1
|
Zhang Y, Xu F, Yao J, Liu SS, Lei B, Tang L, Sun H, Wu M. Spontaneous interactions between typical antibiotics and soil enzyme: Insights from multi-spectroscopic approaches, XPS technology, molecular modeling, and joint toxic actions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135990. [PMID: 39357361 DOI: 10.1016/j.jhazmat.2024.135990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
A large amount of antibiotics enters the soil environment and accumulates therein as individuals and mixtures, threatening the soil safety. However, there is little information regarding the influence of single and mixed antibiotics on key soil proteins at molecular level. In this study, setting sulfadiazine (SD) and tetracycline hydrochloride (TC) as the representative antibiotics, the interactions between these agents and α-amylase (an important hydrolase in soil carbon cycle) were investigated through multi-spectroscopic approaches, X-ray photoelectron spectrometry, and molecular modeling. It was found that both SD and TC spontaneously bound to α-amylase with 1:1 stoichiometry mainly via forming stable chemical bonds. The interactions altered the polarity of aromatic amino acids, protein backbone, secondary structure, hydrophobicity and activity of α-amylase. The SD-TC mixtures were designed based on the direct equipartition ray to comprehensively characterize the possible concentration distribution, and interactive effects indicated that the mixtures antagonistically impacted α-amylase. These findings reveal the binding characteristics between α-amylase and typical antibiotics, which probably influence the ecological functions of α-amylase in soil. This study clarifies the potential harm of antibiotics on soil functional enzyme, which is significant for the environmental risk assessment of antibiotics and their mixtures.
Collapse
Affiliation(s)
- Yulian Zhang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Fangyu Xu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jingyi Yao
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shu-Shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo Lei
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
2
|
Sethi S, Behera T, Mohapatra S, Bag BP, Behera N. Probing the interaction of uranyl(VI) complex with bovine serum albumin via in-depth experimental and computational perspectives. J Inorg Biochem 2023; 246:112297. [PMID: 37379766 DOI: 10.1016/j.jinorgbio.2023.112297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Interaction aspects of uranyl(VI) complexes as well as the coordinated ONNO-donor ligand with bovine serum albumin (BSA) were investigated by the fluorescence spectroscopy and computational insights. Under optimal physiological condition, it was observed that there was significant decrease in fluorescence intensity of BSA upon interaction with uranyl(VI) complexes as well as the ligand. The mechanism of interaction between the uranyl(VI) complex and BSA protein was examined by fluorescence measurement. The Stern-Volmer constant, binding affinity, binding constant, standard free energy, and fluorescence lifetime decay profile of BSA in the absence as well as in the presence of uranyl(VI) complex were determined. Furthermore, the conformational binding of uranyl(VI) complexes with BSA protein was explored via molecular docking studies, and confirmed that there is a strong affinity between the Trp-213 residue in the binding pocket of sub-domain IIA and uranyl(VI) complex.
Collapse
Affiliation(s)
- Sipun Sethi
- School of Chemistry, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha 768019, India; Department of Chemistry, Panchayat College, Bargarh, Odisha 768028, India
| | - Tankadhar Behera
- School of Chemistry, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha 768019, India
| | - Sumit Mohapatra
- School of Chemistry, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha 768019, India; Department of Chemistry, Indian Institute of Technology Indore, M.P. - 453552, India
| | - Bhawani Prasad Bag
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha 768019, India
| | - Nabakrushna Behera
- School of Chemistry, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha 768019, India.
| |
Collapse
|
3
|
Taniguchi M, LaRocca CA, Bernat JD, Lindsey JS. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. JOURNAL OF NATURAL PRODUCTS 2023; 86:1087-1119. [PMID: 36848595 DOI: 10.1021/acs.jnatprod.2c00720] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flavonoids play diverse roles in plants, comprise a non-negligible fraction of net primary photosynthetic production, and impart beneficial effects in human health from a plant-based diet. Absorption spectroscopy is an essential tool for quantitation of flavonoids isolated from complex plant extracts. The absorption spectra of flavonoids typically consist of two major bands, band I (300-380 nm) and band II (240-295 nm), where the former engenders a yellow color; in some flavonoids the absorption tails to 400-450 nm. The absorption spectra of 177 flavonoids and analogues of natural or synthetic origin have been assembled, including molar absorption coefficients (109 from the literature, 68 measured here). The spectral data are in digital form and can be viewed and accessed at http://www.photochemcad.com. The database enables comparison of the absorption spectral features of 12 distinct types of flavonoids including flavan-3-ols (e.g., catechin, epigallocatechin), flavanones (e.g., hesperidin, naringin), 3-hydroxyflavanones (e.g., taxifolin, silybin), isoflavones (e.g., daidzein, genistein), flavones (e.g., diosmin, luteolin), and flavonols (e.g., fisetin, myricetin). The structural features that give rise to shifts in wavelength and intensity are delineated. The availability of digital absorption spectra for diverse flavonoids facilitates analysis and quantitation of these valuable plant secondary metabolites. Four examples are provided of calculations─multicomponent analysis, solar ultraviolet photoprotection, sun protection factor (SPF), and Förster resonance energy transfer (FRET)─for which the spectra and accompanying molar absorption coefficients are sine qua non.
Collapse
Affiliation(s)
- Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Connor A LaRocca
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jake D Bernat
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
4
|
Wani TA, Alanazi MM, Alsaif NA, Bakheit AH, Zargar S, Alsalami OM, Khan AA. Interaction Characterization of a Tyrosine Kinase Inhibitor Erlotinib with a Model Transport Protein in the Presence of Quercetin: A Drug-Protein and Drug-Drug Interaction Investigation Using Multi-Spectroscopic and Computational Approaches. Molecules 2022; 27:molecules27041265. [PMID: 35209054 PMCID: PMC8874853 DOI: 10.3390/molecules27041265] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
The interaction between erlotinib (ERL) and bovine serum albumin (BSA) was studied in the presence of quercetin (QUR), a flavonoid with antioxidant properties. Ligands bind to the transport protein BSA resulting in competition between different ligands and displacing a bound ligand, resulting in higher plasma concentrations. Therefore, various spectroscopic experiments were conducted in addition to in silico studies to evaluate the interaction behavior of the BSA-ERL system in the presence and absence of QUR. The quenching curve and binding constants values suggest competition between QUR and ERL to bind to BSA. The binding constant for the BSA-ERL system decreased from 2.07 × 104 to 0.02 × 102 in the presence of QUR. The interaction of ERL with BSA at Site II is ruled out based on the site marker studies. The suggested Site on BSA for interaction with ERL is Site I. Stability of the BSA-ERL system was established with molecular dynamic simulation studies for both Site I and Site III interaction. In addition, the analysis can significantly help evaluate the effect of various quercetin-containing foods and supplements during the ERL-treatment regimen. In vitro binding evaluation provides a cheaper alternative approach to investigate ligand-protein interaction before clinical studies.
Collapse
Affiliation(s)
- Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Ommalhasan Mohammed Alsalami
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Azmat Ali Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Halder S, Aggrawal R, Jana S, Saha SK. Binding interactions of cationic gemini surfactants with gold nanoparticles-conjugated bovine serum albumin: A FRET/NSET, spectroscopic, and docking study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 225:112351. [PMID: 34763228 DOI: 10.1016/j.jphotobiol.2021.112351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 11/15/2022]
Abstract
This work demonstrates binding interactions of two cationic gemini surfactants, 12-4-12,2Br- and 12-8-12,2Br- with gold nanoparticles (AuNPs)-conjugated bovine serum albumin (BSA) presenting binding isotherms from specific binding to saturation binding regions of surfactants. The binding isotherm has been successfully constructed using Förster's resonance energy transfer (FRET) and nanometal surface energy transfer (NSET) parameters calculated based on fluorescence quenching of donor, tryptophan (Trp) residue by acceptor, AuNP. Energy transfer efficiency (ET) changes due to alteration in the donor-acceptor distance when surfactants interact with bioconjugates. A solid reverse relationship between α-helix and β-turn contents of BSA-AuNPs-conjugates is noted while interacting with surfactants. 12-8-12,2Br- shows stronger binding interactions with BSA-bioconjugates than 12-4-12,2Br-. The effect of bioconjugation on secondary/tertiary structures of BSA in the absence and presence of a surfactant is studied through circular dichroism, fluorescence, and Fourier transform infrared spectroscopic measurements. Motional restrictions imposed by AuNPs on Trp residues of folded and unfolded BSA have been investigated using red edge emission shift (REES) measurements. Finally, the molecular docking results present the modes of interactions of 12-4-12,2Br- and 12-8-12,2Br-, and Au-nanoclusters (Au92) with BSA. An approach to describe the binding isotherms of surfactants using AuNPs-bioconjugates as optical-based molecular ruler and possible effects of AuNPs on microenvironment and conformations of the protein is presented.
Collapse
Affiliation(s)
- Sayantan Halder
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Rishika Aggrawal
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Srabanti Jana
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Maharajpura, Gwalior 474005, India
| | - Subit K Saha
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
| |
Collapse
|
6
|
Wani TA, Bakheit AH, Zargar S, Alanazi ZS, Al-Majed AA. Influence of antioxidant flavonoids quercetin and rutin on the in-vitro binding of neratinib to human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118977. [PMID: 33017787 DOI: 10.1016/j.saa.2020.118977] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
This study was designed to examine the interaction of neratinib (NRB) with human serum albumin (HSA) in presence of flavonoids quercetin and rutin. Both quercetin and rutin can compete with NRB to bind to HSA and displace NRB from its binding site. The interaction mechanism was studied with several spectroscopic techniques and molecular docking. Static fluorescence quenching mechanism was observed on interaction of HSA with NRB. van der Waals force and hydrogen bond were involved in the HSA-NRB interaction as per the results of thermodynamic parameters. Further, the conformational changes were observed in the HSA on its interaction with NRB. Interaction of NRB with HSA in presence of quercetin and rutin resulted in changes in the binding constants of HSA-NRB suggesting some impact on the binding of NRB in the presence of flavonoids.
Collapse
Affiliation(s)
- Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, PO Box 22452, Riyadh 11451, Saudi Arabia
| | - Zahi Saad Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A Al-Majed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Halder S, Aggrawal R, Aswal VK, Ray D, Saha SK. Study of refolding of a denatured protein and microenvironment probed through FRET to a twisted intramolecular charge transfer fluorescent biosensor molecule. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Molecular interaction of manganese based carbon monoxide releasing molecule (MnCORM) with human serum albumin (HSA). Bioorg Chem 2019; 92:103078. [DOI: 10.1016/j.bioorg.2019.103078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
|
9
|
Khanvilkar P, Pulipaka R, Shirsath K, Devkar R, Chakraborty D. Binuclear ruthenium(II) complexes of 4,4′-azopyridine bridging ligand as anticancer agents: synthesis, characterization, and in vitro cytotoxicity studies. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1672049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Priyanka Khanvilkar
- Department of Chemistry, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Ramadevi Pulipaka
- Department of Chemistry, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kavita Shirsath
- Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Ranjitsinh Devkar
- Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Debjani Chakraborty
- Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
10
|
Wang W, Gan N, Sun Q, Wu D, Zhao L, Suo Z, Tang P, Li H. Binding properties of sodium glucose co-transporter-2 inhibitor empagliflozin to human serum albumin: spectroscopic methods and computer simulations. J Biomol Struct Dyn 2019; 38:3178-3187. [PMID: 31378154 DOI: 10.1080/07391102.2019.1652688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Empagliflozin is an oral sodium glucose co-transporter-2 inhibitor for type 2 diabetes mellitus. The interaction between empagliflozin and human serum albumin (HSA) was investigated experimentally and theoretically. Fluorescence quenching and time-resolved fluorescence spectroscopy indicated that the quenching mechanism of empagliflozin and HSA was dynamic and that the effective binding constant at body temperature was 3.495 × 103 M-1. Thermodynamic parameters showed that hydrophobic forces were the major binding force in the interaction between empagliflozin and HSA. Circular dichroism, Fourier transform infrared, and 3 D fluorescence spectroscopy revealed that empagliflozin showed a slight change in secondary structure without changing the basic carbon framework of HSA. Site marker displacement experiments revealed that empagliflozin bound to site I of HSA, which was supported by molecular docking. Molecular dynamic simulations indicated that empagliflozin could bind to HSA stably. This study provided insights into the binding mechanism between empagliflozin and HSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Na Gan
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Di Wu
- Key Laboratory of Meat Processing of Sichuan, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Ludan Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Zili Suo
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Peixiao Tang
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Design, synthesis and in vitro bioactivity of mixed ligand Ru(II) complexes bearing the fluoroquinolone antibacterial agents. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00341-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Khanvilkar P, Pulipaka R, Shirsath K, Devkar R, Chakraborty D. Organometallic binuclear Ru(II) complexes: Design, synthesis, DNA/BSA binding interactions and in-vitro cytotoxicity against HeLa cell line. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Halder S, Kumari S, Kumar S, Aswal VK, Saha SK. Fluorescence Resonance Energy Transfer, Small-Angle Neutron Scattering, and Dynamic Light Scattering Study on Interactions of Gemini Surfactants Having Different Spacer Groups with Protein at Various Regions of Binding Isotherms. ACS OMEGA 2018; 3:11192-11204. [PMID: 31459229 PMCID: PMC6645604 DOI: 10.1021/acsomega.8b01471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/03/2018] [Indexed: 06/07/2023]
Abstract
The binding interactions of three gemini surfactants having different spacer groups (12-4-12, 12-8-12, and 12-4(OH)-12) with a high concentration (150 μM) of bovine serum albumin (BSA) at various regions of binding isotherms have been studied by means of steady-state fluorescence and fluorescence anisotropy, time-correlated single-photon counting fluorescence of trans-2-[4-(dimethylamino)styryl]benzothiazole, small-angle neutron scattering (SANS), and dynamic light scattering (DLS) measurements. The fluorescence resonance energy transfer phenomenon between the twisted intramolecular charge transfer fluorescent molecule, trans-2-[4-(dimethylamino)styryl]benzothiazole as an acceptor, and tryptophan 213 (Trp-213) of BSA as a donor has been successfully used to probe the binding interactions of gemini surfactants with protein at all regions of binding isotherms. The increasing order of energy transfer efficiency at a higher concentration range of surfactants is 12-8-12 > 12-4-12 > 12-4(OH)-12. Stronger binding of micelles of gemini surfactant molecules having a comparatively more hydrophobic spacer group with the hydrophobic segments of the protein results in closer approach of trans-2-[4-(dimethylamino)styryl]benzothiazole molecules solubilized in micelles to Trp-213. The average excited-state lifetimes become shorter with a trend of increase in contribution from the fast component and decrease in contribution from the slow component to the decay with increasing concentration of a surfactant. The nonradiative rate constant of trans-2-[4-(dimethylamino)styryl]benzothiazole increases with increasing concentration of a surfactant because the average microenvironment around it in protein-surfactant aggregates is more polar as compared to that in native protein. SANS and DLS measurements were carried out for the study of the structural deformations in the protein, on enhancement of the concentration of the gemini surfactants. The necklace and bead model has been used for the analysis of SANS data for the protein-surfactant complexes. At a higher concentration range, 12-8-12 and 12-4-12 have a slightly smaller fractal dimension and a larger correlation length as compared to 12-4(OH)-12. DLS data show that the increasing order of hydrodynamic diameter for the complexes of protein with three gemini surfactants in their high concentration range is 12-4(OH)-12 < 12-4-12 < 12-8-12.
Collapse
Affiliation(s)
- Sayantan Halder
- Department
of Chemistry, Birla Institute of Technology
& Science (BITS), Pilani, Pilani Campus, Pilani, 333 031 Rajasthan, India
| | - Sunita Kumari
- Department
of Chemistry, Birla Institute of Technology
& Science (BITS), Pilani, Pilani Campus, Pilani, 333 031 Rajasthan, India
| | - Sugam Kumar
- Solid
State Physics Division, Bhabha Atomic Research
Centre (BARC), Trombay, Mumbai, 400085 Maharashtra, India
| | - Vinod K. Aswal
- Solid
State Physics Division, Bhabha Atomic Research
Centre (BARC), Trombay, Mumbai, 400085 Maharashtra, India
| | - Subit K. Saha
- Department
of Chemistry, Birla Institute of Technology
& Science (BITS), Pilani, Pilani Campus, Pilani, 333 031 Rajasthan, India
| |
Collapse
|
14
|
Popova M, Lazarus LS, Ayad S, Benninghoff AD, Berreau LM. Visible-Light-Activated Quinolone Carbon-Monoxide-Releasing Molecule: Prodrug and Albumin-Assisted Delivery Enables Anticancer and Potent Anti-Inflammatory Effects. J Am Chem Soc 2018; 140:9721-9729. [PMID: 29983046 DOI: 10.1021/jacs.8b06011] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The delivery of controlled amounts of carbon monoxide (CO) to biological targets is of significant current interest. Very few CO-releasing compounds are currently known that can be rigorously controlled in terms of the location and amount of CO released. To address this deficiency, we report herein a new metal-free, visible-light-induced CO-releasing molecule (photoCORM) and its prodrug oxidized form, which offer new approaches to controlled, localized CO delivery. The new photoCORM, based on a 3-hydroxybenzo[ g]quinolone framework, releases 1 equiv of CO upon visible-light illumination under a variety of biologically relevant conditions. This nontoxic compound can be tracked prior to CO release using fluorescence microscopy and produces a nontoxic byproduct following CO release. An oxidized prodrug form of the photoCORM is reduced by cellular thiols, providing an approach toward activation in the reducing environment of cancer cells. Strong noncovalent affinity of the nonmetal photoCORM to albumin enables use of an albumin:photoCORM complex for targeted CO delivery to cancer cells. This approach produced cytotoxicity IC50 values among the lowest reported to date for CO delivery to cancer cells by a photoCORM. This albumin:photoCORM complex is also the first CO delivery system to produce significant anti-inflammatory effects when introduced at nanomolar photoCORM concentration.
Collapse
Affiliation(s)
- Marina Popova
- Department of Chemistry & Biochemistry , Utah State University , 0300 Old Main Hill , Logan , Utah 84322-0300 , United States
| | - Livia S Lazarus
- Department of Chemistry & Biochemistry , Utah State University , 0300 Old Main Hill , Logan , Utah 84322-0300 , United States
| | - Suliman Ayad
- Department of Chemistry & Biochemistry , Florida State University , Tallahassee , Florida 32306-4390 , United States
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences , Utah State University , Logan , Utah 84322-4815 , United States
| | - Lisa M Berreau
- Department of Chemistry & Biochemistry , Utah State University , 0300 Old Main Hill , Logan , Utah 84322-0300 , United States
| |
Collapse
|
15
|
Shaikh SAM, Singh BG, Barik A, Ramani MV, Balaji NV, Subbaraju GV, Naik DB, Indira Priyadarsini K. Diketo modification of curcumin affects its interaction with human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:394-402. [PMID: 29635184 DOI: 10.1016/j.saa.2018.03.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
Curcumin isoxazole (CI) and Curcumin pyrazole (CP), the diketo modified derivatives of Curcumin (CU) are metabolically more stable and are being explored for pharmacological properties. One of the requirements in such activities is their interaction with circulatory proteins like human serum albumin (HSA). To understand this, the interactions of CI and CP with HSA have been investigated employing absorption and fluorescence spectroscopy and the results are compared with that of CU. The respective binding constants of CP, CI and CU with HSA were estimated to be 9.3×105, 8.4×105 and 2.5×105M-1, which decreased with increasing salt concentration in the medium. The extent of decrease in the binding constant was the highest in CP followed by CI and CU. This revealed that along with hydrophobic interaction other binding modes like electrostatic interactions operate between CP/CI/CU with HSA. Fluorescence quenching studies of HSA with these compounds suggested that both static and dynamic quenching mechanisms operate, where the contribution of static quenching is higher for CP and CI than that for CU. From fluorescence resonance energy transfer studies, the binding site of CU, CI and CP was found to be in domain IIA of HSA. CU was found to bind in closer proximity with Trp214 as compared to CI and CP and the same was responsible for efficient energy transfer and the same was also established by fluorescence anisotropy measurements. Furthermore docking simulation complemented the experimental observation, where both electrostatic as well as hydrophobic interactions were indicated between HSA and CP, CI and CU. This study is useful in designing more stable CU derivatives having suitable binding properties with proteins like HSA.
Collapse
Affiliation(s)
- Shaukat Ali M Shaikh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Beena G Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| | - Atanu Barik
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | | - Neduri V Balaji
- Natsol Laboratories, J.N. Pharmacity, Visakhapatnam 531019, India
| | | | - Devidas B Naik
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | |
Collapse
|
16
|
Arabi M, Ostovan A, Asfaram A, Ghaedi M. Development of an eco-friendly approach based on dispersive liquid–liquid microextraction for the quantitative determination of quercetin inNasturtium officinale,Apium graveolens,Spinacia oleracea,Brassica oleracea var. sabellica, and food samples. NEW J CHEM 2018. [DOI: 10.1039/c8nj02485e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A fast, sensitive, inexpensive and environment-friendly dispersive liquid–liquid microextraction technique was developed based on solidification of floating organic drops.
Collapse
Affiliation(s)
- Maryam Arabi
- Chemistry Department
- Yasouj University
- Yasouj 75914-35
- Iran
| | - Abbas Ostovan
- Chemistry Department
- Yasouj University
- Yasouj 75914-35
- Iran
| | - Arash Asfaram
- Medicinal Plants Research Center
- Yasuj University of Medical Sciences
- Yasuj
- Iran
| | | |
Collapse
|
17
|
Correia I, Borovic S, Cavaco I, Matos CP, Roy S, Santos HM, Fernandes L, Capelo JL, Ruiz-Azuara L, Pessoa JC. Evaluation of the binding of four anti-tumor Casiopeínas® to human serum albumin. J Inorg Biochem 2017; 175:284-297. [PMID: 28806645 DOI: 10.1016/j.jinorgbio.2017.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023]
Abstract
The metal complexes designated by Casiopeínas® are mixed-ligand CuII-compounds some of them having promising antineoplastic properties. We report studies of binding of Cu(glycinato)(4,7-dimethyl-1,10-phenanthroline) (Cas-II-Gly (1)), Cu(acetylacetonato)(4,7-dimethyl-1,10-phenanthroline) (Cas-III-Ea (2)), Cu(glycinato)(4,4'-dimethyl-2,2'-bipyridine) (Cas-IV-Gly (3)) and Cu(acetylacetonato)(4,4'-dimethyl-2,2'-bipyridine) (Cas-III-ia (4)) to human serum albumin (HSA) by circular dichroism (CD), Electron paramagnetic resonance (EPR) and fluorescence spectroscopy. The results indicate that HSA may bind up to three molecules of the tested Casiopeínas. This is confirmed by inductively coupled plasma - atomic absorption spectroscopy measurements of samples of HSA-Casiopeínas after passing by adequate size-exclusion columns. The binding of Cas-II-Gly to HSA was also confirmed by MALDI-TOF mass spectrometric experiments. In the physiological range of concentrations the Casiopeínas form 1:1 adducts with HSA, with conditional binding constants of ca. 1×109 (1), 4×107 (2), 1×106 (3) and 2×105 (4), values determined from the CD spectra measured, and the fluorescence emission spectra indicates that the binding takes place close to the Trp214 residue. Overall, the data confirm that these Casiopeínas may bind to HSA and may be transported in blood serum by this protein; this might allow some selective tumor targeting, particularly in the case of Cas-II-Gly. In this work we also discuss aspects associated to the reliability of the frequently used methodologies to determine binding constants based on the measurement of fluorescence emission spectra of solutions containing low concentrations of proteins such as HSA and BSA, by titrations with solutions of metal complexes.
Collapse
Affiliation(s)
- Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sladjana Borovic
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal; University Business Academy in Novi Sad, Faculty of Pharmacy Novi Sad, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| | - Isabel Cavaco
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal; Departamento de Química e Farmácia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Cristina P Matos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Somnath Roy
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal; Department of Chemistry, Ananda Chandra College, Jalpaiguri, West Bengal, India
| | - Hugo M Santos
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - Luz Fernandes
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - José L Capelo
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - Lena Ruiz-Azuara
- Facultad de Química, Departamento de Química Inorgánica y Nuclear, Universidad Nacional Autónoma de México, México DF 04510, Mexico
| | - João Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
18
|
Appah E, Elzey B, Fakayode SO. Investigation of the binding and simultaneous quantifications of propanil and bromoxynil herbicide concentrations in human serum albumin. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:495-504. [PMID: 28541121 DOI: 10.1080/03601234.2017.1303323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study reported the use of UV-visible and fluorescence spectroscopy and partial-least-square (PLS) multivariate regression for accurate and simultaneous quantifications of two widely used herbicides, propanil, 3',4'-dichloropropionanilide (PPL) and bromoxynil, 3,5-dibromo-4-hydroxybenzonitrile (BXL) in human serum albumin (HSA) at physiological conditions. The binding affinity and thermodynamic properties of PPL-HSA and BXL-HSA complexes were also investigated. Partial-least-square (PLS) regression was used to collate the variability in the absorption or emission spectra of PPL-HSA and BXL-HSA complexes with PPL and/or BXL concentrations in HSA samples. The binding constants of 7.66× 108 M-1 for PPL-HSA and 4.88× 106 M-1 for BXL-HSA complexes were calculated at physiological conditions (temperature, 310 K; pH 7.4). Thermodynamic parameter values: enthalpy (ΔH) (13.99 kJ mol-1), entropy (ΔS) (0.078 kJ mol-1 K-1), and Gibbs free energy (ΔG) (-10.19 kJ mol-1) were determined for PPL-HSA complexation at physiological conditions. However, differences in thermodynamic property values of: ΔH (-214.3 kJ mol-1), ΔS (-0.563 kJ mol-1 K-1), and ΔG (-39.70 kJ mol-1) were observed for BXL-HSA complexes. The binding constants and negative ΔG values indicated strong binding affinity and thermodynamically favorability of PPL-HSA and BXL-HSA complex formation. Results of the PLS regression calibration showed good linearity (R2 ≥ 0.998289), high sensitivity, and impressive low limit-of-detections (LODs) of 1.38× 10-8 M for PPL and 1.68× 10-8 M for BXL that are comparable and/or lower than many previously reported LODs for herbicide and pesticide analyses. Most importantly, PLS regression is capable of simultaneous quantifications of PPL and BXL concentrations in HSA samples with good accuracy and low errors of 3.66%. UV-visible spectrophotometers and spectrofluorometers are fairly inexpensive, easy to use, and are readily available in almost every laboratory, making this protocol excellent and affordable for routine analysis of weed/pest control chemical residues in humans. The results of this study are significant and remarkable that will provide critical insight into the binding mechanism of herbicide toxicity in humans and non-target organisms, which are of special interest in the area of biomedical study, environmental risk assessment, and ecotoxicology.
Collapse
Affiliation(s)
- Eric Appah
- a Department of Chemistry , North Carolina A&T State University , Greensboro , North Carolina , USA
| | - Brianda Elzey
- a Department of Chemistry , North Carolina A&T State University , Greensboro , North Carolina , USA
| | - Sayo O Fakayode
- a Department of Chemistry , North Carolina A&T State University , Greensboro , North Carolina , USA
| |
Collapse
|
19
|
Milutinović MM, Rilak A, Bratsos I, Klisurić O, Vraneš M, Gligorijević N, Radulović S, Bugarčić ŽD. New 4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine ruthenium(II) complexes: Synthesis, characterization, interaction with DNA/BSA and cytotoxicity studies. J Inorg Biochem 2017; 169:1-12. [DOI: 10.1016/j.jinorgbio.2016.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 12/31/2022]
|
20
|
Greene L, Elzey B, Franklin M, Fakayode SO. Analyses of polycyclic aromatic hydrocarbon (PAH) and chiral-PAH analogues-methyl-β-cyclodextrin guest-host inclusion complexes by fluorescence spectrophotometry and multivariate regression analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:316-325. [PMID: 27984752 DOI: 10.1016/j.saa.2016.11.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 05/08/2023]
Abstract
The negative health impact of polycyclic aromatic hydrocarbons (PAHs) and differences in pharmacological activity of enantiomers of chiral molecules in humans highlights the need for analysis of PAHs and their chiral analogue molecules in humans. Herein, the first use of cyclodextrin guest-host inclusion complexation, fluorescence spectrophotometry, and chemometric approach to PAH (anthracene) and chiral-PAH analogue derivatives (1-(9-anthryl)-2,2,2-triflouroethanol (TFE)) analyses are reported. The binding constants (Kb), stoichiometry (n), and thermodynamic properties (Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS)) of anthracene and enantiomers of TFE-methyl-β-cyclodextrin (Me-β-CD) guest-host complexes were also determined. Chemometric partial-least-square (PLS) regression analysis of emission spectra data of Me-β-CD-guest-host inclusion complexes was used for the determination of anthracene and TFE enantiomer concentrations in Me-β-CD-guest-host inclusion complex samples. The values of calculated Kb and negative ΔG suggest the thermodynamic favorability of anthracene-Me-β-CD and enantiomeric of TFE-Me-β-CD inclusion complexation reactions. However, anthracene-Me-β-CD and enantiomer TFE-Me-β-CD inclusion complexations showed notable differences in the binding affinity behaviors and thermodynamic properties. The PLS regression analysis resulted in square-correlation-coefficients of 0.997530 or better and a low LOD of 3.81×10-7M for anthracene and 3.48×10-8M for TFE enantiomers at physiological conditions. Most importantly, PLS regression accurately determined the anthracene and TFE enantiomer concentrations with an average low error of 2.31% for anthracene, 4.44% for R-TFE and 3.60% for S-TFE. The results of the study are highly significant because of its high sensitivity and accuracy for analysis of PAH and chiral PAH analogue derivatives without the need of an expensive chiral column, enantiomeric resolution, or use of a polarized light.
Collapse
Affiliation(s)
- LaVana Greene
- Department of Chemistry, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, United States
| | - Brianda Elzey
- Department of Chemistry, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, United States
| | - Mariah Franklin
- Department of Chemistry, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, United States
| | - Sayo O Fakayode
- Department of Chemistry, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, United States.
| |
Collapse
|
21
|
Voicescu M, Ionescu S, Nistor CL. Spectroscopic study of 3-Hydroxyflavone - protein interaction in lipidic bi-layers immobilized on silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 170:1-8. [PMID: 27380623 DOI: 10.1016/j.saa.2016.06.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/06/2016] [Accepted: 06/26/2016] [Indexed: 06/06/2023]
Abstract
The interaction of 3-Hydroxyflavone with serum proteins (BSA and HSA) in lecithin lipidic bi-layers (PC) immobilized on silver nanoparticles (SNPs), was studied by fluorescence and Raman spectroscopy. BSA secondary structure was quantified with a deconvolution algorithm, showing a decrease in α-helix structure when lipids were added to the solution. The effect of temperature on the rate of the excited-state intra-molecular proton transfer and on the dual fluorescence emission of 3-HF in the HSA/PC/SNPs systems was discussed. Evaluation of the antioxidant activity of 3-HF in HSA/PC/SNPs systems was also studied. The antioxidant activity of 3-HF decreased in the presence of SNPs. The results are discussed with relevance to the secondary structure of proteins and of the 3-HF based nano-systems to a topical formulation useful in the oxidative stress process.
Collapse
Affiliation(s)
- Mariana Voicescu
- Romanian Academy, Institute of Physical Chemistry "Ilie Murgulescu", Splaiul Independentei 202, 060021 Bucharest, Romania.
| | - Sorana Ionescu
- Department of Physical Chemistry, University of Bucharest, Bd Regina Elisabeta 4-12, Bucharest 030018, Romania
| | - Cristina L Nistor
- Polymer Department, National R&D Institute for Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania
| |
Collapse
|
22
|
Pharmacologically Active Plant Flavonols as Proton Transfer Based Multiparametric Fluorescence Probes Targeting Biomolecules: Perspectives and Prospects. REVIEWS IN FLUORESCENCE 2016 2017. [DOI: 10.1007/978-3-319-48260-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Popova M, Soboleva T, Arif A, Berreau LM. Properties of a flavonol-based photoCORM in aqueous buffered solutions: influence of metal ions, surfactants and proteins on visible light-induced CO release. RSC Adv 2017. [DOI: 10.1039/c7ra02653f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A flavonol-based photoCORM exhibits reliable visible light-induced CO release in aqueous buffer environments containing constituents of relevance to biological environments.
Collapse
Affiliation(s)
- Marina Popova
- Department of Chemistry & Biochemistry
- Utah State University
- Logan
- USA
| | - Tatiana Soboleva
- Department of Chemistry & Biochemistry
- Utah State University
- Logan
- USA
| | - Atta M. Arif
- Department of Chemistry
- University of Utah
- Salt Lake City
- USA
| | - Lisa M. Berreau
- Department of Chemistry & Biochemistry
- Utah State University
- Logan
- USA
| |
Collapse
|
24
|
Mohseni-Shahri FS, Housaindokht MR, Bozorgmehr MR, Moosavi-Movahedi AA. Comparative study of the effects of the structurally similar flavonoids quercetin and taxifolin on the therapeutic behavior of alprazolam. CAN J CHEM 2016. [DOI: 10.1139/cjc-2015-0177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
After a meal rich in plant products, dietary flavonoids can be detected in plasma as serum albumin bound conjugates. Flavonoid–albumin binding is expected to control the bioavailability of drugs. In this study, the binding of alprazolam (ALP) and human serum albumin (HSA) has been investigated in the absence and presence of two flavonoids with similar structures, quercetin (QUER) and taxifolin (TAX), by means of fluorescence spectroscopy, chemometrics, and molecular dynamics simulation. Our results show that ALP has the ability to quench the intrinsic fluorescence of HSA. This quenching is affected by flavonoids. The presence of QUER and TAX decreased the quenching constants, binding constants, and equilibrium constants associated with ALP binding to HSA. The effect of ALP and both flavonoids on the conformation of HSA was analyzed using synchronous fluorescence spectroscopy. Our results indicate a conformational change of HSA with the addition of ligands. The molecular dynamics study makes an important contribution to understanding the effect of the binding of ALP, QUER, and TAX on conformational changes of HSA and modification of its tertiary structure in the absence and presence of flavonoids. All of these results may have relevant consequences in rationalizing the interferences of common food and drugs.
Collapse
|
25
|
Ghatak SK, Sen S, Majumdar D, Singha A, Sen K. Peanut proteins in periodate specific anion sensing: An ensuing reduction in allergic response. Food Chem 2016; 197 Pt B:1286-91. [DOI: 10.1016/j.foodchem.2015.11.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/16/2015] [Accepted: 11/07/2015] [Indexed: 10/22/2022]
|
26
|
Yang Y, Li D. Investigation on the interaction between isorhamnetin and bovine liver catalase by spectroscopic techniques under different pH conditions. LUMINESCENCE 2016; 31:1130-7. [PMID: 26748824 DOI: 10.1002/bio.3082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 11/14/2015] [Accepted: 11/26/2015] [Indexed: 11/10/2022]
Abstract
The binding of isorhamnetin to bovine liver catalase (BLC) was first investigated at 302, 310 and 318 K at pH 7.4 using spectroscopic methods including fluorescence spectra, circular dichroism (CD) and UV-vis absorption. Spectrophotometric observations are rationalized mainly in terms of a static quenching process. The binding constants and binding sites were evaluated by fluorescence quenching methods. Enzymatic activity of BLC in the absence and presence of isorhamnetin was measured using a UV/vis spectrophotometer. The result revealed that the binding of isorhamnetin to BLC led to a reduction in the activity of BLC. The positive entropy change and enthalpy change indicated that the interaction of isorhamnetin with BLC was mainly driven by hydrophobic forces. The distance r between the donor (BLC) and acceptor (isorhamnetin) was estimated to be 2.99 nm according to fluorescence resonance energy transfer. Fluorescence, synchronous fluorescence, and CD spectra showed no obvious change in the conformation of BLC upon the binding of isorhamnetin. In addition, the influence of pH on the binding of isorhamnetin to BLC was investigated and the binding ability of the drug to BLC deceased under other pH conditions (pH 9.0, 6.5, 5.0, 3.5, or 2.0) as compared with that at pH 7.4. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yumin Yang
- Department of Life Science, Luoyang Normal University, Luoyang, 471022, China
| | - Daojin Li
- College of Chemistry & Chemical Engineering, Luoyang Normal University, Luoyang, 471022, China
| |
Collapse
|
27
|
Islam MM, Sonu VK, Gashnga PM, Moyon NS, Mitra S. Caffeine and sulfadiazine interact differently with human serum albumin: A combined fluorescence and molecular docking study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 152:23-33. [PMID: 26186394 DOI: 10.1016/j.saa.2015.07.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 06/04/2023]
Abstract
The interaction and binding behavior of the well-known drug sulfadiazine (SDZ) and psychoactive stimulant caffeine (CAF) with human serum albumin (HSA) was monitored by in vitro fluorescence titration and molecular docking calculations under physiological condition. The quenching of protein fluorescence on addition of CAF is due to the formation of protein-drug complex in the ground state; whereas in case of SDZ, the experimental results were explained on the basis of sphere of action model. Although both these compounds bind preferentially in Sudlow's site 1 of the protein, the association constant is approximately two fold higher in case of SDZ (∼4.0×10(4)M(-1)) in comparison with CAF (∼9.3×10(2)M(-1)) and correlates well with physico-chemical properties like pKa and lipophilicity of the drugs. Temperature dependent fluorescence study reveals that both SDZ and CAF bind spontaneously with HSA. However, the binding of SDZ with the protein is mainly governed by the hydrophobic forces in contrast with that of CAF; where, the interaction is best explained in terms of electrostatic mechanism. Molecular docking calculation predicts the binding of these drugs in different location of sub-domain IIA in the protein structure.
Collapse
Affiliation(s)
- Mullah Muhaiminul Islam
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Vikash K Sonu
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Pynsakhiat Miki Gashnga
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - N Shaemningwar Moyon
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Sivaprasad Mitra
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India.
| |
Collapse
|
28
|
Rimac H, Debeljak Ž, Šakić D, Weitner T, Gabričević M, Vrček V, Zorc B, Bojić M. Structural and electronic determinants of flavonoid binding to human serum albumin: an extensive ligand-based study. RSC Adv 2016. [DOI: 10.1039/c6ra17796d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The most prominent features responsible for binding of flavonoid aglycones to the IIA region of human serum albumin (HSA) were determined based onin vitrofluorescence measurements and density functional theory calculations.
Collapse
Affiliation(s)
- Hrvoje Rimac
- University of Zagreb
- Faculty of Pharmacy and Biochemistry
- Department of Medicinal Chemistry
- HR-10000 Zagreb
- Croatia
| | - Željko Debeljak
- Clinical Hospital Center Osijek
- Osijek
- Croatia
- J.J. Strossmayer University of Osijek
- Faculty of Medicine
| | - Davor Šakić
- University of Zagreb
- Faculty of Pharmacy and Biochemistry
- Department of Medicinal Chemistry
- HR-10000 Zagreb
- Croatia
| | - Tin Weitner
- University of Zagreb
- Faculty of Pharmacy and Biochemistry
- Department of Medicinal Chemistry
- HR-10000 Zagreb
- Croatia
| | - Mario Gabričević
- University of Zagreb
- Faculty of Pharmacy and Biochemistry
- Department of Medicinal Chemistry
- HR-10000 Zagreb
- Croatia
| | - Valerije Vrček
- University of Zagreb
- Faculty of Pharmacy and Biochemistry
- Department of Medicinal Chemistry
- HR-10000 Zagreb
- Croatia
| | - Branka Zorc
- University of Zagreb
- Faculty of Pharmacy and Biochemistry
- Department of Medicinal Chemistry
- HR-10000 Zagreb
- Croatia
| | - Mirza Bojić
- University of Zagreb
- Faculty of Pharmacy and Biochemistry
- Department of Medicinal Chemistry
- HR-10000 Zagreb
- Croatia
| |
Collapse
|
29
|
Zhou H, Wang X. Spectrometric study on the interaction of sodium cholate aggregates with quercetin. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Lee YH, Chang SF, Liaw J. Anti-Apoptotic Gene Delivery with cyclo-(d-Trp-Tyr) Peptide Nanotube via Eye Drop Following Corneal Epithelial Debridement. Pharmaceutics 2015; 7:122-36. [PMID: 26193308 PMCID: PMC4588189 DOI: 10.3390/pharmaceutics7030122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 01/20/2023] Open
Abstract
Corneal keratocyte apoptosis triggered by cornel debridement is one mechanism of corneal disorders. In this study, the feasibility of cyclo-(d-Trp-Tyr) peptide nanotubes (PNTs) as carriers of caspase 3 silence shRNA delivery was assessed. A model of epithelial injury by epithelial debridement was applied to investigate the feasibility of PNTs as gene delivery carriers on corneal injury. First, the PNTs were found within 2 μm in length and 300 nm in width by an atomic force microscope and confocal laser microscope system. Plasmid DNAs were observed to be associated with PNTs by atomic force microscope and confocal laser scanning microscope. The plasmids were associated with tyrosine of PNTs with a binding constant of 2.7 × 108 M-1. The stability of plasmid DNA with PNTs against the DNase was found at 60 min. Using thioflavin T pre-stained PNTs on the corneal eye drop delivery, the distribution of PNTs was in the epithelial and stroma regions. After corneal debridement, the rhodamine-labeled plasmid DNA and thioflavin T pre-stained PNTs were also delivered and could be observed in the stroma of cornea. PNTs complexed with anti-apoptotic plasmid caspase 3 silencing shRNA eye drop delivery decreased 41% of caspase 3 activity after the first dose by caspase 3 activity and Western blot analysis.
Collapse
Affiliation(s)
- Yu-Hsing Lee
- School of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan.
| | - Shwu-Fen Chang
- Graduate Institute of Medical Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan.
| | - Jiahorng Liaw
- School of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan.
| |
Collapse
|
31
|
Fe2+-Responsive Bimodal MRI and Fluorescent Imaging Probe Based on a Gadolinium(III) Complex. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Ramadevi P, Singh R, Jana SS, Devkar R, Chakraborty D. Ruthenium complexes of ferrocene mannich bases: DNA/BSA interactions and cytotoxicity against A549 cell line. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Garzón A, Bravo I, Carrión-Jiménez MR, Rubio-Moraga Á, Albaladejo J. Spectroscopic study on binding of gentisic acid to bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 150:26-33. [PMID: 26010705 DOI: 10.1016/j.saa.2015.05.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
The interaction of (gentisic acid) GA with (bovine serum albumin) BSA has been studied by different spectroscopic techniques. GA is a monoanionic specie at the working pH of 7.4, it was determined by combining UV-Vis absorption spectroscopy and theoretical calculations. A set of fluorescence quenching experiments at different temperatures was carried out employing the native fluorescence of BSA. A Stern-Volmer constant (KSV) of (2.07±0.12)×10(4) mol(-1) L and a binding constant (Ka) of (8.47±4.39)×10(3) were determined at 310 K. The static quenching caused by the BSA-GA complex formation seems to play a significant role in the overall quenching process. A single binding site on BSA for GA was observed. ΔH=-55.6±0.2 kJ mol(-1) and ΔS=-104.3±0.6 J mol(-1) K(-1) were determined in a set of experiments on the dependence of Ka with the temperature. The binding process is, therefore, spontaneous and enthalpy-driven. Van der Waals forces and hydrogen bonds could also play the major role in the binding mode. The secondary structure changes of BSA in the absence and presence of GA were studied by FTIR and UV-Vis absorption spectroscopy.
Collapse
Affiliation(s)
- Andrés Garzón
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Paseo de los estudiantes, s/n, 02071 Albacete, Spain.
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Paseo de los estudiantes, s/n, 02071 Albacete, Spain
| | - M Rosario Carrión-Jiménez
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Paseo de los estudiantes, s/n, 02071 Albacete, Spain
| | - Ángela Rubio-Moraga
- Instituto Botánico, Facultad de Farmacia, Universidad de Castilla-La Mancha, Paseo de los estudiantes, s/n, 02071 Albacete, Spain
| | - José Albaladejo
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| |
Collapse
|
34
|
Muthurajan T, Rammanohar P, Rajendran NP, Sethuraman S, Krishnan UM. Evaluation of a quercetin–gadolinium complex as an efficient positive contrast enhancer for magnetic resonance imaging. RSC Adv 2015. [DOI: 10.1039/c5ra16405b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The quercetin–gadolinium complex showing superior contrast than the commercially used gadopentetate dimeglumine.
Collapse
Affiliation(s)
- Thenmozhi Muthurajan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| | - Pooja Rammanohar
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| | - Nisha Palanisamy Rajendran
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| |
Collapse
|
35
|
Mode of encapsulation of Linezolid by β-Cyclodextrin and its role in bovine serum albumin binding. Carbohydr Polym 2015; 115:589-97. [DOI: 10.1016/j.carbpol.2014.09.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 11/24/2022]
|
36
|
Costa CNC, Hortelão ACL, Ramos JMF, Oliveira ADS, Calhelha RC, Queiroz MJRP, Coutinho PJG, Castanheira EMS. A new antitumoral Heteroarylaminothieno[3,2-b]pyridine derivative: its incorporation into liposomes and interaction with proteins monitored by fluorescence. Photochem Photobiol Sci 2014; 13:1730-40. [PMID: 25319772 DOI: 10.1039/c4pp00287c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The fluorescence properties of the new potent antitumoral methyl 3-amino-6-(benzo[d]thiazol-2-ylamino)thieno[3,2-b]pyridine-2-carboxylate in solution and when encapsulated in several different nanoliposome formulations were investigated. The compound exhibits very reasonable fluorescence quantum yields and a solvent sensitive emission in several polar and non-polar media, despite not being fluorescent in protic solvents. Fluorescence anisotropy measurements of the compound incorporated into liposomes revealed that this thienopyridine derivative can be carried in the hydrophobic region of the lipid membrane. Liposome formulations including this antitumor compound are nanometric in size, with a diameter lower than 130 nm and generally low polydispersity, and are promising for future drug delivery developments. The interaction of the compound with bovine serum albumin (BSA) and the multidrug resistance protein MDR1 was monitored by FRET, the compound acting as an energy acceptor. It was observed that the drug had a lower interaction with the MDR1 protein than with the native form of BSA, which is an important result regarding applications of this antitumoral drug.
Collapse
Affiliation(s)
- C N C Costa
- Centro de Física, Universidade do Minho (CFUM), Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Dobreva MA, Green RJ, Mueller-Harvey I, Salminen JP, Howlin BJ, Frazier RA. Size and molecular flexibility affect the binding of ellagitannins to bovine serum albumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9186-94. [PMID: 25162485 DOI: 10.1021/jf502174r] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Binding to bovine serum albumin of monomeric (vescalagin and pedunculagin) and dimeric ellagitannins (roburin A, oenothein B, and gemin A) was investigated by isothermal titration calorimetry and fluorescence spectroscopy, which indicated two types of binding sites. Stronger and more specific sites exhibited affinity constants, K1, of 10(4)-10(6) M(-1) and stoichiometries, n1, of 2-13 and dominated at low tannin concentrations. Weaker and less-specific binding sites had K2 constants of 10(3)-10(5) M(-1) and stoichiometries, n2, of 16-30 and dominated at higher tannin concentrations. Binding to stronger sites appeared to be dependent on tannin flexibility and the presence of free galloyl groups. Positive entropies for all but gemin A indicated that hydrophobic interactions dominated during complexation. This was supported by an exponential relationship between the affinity, K1, and the modeled hydrophobic accessible surface area and by a linear relationship between K1 and the Stern-Volmer quenching constant, K(SV).
Collapse
Affiliation(s)
- Marina A Dobreva
- School of Agriculture, Policy and Development, University of Reading , Earley Gate, P.O. Box 236, Reading RG6 6AT, United Kingdom
| | | | | | | | | | | |
Collapse
|
38
|
Zuo P, Xiao D, Gao M, Peng J, Pan R, Xia Y, He H. Single-step preparation of fluorescent carbon nanoparticles, and their application as a fluorometric probe for quercetin. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1236-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Akimova AV, Grin MA, Golovina GV, Kokrashvili TA, Vinogradov AM, Mironov AF, Rychkov GN, Shtil AA, Kuzmin VA, Durandin NA. Novel derivatives of bacteriochlorophyll a: complex formation with albumin and the mechanism of tumor cell photodamage. DOKL BIOCHEM BIOPHYS 2014; 454:17-20. [PMID: 24633606 DOI: 10.1134/s1607672914010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Indexed: 11/23/2022]
Affiliation(s)
- A V Akimova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow, 119334, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nayak MK, Agrawal AS, Bose S, Naskar S, Bhowmick R, Chakrabarti S, Sarkar S, Chawla-Sarkar M. Antiviral activity of baicalin against influenza virus H1N1-pdm09 is due to modulation of NS1-mediated cellular innate immune responses. J Antimicrob Chemother 2014; 69:1298-310. [DOI: 10.1093/jac/dkt534] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
41
|
Narayan S, Rajagopalan A, Reddy JS, Chadha A. BSA binding to silica capped gold nanostructures: effect of surface cap and conjugation design on nanostructure–BSA interface. RSC Adv 2014. [DOI: 10.1039/c3ra45887c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Zhang J, Cui JH, Yin T, Sun L, Li G. Activated effect of lignin on α-amylase. Food Chem 2013; 141:2229-37. [DOI: 10.1016/j.foodchem.2013.05.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/11/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
|
43
|
Interaction of Sulfadiazine with Model Water Soluble Proteins: A Combined Fluorescence Spectroscopic and Molecular Modeling Approach. J Fluoresc 2013; 24:579-88. [DOI: 10.1007/s10895-013-1330-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/20/2013] [Indexed: 10/26/2022]
|
44
|
Mehranfar F, Bordbar AK, Parastar H. A combined spectroscopic, molecular docking and molecular dynamic simulation study on the interaction of quercetin with β-casein nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 127:100-7. [DOI: 10.1016/j.jphotobiol.2013.07.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/21/2013] [Accepted: 07/24/2013] [Indexed: 11/16/2022]
|
45
|
Lissi E, Calderón C, Campos A. Evaluation of the number of binding sites in proteins from their intrinsic fluorescence: limitations and pitfalls. Photochem Photobiol 2013; 89:1413-6. [PMID: 23789593 DOI: 10.1111/php.12112] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/03/2013] [Indexed: 11/30/2022]
Abstract
Changes in the intrinsic protein fluorescence with the additive concentration provide one of the most employed methodologies for the evaluation of the binding constant and the number of binding sites. In the last years, more than 175 studies have been published where the double logarithmic plot shown below is used toward determining the number of equivalent binding sites (n). Log [(F° - F)/F] = log K + n log [Q0 ]. However, the value of n evaluated by this procedure is unrelated to the number of equivalent binding sites; rather it represents the stoichiometry of the binding step. The confusion on the meaning of n arises upon assuming that the binding process is represented by the forward and backward elementary steps shown below, implying that binding of the n solutes takes place simultaneously, i.e. there are no intermediate species. nQ + P ⇆ Qn P. The conclusion that n is unrelated to the number of equivalent binding sites is supported by the fact that in all the systems considered (99% of them) n values are close to one and much smaller than those obtained by ultrafiltration. It is then remarkable, the profusion of publications in peer-reviewed, specialized journals including a conceptual error that confuses Hill's coefficient and/or the stoichiometry of the binding step with the number of independent binding sites. Here, we discuss the origin of this common misconception and provide alternative methods to determine the number of binding sites.
Collapse
Affiliation(s)
- Eduardo Lissi
- Faculty of Chemistry and Biology, University of Santiago de Chile, USACH, Santiago, Chile
| | | | | |
Collapse
|
46
|
Pal S, Saha C. A review on structure–affinity relationship of dietary flavonoids with serum albumins. J Biomol Struct Dyn 2013; 32:1132-47. [DOI: 10.1080/07391102.2013.811700] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
|
48
|
Yu X, Yang Y, Yao Q, Tao H, Lu S, Xie J, Zhou H, Yi P. Spectroscopic analysis of the interaction between thiazolo[2,3-b]pyrimidine analogues and bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 96:690-697. [PMID: 22885082 DOI: 10.1016/j.saa.2012.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/10/2012] [Indexed: 06/01/2023]
Abstract
The interaction between thiazolo[2,3-b]pyrimidine (TZPM) analogues and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy and UV-Vis spectroscopy at two different temperatures (299 and 307K) under imitated physiological conditions. The results indicate that both static quenching and dynamic quenching contribute to the fluorescence quenching of BSA by TZPM. The binding constant (K(a)) and binding sites (n) were calculated from the obtained spectra. Based on the Förster non-radiation energy transfer theory, the average binding distance between BSA and TZPM was estimated. The synchronous fluorescence spectra indicate that the conformation of BSA has been changed. The comparison of binding potency of TZPM and BSA suggests that the substituents on the benzene ring enhance the binding affinity of TZPM and BSA. We investigated the possible sub-domains on BSA that bind TZPM by displacement experiments. Furthermore, to explore the effect of molecular structure on the binding, a study on quantitative structure-property relationship (QSPR) was performed, the quantitative relationship equation of R(0), r and K(a) were obtained. We observed that R(0), r and K(a) between BSA and TZPM is connected with the margin of the highest and the lowest occupied orbital energy (ΔE), dipole moment (μ), Molar Volume (V(m)), Mole Mass (M).
Collapse
Affiliation(s)
- Xianyong Yu
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hsieh WH, Chang SF, Chen HM, Chen JH, Liaw J. Oral gene delivery with cyclo-(D-Trp-Tyr) peptide nanotubes. Mol Pharm 2012; 9:1231-49. [PMID: 22480317 DOI: 10.1021/mp200523n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The feasibility of cyclo-(D-Trp-Tyr) peptide nanotubes (PNTs) as oral gene delivery carriers was investigated in nude mice with eight 40 μg doses of pCMV-lacZ in 2 days at 3 h intervals. The association between DNA and PNTs, the DNase I stability of PNTs-associated DNA, and in vitro permeability of DNA were estimated. The results showed that the cyclo-(D-Trp-Tyr) PNTs self-associated at concentrations above 0.01 mg/mL. Plasmid DNA associated with PNTs with a binding constant of 3.2 × 10(8) M(-1) calculated by a fluorescence quenching assay. PNTs were able to protect DNA from DNase I, acid, and bile digestion for 50 min, 60 min, and 180 min, respectively. The in vitro duodenal apparent permeability coefficient of pCMV-lacZ calculated from a steady state flux was increased from 49.2 ± 21.6 × 10(-10) cm/s of naked DNA to 395.6 ± 142.2 × 10(-10) cm/s of pCMV-lacZ/PNT formulation. The permeation of pCMV-lacZ formulated with PNTs was found in an energy-dependent process. Furthermore, β-galatosidase (β-Gal) activity in tissues was quantitatively assessed using chlorophenol red-β-D-galactopyranoside (CPRG) and was significantly increased by 41% in the kidneys at 48 h and by 49, 63, and 46% in the stomach, duodenum, and liver, respectively, at 72 h after the first dose of oral delivery of pCMV-lacZ/PNT formulation. The organs with β-Gal activity were confirmed for the presence of pCMV-lacZ DNA with Southern blotting analysis and intracellular tracing the TM-rhodamine-labeled DNA and the presence of mRNA by reverse transcription-real time quantitative PCR (RT-qPCR). Another plasmid (pCMV-hRluc) encoding Renilla reniformis luciferase was used to confirm the results. An increased hRluc mRNA and luciferase in stomach, duodenum, liver, and kidney were detected by RT-qPCR, ex vivo bioluminescence imaging, luciferase activity quantification, and immunostaining, respectively.
Collapse
Affiliation(s)
- Wei-Hsien Hsieh
- College of Pharmacy, Taipei Medical University, 250 Wu Hsing Street, Taipei 110, Taiwan
| | | | | | | | | |
Collapse
|
50
|
Samari F, Hemmateenejad B, Shamsipur M, Rashidi M, Samouei H. Affinity of Two Novel Five-Coordinated Anticancer Pt(II) Complexes to Human and Bovine Serum Albumins: A Spectroscopic Approach. Inorg Chem 2012; 51:3454-64. [DOI: 10.1021/ic202141g] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fayezeh Samari
- Department of Chemistry, Shiraz University, Shiraz, Iran
| | | | | | - Mehdi Rashidi
- Department of Chemistry, Shiraz University, Shiraz, Iran
| | | |
Collapse
|