1
|
Sun Y, Xu H, Li J, Peng M, Jia Z, Kong L, Zhang X, Shao S, Zhang W, Wang W. Genome-wide survey identifies TNNI2 as a target of KLF7 that inhibits chicken adipogenesis via downregulating FABP4. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194899. [PMID: 36410687 DOI: 10.1016/j.bbagrm.2022.194899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Krüppel-like factor 7 (KLF7) negatively regulates adipocyte differentiation; however, the mechanism underlying its activity in mammals and birds remains poorly understood. To identify genome-wide KLF7-binding motifs in preadipocytes, we conducted a chromatin immunoprecipitation-sequencing analysis of immortalized chicken preadipocytes (ICP2), which revealed 11,063 specific binding sites. Intergenic binding site analysis showed that KLF7 regulates several novel factors whose functions in chicken and mammal adipogenesis are underexplored. We identified a novel regulator, troponin I2 (TNNI2), which is positively regulated by KLF7. TNNI2 is downregulated during preadipocyte differentiation and acts as an adipogenic repressor at least in part by repressing FABP4 promoter activity. In conclusion, we demonstrated that KLF7 functions through cis-regulation of TNNI2, which inhibits adipogenesis. Our findings not only provide the first genome-wide picture of KLF7 associations in preadipocytes but also identify a novel function of TNNI2.
Collapse
Affiliation(s)
- Yingning Sun
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China.
| | - Hu Xu
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Jinwei Li
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Min Peng
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Ziqiu Jia
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Lingzhe Kong
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Xin Zhang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Shuli Shao
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Weiwei Zhang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Weiyu Wang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| |
Collapse
|
2
|
Wang L, Leng L, Ding R, Gong P, Liu C, Wang N, Li H, Du ZQ, Cheng B. Integrated transcriptome and proteome analysis reveals potential mechanisms for differential abdominal fat deposition between divergently selected chicken lines. J Proteomics 2021; 241:104242. [PMID: 33901680 DOI: 10.1016/j.jprot.2021.104242] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
Genetic selection for meat production performance of broilers concomitantly causes excessive abdominal fat deposition, accompanied by several adverse effects, such as the reduction of feed conversion efficiency and reproduction performance. Our previous studies have identified important genes regulating chicken fat deposition, using the Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) as an animal model. However, the molecular mechanism underlying fat deposition differences between fat and lean broilers remains largely unknown. Here, we integrated the transcriptome (RNA-Seq) and quantitative proteome (isobaric tags for relative and absolute quantitation, iTRAQ) profiling analyses on abdominal fat tissues from NEAUHLF chicken lines. Differentially expressed genes (2167 DEGs, corrected p-value < 0.01) and differentially abundant proteins (199 DAPs, corrected p-value < 0.05) were identified in lean line compared to fat line. Down-regulated DEGs and DAPs mainly enriched in pathways related to fatty acid metabolism, fatty acid biosynthesis, and PPAR signaling, and interestingly, up-regulated DEGs and DAPs enriched both in lysosome pathway. Moreover, numerous key DEGs and DAPs involved in long-chain fatty acid uptake, in situ lipogenesis (fatty acid and cholesterol synthesis), and lipid droplet accumulation were discovered after integrated transcriptome and proteome analysis. SIGNIFICANCE: Excessive abdominal fat deposition critically affects the health of broilers and causes economic loss to broiler producers, but the molecular mechanism of abdominal fat deposition is still unclear in chicken. We identified key DEGs/DAPs and potential pathways through an integration of chicken abdominal fat tissues transcriptome and proteome analyses. Our findings will facilitate a better revealing the mechanism and provide a novel insight into abdominal fat content discrepancy between the fat and lean chicken lines.
Collapse
Affiliation(s)
- Lijian Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Li Leng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Ran Ding
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Gong
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Chang Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhi-Qiang Du
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Bohan Cheng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
3
|
de Almeida Mallmann B, Martin EM, Soo Kim K, Calderon-Apodaca NL, Baxter MFA, Latorre JD, Hernandez-Velasco X, Paasch-Martinez L, Owens CM, Dridi S, Bottje WG, Greene ES, Tellez-Isaias G. Evaluation of Bone Marrow Adipose Tissue and Bone Mineralization on Broiler Chickens Affected by Wooden Breast Myopathy. Front Physiol 2019; 10:674. [PMID: 31191361 PMCID: PMC6549442 DOI: 10.3389/fphys.2019.00674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
In humans, alterations in bone metabolism have been associated with myopathies. We postulate the hypothesis that perhaps similar pathologies can also be associated in modern chickens. Hence, this study aimed to assess the fat infiltration in bone marrow and its repercussion on broiler chicken affected by Wooden Breast (WB) myopathy. Ten Cobb 500 live birds with extreme rigidity of the Pectoralis major (PM) muscle were selected as WB affected chickens by physical examination of the muscle at 49 days of age, whereas ten chickens healthy with no physical signs of hardness in the breast muscle were considered to be unaffected. Macroscopic lesions in affected chickens included areas of firm and inflamed muscle with pale appearance, hemorrhaging, and viscous exudate on the surface. Bone marrow and sections of the PM muscle were collected and analyzed for light microscopy. Additionally, transmission electron microscopy was conducted in affected or unaffected muscle. Chickens affected with WB showed significant reductions (P < 0.05) in femur diameter, calcium, and phosphorous percentage but increased breast weight, compression force and filet thickness when compared with non-affected chickens. Interestingly, bone marrow from WB chicken had subjectively, more abundant infiltration of adipose tissue, when compared with non-affected chickens. Histology of the Pectoralis major of birds with WB showed abundant infiltration of adipose tissue, muscle fibers degeneration with necrosis and infiltration of heterophils and mononuclear cells, connective tissue proliferation, and vasculitis. Ultrastructural changes of WB muscle revealed lack definition of bands in muscle tissue, or any normal ultrastructural anatomy such as myofibrils. The endomysium components were necrotic, and in some areas, the endomysium was notable only as a string of necrotic tissue between degraded myofibrils. The fascia appeared hypertrophied, with large areas of necrosis and myofiber without structural identity with degraded mitochondria adjacent to the disrupted muscle tissue. As far as we know, this is the first study that describes a subjective increase in adipose tissue in the bone marrow of chickens affected with WB when compared with non-affected chickens, and reduced bone mineralization.
Collapse
Affiliation(s)
| | - Elizabeth M Martin
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Kyung Soo Kim
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, United States
| | - Norma L Calderon-Apodaca
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mikayla F A Baxter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leopoldo Paasch-Martinez
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Casey M Owens
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Walter G Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Elizabeth S Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | |
Collapse
|
4
|
Wu CY, Wu YY, Liu CD, Wang YX, Na W, Wang N, Li H. Comparative proteome analysis of abdominal adipose tissues between fat and lean broilers. Proteome Sci 2016; 14:9. [PMID: 27594807 PMCID: PMC5009711 DOI: 10.1186/s12953-016-0100-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/16/2016] [Indexed: 02/04/2023] Open
Abstract
Background The molecular mechanism underlying broiler fat deposition is still poorly understood. Method Currently, we used two-dimensional gel electrophoresis (2DE) to identify differentially expressed proteins in abdominal adipose tissues of birds at 4 week of age derived from Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF). Results Thirteen differentially expressed protein spots were screened out and identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The protein spots were matched to thirteen proteins by searching against the NCBInr database. These identified proteins were apolipoprotein A-I (Apo A-I), cytokeratin otokeratin, ATP synthase subunit alpha, peptidyl-prolyl cis-trans isomerase FKBP4 (PPIase FKBP4), aspartate aminotransferase, carbonic anhydrase II (CA-II), prostaglandin-H2 D-isomerase precursor, fibrinogen alpha chain, lamin-A (LMNA), superoxide dismutase [Mn] (MnSOD), heat shock protein beta-1 (HSPβ1) and two predicted proteins. These differentially expressed proteins are involved mainly in lipid metabolism, amino acid metabolism, signal transduction, energy conversion, antioxidant, and cytoskeleton. Differential expression of Apo A-I, PPIase FKBP4, and cytokeratin otokeratin proteins were further confirmed by Western blot analysis. Quantitative real-time RT-PCR analyses showed that, of these 13 differentially expressed proteins, only PPIase FKBP4 and cytokeratin otokeratin were differentially expressed at mRNA level between the two lines. Conclusions Our results have provided further information for understanding the basic genetics control of growth and development of broiler adipose tissue.
Collapse
Affiliation(s)
- Chun-Yan Wu
- Key Laboratory of Chicken Genetics and Breeding of Agriculture Ministry, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Yuan-Yuan Wu
- Key Laboratory of Chicken Genetics and Breeding of Agriculture Ministry, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 Heilongjiang China.,Weifang Academy of Agricultural Sciences, Weifang, 261071 Shandong China
| | - Chun-Dong Liu
- Key Laboratory of Chicken Genetics and Breeding of Agriculture Ministry, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Yu-Xiang Wang
- Key Laboratory of Chicken Genetics and Breeding of Agriculture Ministry, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Wei Na
- Key Laboratory of Chicken Genetics and Breeding of Agriculture Ministry, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding of Agriculture Ministry, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding of Agriculture Ministry, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| |
Collapse
|
5
|
Resnyk CW, Chen C, Huang H, Wu CH, Simon J, Le Bihan-Duval E, Duclos MJ, Cogburn LA. RNA-Seq Analysis of Abdominal Fat in Genetically Fat and Lean Chickens Highlights a Divergence in Expression of Genes Controlling Adiposity, Hemostasis, and Lipid Metabolism. PLoS One 2015; 10:e0139549. [PMID: 26445145 PMCID: PMC4596860 DOI: 10.1371/journal.pone.0139549] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/14/2015] [Indexed: 01/20/2023] Open
Abstract
Genetic selection for enhanced growth rate in meat-type chickens (Gallus domesticus) is usually accompanied by excessive adiposity, which has negative impacts on both feed efficiency and carcass quality. Enhanced visceral fatness and several unique features of avian metabolism (i.e., fasting hyperglycemia and insulin insensitivity) mimic overt symptoms of obesity and related metabolic disorders in humans. Elucidation of the genetic and endocrine factors that contribute to excessive visceral fatness in chickens could also advance our understanding of human metabolic diseases. Here, RNA sequencing was used to examine differential gene expression in abdominal fat of genetically fat and lean chickens, which exhibit a 2.8-fold divergence in visceral fatness at 7 wk. Ingenuity Pathway Analysis revealed that many of 1687 differentially expressed genes are associated with hemostasis, endocrine function and metabolic syndrome in mammals. Among the highest expressed genes in abdominal fat, across both genotypes, were 25 differentially expressed genes associated with de novo synthesis and metabolism of lipids. Over-expression of numerous adipogenic and lipogenic genes in the FL chickens suggests that in situ lipogenesis in chickens could make a more substantial contribution to expansion of visceral fat mass than previously recognized. Distinguishing features of the abdominal fat transcriptome in lean chickens were high abundance of multiple hemostatic and vasoactive factors, transporters, and ectopic expression of several hormones/receptors, which could control local vasomotor tone and proteolytic processing of adipokines, hemostatic factors and novel endocrine factors. Over-expression of several thrombogenic genes in abdominal fat of lean chickens is quite opposite to the pro-thrombotic state found in obese humans. Clearly, divergent genetic selection for an extreme (2.5-2.8-fold) difference in visceral fatness provokes a number of novel regulatory responses that govern growth and metabolism of visceral fat in this unique avian model of juvenile-onset obesity and glucose-insulin imbalance.
Collapse
Affiliation(s)
- Christopher W. Resnyk
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Chuming Chen
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Cathy H. Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Jean Simon
- INRA UR83 Recherches Avicoles, 37380, Nouzilly, France
| | | | | | - Larry A. Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
6
|
|
7
|
Jin P, Wu X, Xu S, Zhang H, Li Y, Cao Z, Li H, Wang S. Differential expression of six genes and correlation with fatness traits in a unique broiler population. Saudi J Biol Sci 2015; 24:945-949. [PMID: 28490969 PMCID: PMC5415145 DOI: 10.1016/j.sjbs.2015.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/16/2015] [Accepted: 04/22/2015] [Indexed: 11/20/2022] Open
Abstract
Previous results from genome wide association studies (GWASs) in chickens divergently selected for abdominal fat content of Northeast Agricultural University (NEAUHLF) showed that many single nucleotide polymorphism (SNP) variants were associated with abdominal fat content. Of them, six top significant SNPs at the genome level were located within SRD5A3, SGCZ, DLC1, GBE1, GALNT9 and DNAJB6 genes. Here, expression levels of these six candidate genes were investigated in abdominal fat and liver tissue between fat and lean broilers from the 14th generation population of NEAUHLF. The results showed that expression levels of SRD5A3, SGCZ and DNAJB6 in the abdominal fat and SRD5A3, DLC1, GALNT9, DNAJB6 and GBE1 in the liver tissue differed significantly between the fat and lean birds, and were correlated with abdominal fat traits. The findings will provide important references for further function investigation of the six candidate genes involved in abdominal fat deposition in chickens.
Collapse
Affiliation(s)
- Pengcheng Jin
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin 150030, China
| | - Xianwen Wu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin 150030, China
| | - Songsong Xu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin 150030, China
| | - Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin 150030, China
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin 150030, China
| | - Zhiping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin 150030, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin 150030, China
| | - Shouzhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin 150030, China
| |
Collapse
|
8
|
Hausman GJ, Barb CR, Fairchild BD, Gamble J, Lee-Rutherford L. Gene expression profiling in adipose tissue from growing broiler chickens. Adipocyte 2014; 3:297-303. [PMID: 26317054 DOI: 10.4161/adip.29252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 11/19/2022] Open
Abstract
In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for gene microarray analysis with Affymetrix GeneChip Chicken Genome Arrays (Affymetrix) and quantitative real-time PCR analysis. Studies of global gene expression in chicken adipose tissue were initiated since such studies in many animal species show that adipose tissue expresses and secretes many factors that can influence growth and physiology. Microarray results indicated 333 differentially expressed adipose tissue genes between 3 and 6 wk, 265 differentially expressed genes between 4 and 6 wk and 42 differentially expressed genes between 3 and 4 wk. Enrichment scores of Gene Ontology Biological Process categories indicated strong age upregulation of genes involved in the immune system response. In addition to microarray analysis, quantitative real-time PCR analysis was used to confirm the influence of age on the expression of adipose tissue CC chemokine ligands (CCL), toll-like receptor (TLR)-2, lipopolysaccharide-induced TNF factor (LITAF), chemokine (C-C motif) receptor 8 (CCR8), and several other genes. Between 3 and 6 wk of age CCL5, CCL1, and CCR8 expression increased (P = 0.0001) with age. Furthermore, TLR2, CCL19, and LITAF expression increased between 4 and 6 wk of age (P = 0.001). This is the first demonstration of age related changes in CCL, LITAF, and TLR2 gene expression in chicken adipose tissue. Future studies are needed to elucidate the role of these adipose tissue genes in growth and the immune system.
Collapse
|
9
|
Resnyk CW, Carré W, Wang X, Porter TE, Simon J, Le Bihan-Duval E, Duclos MJ, Aggrey SE, Cogburn LA. Transcriptional analysis of abdominal fat in genetically fat and lean chickens reveals adipokines, lipogenic genes and a link between hemostasis and leanness. BMC Genomics 2013; 14:557. [PMID: 23947536 PMCID: PMC3765218 DOI: 10.1186/1471-2164-14-557] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/12/2013] [Indexed: 12/15/2022] Open
Abstract
Background This descriptive study of the abdominal fat transcriptome takes advantage of two experimental lines of meat-type chickens (Gallus domesticus), which were selected over seven generations for a large difference in abdominal (visceral) fatness. At the age of selection (9 wk), the fat line (FL) and lean line (LL) chickens exhibit a 2.5-fold difference in abdominal fat weight, while their feed intake and body weight are similar. These unique avian models were originally created to unravel genetic and endocrine regulation of adiposity and lipogenesis in meat-type chickens. The Del-Mar 14K Chicken Integrated Systems microarray was used for a time-course analysis of gene expression in abdominal fat of FL and LL chickens during juvenile development (1–11 weeks of age). Results Microarray analysis of abdominal fat in FL and LL chickens revealed 131 differentially expressed (DE) genes (FDR≤0.05) as the main effect of genotype, 254 DE genes as an interaction of age and genotype and 3,195 DE genes (FDR≤0.01) as the main effect of age. The most notable discoveries in the abdominal fat transcriptome were higher expression of many genes involved in blood coagulation in the LL and up-regulation of numerous adipogenic and lipogenic genes in FL chickens. Many of these DE genes belong to pathways controlling the synthesis, metabolism and transport of lipids or endocrine signaling pathways activated by adipokines, retinoid and thyroid hormones. Conclusions The present study provides a dynamic view of differential gene transcription in abdominal fat of chickens genetically selected for fatness (FL) or leanness (LL). Remarkably, the LL chickens over-express a large number of hemostatic genes that could be involved in proteolytic processing of adipokines and endocrine factors, which contribute to their higher lipolysis and export of stored lipids. Some of these changes are already present at 1 week of age before the divergence in fatness. In contrast, the FL chickens have enhanced expression of numerous lipogenic genes mainly after onset of divergence, presumably directed by multiple transcription factors. This transcriptional analysis shows that abdominal fat of the chicken serves a dual function as both an endocrine organ and an active metabolic tissue, which could play a more significant role in lipogenesis than previously thought.
Collapse
Affiliation(s)
- Christopher W Resnyk
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Comparative transcriptome analyses reveal conserved and distinct mechanisms in ovine and bovine lactation. Funct Integr Genomics 2013; 13:115-31. [DOI: 10.1007/s10142-012-0307-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/19/2012] [Accepted: 12/26/2012] [Indexed: 12/22/2022]
|
11
|
Microarray analysis of genes differentially expressed in the liver of lean and fat chickens. Animal 2012; 4:513-22. [PMID: 22444038 DOI: 10.1017/s1751731109991388] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Excessive accumulation of lipids in the adipose tissue is one of the main problems faced by the broiler industry nowadays. In chicken, lipogenesis occurs essentially in the liver, in which much of the triglycerides that accumulate in avian adipose tissue are synthesized. In order to better understand the gene expression and its regulation in chicken liver, the gene expression profiles of liver at developmental stages of chicken (1 week, 4 weeks and 7 weeks of age) were investigated and differentially expressed genes between lean and fat chicken lines divergently selected for abdominal fat content for eight generations were screened. Our data indicated that 4 weeks of age was a very important stage on chicken liver lipogenesis compared to 1 week and 7 weeks of age, and the glycometabolism in chicken liver could be related to lipid metabolism and the difference of glycometabolism could be another potential reason for the fat and lean phenotype occurrence besides the difference of lipogenesis in chicken liver. Our result have established groundwork for further study of the basic genetic control of chicken obesity and will benefit chicken research communities as well as researches that use chicken as a model organism for developmental biology and human therapeutics.
Collapse
|
12
|
Sumner-Thomson J, Vierck J, McNamara J. Differential expression of genes in adipose tissue of first-lactation dairy cattle. J Dairy Sci 2011; 94:361-9. [DOI: 10.3168/jds.2010-3447] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 09/30/2010] [Indexed: 11/19/2022]
|
13
|
Wang D, Wang N, Li N, Li H. Identification of differentially expressed proteins in adipose tissue of divergently selected broilers. Poult Sci 2009; 88:2285-92. [DOI: 10.3382/ps.2009-00190] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Affiliation(s)
- Laura S Gammill
- Department of Genetics, Cell Biology, and Development University of Minnesota Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
15
|
Cogburn LA, Porter TE, Duclos MJ, Simon J, Burgess SC, Zhu JJ, Cheng HH, Dodgson JB, Burnside J. Functional genomics of the chicken--a model organism. Poult Sci 2007; 86:2059-94. [PMID: 17878436 DOI: 10.1093/ps/86.10.2059] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since the sequencing of the genome and the development of high-throughput tools for the exploration of functional elements of the genome, the chicken has reached model organism status. Functional genomics focuses on understanding the function and regulation of genes and gene products on a global or genome-wide scale. Systems biology attempts to integrate functional information derived from multiple high-content data sets into a holistic view of all biological processes within a cell or organism. Generation of a large collection ( approximately 600K) of chicken expressed sequence tags, representing most tissues and developmental stages, has enabled the construction of high-density microarrays for transcriptional profiling. Comprehensive analysis of this large expressed sequence tag collection and a set of approximately 20K full-length cDNA sequences indicate that the transcriptome of the chicken represents approximately 20,000 genes. Furthermore, comparative analyses of these sequences have facilitated functional annotation of the genome and the creation of several bioinformatic resources for the chicken. Recently, about 20 papers have been published on transcriptional profiling with DNA microarrays in chicken tissues under various conditions. Proteomics is another powerful high-throughput tool currently used for examining the dynamics of protein expression in chicken tissues and fluids. Computational analyses of the chicken genome are providing new insight into the evolution of gene families in birds and other organisms. Abundant functional genomic resources now support large-scale analyses in the chicken and will facilitate identification of transcriptional mechanisms, gene networks, and metabolic or regulatory pathways that will ultimately determine the phenotype of the bird. New technologies such as marker-assisted selection, transgenics, and RNA interference offer the opportunity to modify the phenotype of the chicken to fit defined production goals. This review focuses on functional genomics in the chicken and provides a road map for large-scale exploration of the chicken genome.
Collapse
Affiliation(s)
- L A Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark 19717, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|