburg, Russia
| | - Iris Liskow
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Hendrik Schubert
- Institute of Biological Sciences, University of Rostock Rostock, Germany
| | - Maren Voss
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| |
Collapse
|
12
|
Kibet LC, Bryant RB, Buda AR, Kleinman PJA, Saporito LS, Allen AL, Hashem FM, May EB. Persistence and Surface Transport of Urea-Nitrogen: A Rainfall Simulation Study. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:1062-1070. [PMID: 27136175 DOI: 10.2134/jeq2015.09.0495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Studies of harmful algal blooms and associated urea concentrations in the Chesapeake Bay and in coastal areas around the globe strongly suggest that elevated urea concentrations are associated with harmful algal blooms. The observed increased frequency and toxicity of these blooms in recent decades has been correlated with increased agricultural use of N inputs and increased use of urea as a preferred form of commercial N. This rainfall simulation study sought to assess the potential for different N fertilizers and manures to contribute to urea in runoff from a Coastal Plain soil on the Eastern Shore of Maryland. Under worst-case conditions, ~1% of urea-N applied as commercial fertilizer and surface-applied poultry litter was lost in runoff in a simulated rainfall event, roughly equivalent to a 1-yr return period rain storm in the study area, 12 h after application. Cumulative urea-N losses, including four subsequent weekly rainfall events, approached 1.7% from urea-N fertilizer containing a urease inhibitor. Urea-N loss from incorporated poultry litter was negligible, and losses from dairy manure were intermediate. These losses are likely confined to hydrological contributing areas that extend several meters from a drainage ditch or stream for storms with frequent recurrence intervals. Cumulative dissolved N losses in runoff (urea-N + ammonium-N + nitrate-N) as a proportion of total applied plant-available N were <5%, suggesting that most of the applied N was lost by other pathways or was immobilized in soil. Results also highlight the potential for simple management options, such as shallow incorporation or timing, to greatly reduce urea runoff losses.
Collapse
|
13
|
Babbin AR, Jayakumar A, Ward BB. Organic Matter Loading Modifies the Microbial Community Responsible for Nitrogen Loss in Estuarine Sediments. MICROBIAL ECOLOGY 2016; 71:555-565. [PMID: 26520832 DOI: 10.1007/s00248-015-0693-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using (15)N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more, and the fraction of nitrogen loss attributed to anammox slightly reduced, by the higher organic matter addition. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community composition as determined using a nirS microarray, indicating that the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches.
Collapse
Affiliation(s)
- Andrew R Babbin
- Department of Geosciences, Princeton University, Princeton, NJ, USA.
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.
| | - Amal Jayakumar
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Bess B Ward
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| |
Collapse
|
14
|
Fisher KA, Meisinger JJ, James BR. Urea Hydrolysis Rate in Soil Toposequences as Influenced by pH, Carbon, Nitrogen, and Soluble Metals. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:349-359. [PMID: 26828191 DOI: 10.2134/jeq2015.05.0228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A simultaneous increase in the use of urea fertilizer and the incidence of harmful algal blooms worldwide has generated interest in potential loss pathways of urea from agricultural areas. The objective of this research was to study the rate of urea hydrolysis in soil profile toposequences sampled from the Coastal Plain (CP) and Piedmont (PM) regions of Maryland to understand native urea hydrolysis rates (UHRs) as well as the controls governing urea hydrolysis both across a landscape and with depth in the soil profile. A pH-adjustment experiment was conducted to explore the relationship between pH and urea hydrolysis because of the importance of pH to both agronomic productivity and microbial communities. Soils were sampled from both A and B horizons along transects containing an agricultural field (AG), a grassed field border (GB), and a perennially vegetated zone adjacent to surface water. On average, the A-horizon UHRs were eight times greater than corresponding B-horizon rates, and within the CP, the riparian zone (RZ) soils hydrolyzed urea faster than the agricultural soils. The pH adjustment of these soils indicated the importance of organic-matter-related factors (C, N, extractable metals) in determining UHR. These results suggest that organic-matter-rich RZ soils may be valuable in mitigating losses of urea from neighboring fields. Additional field-scale urea hydrolysis studies would be valuable to corroborate the mechanisms described herein and to explore the conditions affecting the fate and transport of urea in agroecosystems.
Collapse
|
15
|
Siuda W, Kiersztyn B. Urea in Lake Ecosystem: The Origin, Concentration and Distribution in Relation to Trophic State of the Great Mazurian Lakes (Poland). POLISH JOURNAL OF ECOLOGY 2015. [DOI: 10.3161/15052249pje2015.63.1.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Abstract
Measurements show that anaerobic ammonium oxidation with nitrite (anammox) is a major pathway of fixed nitrogen removal in the anoxic zones of the open ocean. Anammox requires a source of ammonium, which under anoxic conditions could be supplied by the breakdown of sinking organic matter via heterotrophic denitrification. However, at many locations where anammox is measured, denitrification rates are small or undetectable. Alternative sources of ammonium have been proposed to explain this paradox, for example through dissimilatory reduction of nitrate to ammonium and transport from anoxic sediments. However, the relevance of these sources in open-ocean anoxic zones is debated. Here, we bring to attention an additional source of ammonium, namely, the daytime excretion by zooplankton and micronekton migrating from the surface to anoxic waters. We use a synthesis of acoustic data to show that, where anoxic waters occur within the water column, most migrators spend the daytime within them. Although migrators export only a small fraction of primary production from the surface, they focus excretion within a confined depth range of anoxic water where particle input is small. Using a simple biogeochemical model, we suggest that, at those depths, the source of ammonium from organisms undergoing diel vertical migrations could exceed the release from particle remineralization, enhancing in situ anammox rates. The contribution of this previously overlooked process, and the numerous uncertainties surrounding it, call for further efforts to evaluate the role of animals in oxygen minimum zone biogeochemistry.
Collapse
|
17
|
Keller DP, Hood RR. Modeling the seasonal autochthonous sources of dissolved organic carbon and nitrogen in the upper Chesapeake Bay. Ecol Modell 2011. [DOI: 10.1016/j.ecolmodel.2010.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Use of inorganic and organic nitrogen by Synechococcus spp. and diatoms on the west Florida shelf as measured using stable isotope probing. Appl Environ Microbiol 2009; 75:6662-70. [PMID: 19734334 DOI: 10.1128/aem.01002-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine nitrogen (N) cycle is a complex network of biological transformations in different N pools. The linkages among these different reservoirs are often poorly understood. Traditional methods for measuring N uptake rely on bulk community properties and cannot provide taxonomic information. (15)N-based stable isotope probing (SIP), however, is a technique that allows detection of uptake of individual N sources by specific microorganisms. In this study we used (15)N SIP methodology to assess the use of different nitrogen substrates by Synechococcus spp. and diatoms on the west Florida shelf. Seawater was incubated in the presence of (15)N-labeled ammonium, nitrate, urea, glutamic acid, and a mixture of 16 amino acids. DNA was extracted and fractionated using CsCl density gradient centrifugation. Quantitative PCR was used to quantify the amounts of Synechococcus and diatom DNA as a function of density, and (15)N tracer techniques were used to measure rates of N uptake by the microbial community. The ammonium, nitrate, urea, and dissolved primary amine uptake rates were 0.077, 0.065, 0.013, and 0.055 micromol N liter(-1) h(-1), respectively. SIP data indicated that diatoms and Synechococcus spp. actively incorporated N from [(15)N]nitrate, [(15)N]ammonium, and [(15)N]urea. Synechococcus also incorporated nitrogen from [(15)N]glutamate and (15)N-amino acids, but no evidence indicating uptake of labeled amino acids by diatoms was detected. These data suggest that N flow in communities containing Synechococcus spp. and diatoms has more plasticity than the new-versus-recycled production paradigm suggests and that these phytoplankters should not be viewed strictly as recycled and new producers, respectively.
Collapse
|
19
|
Collier JL, Baker KM, Bell SL. Diversity of urea-degrading microorganisms in open-ocean and estuarine planktonic communities. Environ Microbiol 2009; 11:3118-31. [PMID: 19659552 DOI: 10.1111/j.1462-2920.2009.02016.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Urea is an important and dynamic natural component of marine nitrogen cycling and also a major contributor to anthropogenic eutrophication of coastal ecosystems, yet little is known about the identities or diversity of ureolytic marine microorganisms. Primers targeting the gene encoding urease were used to PCR-amplify, clone and sequence 709 urease gene fragments from 31 plankton samples collected at both estuarine and open-ocean locations. Two hundred and eighty-six amplicons belonged to 22 distinct sequence types that were closely enough related to named organisms to be identified, and included urease sequences both from typical marine planktonic organisms and from bacteria usually associated with terrestrial habitats. The remaining 423 amplicons were not closely enough related to named organisms to be identified, and belonged to 96 distinct sequence types of which 43 types were found in two or more different samples. The distributions of unidentified urease sequence types suggested that some represented truly marine microorganisms while others reflected terrestrial inputs to low-salinity estuarine areas. The urease primers revealed this great diversity of ureolytic organisms because they were able to amplify many previously unknown, environmentally relevant urease genes, and they will support new approaches for exploring the role of urea in marine ecosystems.
Collapse
Affiliation(s)
- Jackie L Collier
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA.
| | | | | |
Collapse
|