1
|
Monje M, Káradóttir RT. The bright and the dark side of myelin plasticity: Neuron-glial interactions in health and disease. Semin Cell Dev Biol 2021; 116:10-15. [PMID: 33293232 PMCID: PMC8178421 DOI: 10.1016/j.semcdb.2020.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
Neuron-glial interactions shape neural circuit establishment, refinement and function. One of the key neuron-glial interactions takes place between axons and oligodendroglial precursor cells. Interactions between neurons and oligodendrocyte precursor cells (OPCs) promote OPC proliferation, generation of new oligodendrocytes and myelination, shaping myelin development and ongoing adaptive myelin plasticity in the brain. Communication between neurons and OPCs can be broadly divided into paracrine and synaptic mechanisms. Following the Nobel mini-symposium "The Dark Side of the Brain" in late 2019 at the Karolinska Institutet, this mini-review will focus on the bright and dark sides of neuron-glial interactions and discuss paracrine and synaptic interactions between neurons and OPCs and their malignant counterparts.
Collapse
Affiliation(s)
- Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
| | - Ragnhildur Thóra Káradóttir
- Wellcome - Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, UK; Department of Physiology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
2
|
Hyung S, Lee S, Kim YJ, Bang S, Tahk D, Park J, Suh JF, Jeon NL. Optogenetic neuronal stimulation promotes axon outgrowth and myelination of motor neurons in a three‐dimensional motor neuron–Schwann cell coculture model on a microfluidic biochip. Biotechnol Bioeng 2019; 116:2425-2438. [DOI: 10.1002/bit.27083] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/02/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Sujin Hyung
- Center for BionicsKorea Institute of Science and Technology Seoul South Korea
- BK21 Plus Transformative Training Program for Creative Mechanical and Aerospace EngineersSeoul National University Seoul South Korea
- Multiscale Mechanical Design School of Mechanical and Aerospace Engineering, Institute of Advanced Machinery and DesignSeoul National University Seoul South Korea
| | - Seung‐Ryeol Lee
- Multiscale Mechanical Design School of Mechanical and Aerospace Engineering, Institute of Advanced Machinery and DesignSeoul National University Seoul South Korea
| | - Yeon Jee Kim
- Center for BionicsKorea Institute of Science and Technology Seoul South Korea
| | - Seokyoung Bang
- Multiscale Mechanical Design School of Mechanical and Aerospace Engineering, Institute of Advanced Machinery and DesignSeoul National University Seoul South Korea
| | - Dongha Tahk
- Multiscale Mechanical Design School of Mechanical and Aerospace Engineering, Institute of Advanced Machinery and DesignSeoul National University Seoul South Korea
| | - Jong‐Chul Park
- Department of Medical Engineering and Brain Korea 21 PLUS Project for Medical ScienceYonsei University College of Medicine Seoul South Korea
| | - Jun‐Kyo Francis Suh
- Center for BionicsKorea Institute of Science and Technology Seoul South Korea
| | - Noo Li Jeon
- Multiscale Mechanical Design School of Mechanical and Aerospace Engineering, Institute of Advanced Machinery and DesignSeoul National University Seoul South Korea
| |
Collapse
|
3
|
de Faria O, Gonsalvez DG, Nicholson M, Xiao J. Activity-dependent central nervous system myelination throughout life. J Neurochem 2019; 148:447-461. [PMID: 30225984 PMCID: PMC6587454 DOI: 10.1111/jnc.14592] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/07/2018] [Indexed: 01/03/2023]
Abstract
Myelin, the multilayered membrane surrounding many axons in the nervous system, increases the speed by which electrical signals travel along axons and facilitates neuronal communication between distant regions of the nervous system. However, how neuronal signals influence the myelinating process in the CNS is still largely unclear. Recent studies have significantly advanced this understanding, identifying important roles for neuronal activity in controlling oligodendrocyte development and their capacity of producing myelin in both developing and mature CNS. Here, we review these recent advances, and discuss potential mechanisms underpinning activity-dependent myelination and how remyelination may be stimulated via manipulating axonal activity, raising new questions for future research.
Collapse
Affiliation(s)
- Omar de Faria
- Wellcome Trust MRC Stem Cell Institute & Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - David G. Gonsalvez
- Department of Anatomy and NeuroscienceFaculty of MedicineDentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Madeline Nicholson
- Department of Anatomy and NeuroscienceFaculty of MedicineDentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Junhua Xiao
- Department of Anatomy and NeuroscienceFaculty of MedicineDentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
4
|
Kataria H, Alizadeh A, Shahriary GM, Saboktakin Rizi S, Henrie R, Santhosh KT, Thliveris JA, Karimi-Abdolrezaee S. Neuregulin-1 promotes remyelination and fosters a pro-regenerative inflammatory response in focal demyelinating lesions of the spinal cord. Glia 2017; 66:538-561. [PMID: 29148104 DOI: 10.1002/glia.23264] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/26/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022]
Abstract
Oligodendroglial cell death and demyelination are hallmarks of neurotrauma and multiple sclerosis that cause axonal damage and functional impairments. Remyelination remains a challenge as the ability of endogenous precursor cells for oligodendrocyte replacement is hindered in the unfavorable milieu of demyelinating conditions. Here, in a rat model of lysolecithin lysophosphatidyl-choline (LPC)-induced focal demyelination, we report that Neuregulin-1 (Nrg-1), an important factor for oligodendrocytes and myelination, is dysregulated in demyelinating lesions and its bio-availability can promote oligodendrogenesis and remyelination. We delivered recombinant human Nrg-1β1 (rhNrg-1β1) intraspinally in the vicinity of LPC demyelinating lesion in a sustained manner using poly lactic-co-glycolic acid microcarriers. Availability of Nrg-1 promoted generation and maturation of new oligodendrocytes, and accelerated endogenous remyelination by both oligodendrocyte and Schwann cell populations in demyelinating foci. Importantly, Nrg-1 enhanced myelin thickness in newly remyelinated spinal cord axons. Our complementary in vitro studies also provided direct evidence that Nrg-1 significantly promotes maturation of new oligodendrocytes and facilitates their transition to a myelinating phenotype. Nrg-1 therapy remarkably attenuated the upregulated expression chondroitin sulfate proteoglycans (CSPGs) specific glycosaminoglycans in the extracellular matrix of demyelinating foci and promoted interleukin-10 (IL-10) production by immune cells. CSPGs and IL-10 are known to negatively and positively regulate remyelination, respectively. We found that Nrg-1 effects are mediated through ErbB2 and ErbB4 receptor activation. Our work provides novel evidence that dysregulated levels of Nrg-1 in demyelinating lesions of the spinal cord pose a challenge to endogenous remyelination, and appear to be an underlying cause of myelin thinning in newly remyelinated axons.
Collapse
Affiliation(s)
- Hardeep Kataria
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ghazaleh M Shahriary
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shekoofeh Saboktakin Rizi
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryan Henrie
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kallivalappil T Santhosh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, Manitoba, Canada
| | - James A Thliveris
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
de Faria O, Pama EAC, Evans K, Luzhynskaya A, Káradóttir RT. Neuroglial interactions underpinning myelin plasticity. Dev Neurobiol 2017; 78:93-107. [PMID: 28941015 DOI: 10.1002/dneu.22539] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/11/2017] [Accepted: 09/14/2017] [Indexed: 11/07/2022]
Abstract
The CNS is extremely responsive to an ever-changing environment. Studies of neural circuit plasticity focus almost exclusively on functional and structural changes of neuronal synapses. In recent years, however, myelin plasticity has emerged as a potential modulator of neuronal networks. Myelination of previously unmyelinated axons and changes in the structure of myelin on already-myelinated axons (similar to changes in internode number and length or myelin thickness or geometry of the nodal area) can in theory have significant effects on the function of neuronal networks. In this article, the authors review the current evidence for myelin changes occurring in the adult CNS, highlight some potential underlying mechanisms of how neuronal activity may regulate myelin changes, and explore the similarities between neuronal and myelin plasticity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 93-107, 2018.
Collapse
Affiliation(s)
- Omar de Faria
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ewa Anastazia Claudia Pama
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kimberley Evans
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Aryna Luzhynskaya
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ragnhildur Thóra Káradóttir
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Abstract
A variety of anatomical features suggest that functional activity in the nervous system can influence the process of myelination, yet direct evidence of this is lacking. Research by Zalc and colleagues shows that myelination of optic nerve is inhibited by a neurotoxin that blocks action potential activity and is stimulated by a toxin that increases impulse activity, suggesting that impulse activity is necessary for initiating myelination during development of the optic nerve. Research by Fields and colleagues, using electrical stimulation of axons, shows that low frequency impulse activity inhibits myelination of dorsal root ganglion neurons, but high frequency impulse activity has no effect. This results from reduced expression of a cell adhesion molecule on the stimulated axons that is critical for inducing myelination. Together these studies support the conclusion that impulse activity can influence the process of myelination, probably through more than one molecular mechanism operating during discrete steps in the myelination process.
Collapse
Affiliation(s)
- Bernard Zalc
- Biologie des Interactions Neurones-Glie, Institut National de la Santé et de la Recherche Médicale U-495, Université P. M. Curie, Hôpital de la Salpêtrière, Paris, France (BZ), Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (RDF)
| | | |
Collapse
|
7
|
Mei F, Fancy SPJ, Shen YAA, Niu J, Zhao C, Presley B, Miao E, Lee S, Mayoral SR, Redmond SA, Etxeberria A, Xiao L, Franklin RJM, Green A, Hauser SL, Chan JR. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat Med 2014; 20:954-960. [PMID: 24997607 PMCID: PMC4830134 DOI: 10.1038/nm.3618] [Citation(s) in RCA: 424] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/26/2013] [Indexed: 02/06/2023]
Abstract
Functional screening for compounds that promote remyelination represents a major hurdle in the development of rational therapeutics for multiple sclerosis. Screening for remyelination is problematic, as myelination requires the presence of axons. Standard methods do not resolve cell-autonomous effects and are not suited for high-throughput formats. Here we describe a binary indicant for myelination using micropillar arrays (BIMA). Engineered with conical dimensions, micropillars permit resolution of the extent and length of membrane wrapping from a single two-dimensional image. Confocal imaging acquired from the base to the tip of the pillars allows for detection of concentric wrapping observed as 'rings' of myelin. The platform is formatted in 96-well plates, amenable to semiautomated random acquisition and automated detection and quantification. Upon screening 1,000 bioactive molecules, we identified a cluster of antimuscarinic compounds that enhance oligodendrocyte differentiation and remyelination. Our findings demonstrate a new high-throughput screening platform for potential regenerative therapeutics in multiple sclerosis.
Collapse
Affiliation(s)
- Feng Mei
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Stephen P J Fancy
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Yun-An A Shen
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | - Chao Zhao
- Wellcome Trust Medical Research Council, Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Edna Miao
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Seonok Lee
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Sonia R Mayoral
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Stephanie A Redmond
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Ainhoa Etxeberria
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | - Robin J M Franklin
- Wellcome Trust Medical Research Council, Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ari Green
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Stephen L Hauser
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Jonah R Chan
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
8
|
Lee S, Chong SYC, Tuck SJ, Corey JM, Chan JR. A rapid and reproducible assay for modeling myelination by oligodendrocytes using engineered nanofibers. Nat Protoc 2013; 8:771-82. [PMID: 23589937 DOI: 10.1038/nprot.2013.039] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Current methods for studying oligodendrocyte myelination using primary neurons are limited by the time, cost and reproducibility of myelination in vitro. Nanofibers with diameters of >0.4 μm fabricated from electrospinning of liquid polystyrene are suitable scaffolds for concentric membrane wrapping by oligodendrocytes. With the advent of aligned electrospinning technology, nanofibers can be rapidly fabricated, standardized, and configured into various densities and patterns as desired. Notably, the minimally permissive culture environment of fibers provides investigators with an opportunity to explore the autonomous oligodendrocyte cellular processes underlying differentiation and myelination. The simplicity of the system is conducive to monitoring oligodendrocyte proliferation, migration, differentiation and membrane wrapping in the absence of neuronal signals. Here we describe protocols for the fabrication and preparation of nanofibers aligned on glass coverslips for the study of membrane wrapping by rodent oligodendrocytes. The entire protocol can be completed within 2 weeks.
Collapse
Affiliation(s)
- Seonok Lee
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
9
|
Cao J, Wang J, Dwyer JB, Gautier NM, Wang S, Leslie FM, Li MD. Gestational nicotine exposure modifies myelin gene expression in the brains of adolescent rats with sex differences. Transl Psychiatry 2013; 3:e247. [PMID: 23591971 PMCID: PMC3641408 DOI: 10.1038/tp.2013.21] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myelination defects in the central nervous system (CNS) are associated with various psychiatric disorders, including drug addiction. As these disorders are often observed in individuals prenatally exposed to cigarette smoking, we tested the hypothesis that such exposure impairs central myelination in adolescence, an important period of brain development and the peak age of onset of psychiatric disorders. Pregnant Sprague Dawley rats were treated with nicotine (3 mg kg(-1) per day; gestational nicotine (GN)) or gestational saline via osmotic mini pumps from gestational days 4-18. Both male and female offsprings were killed on postnatal day 35 or 36, and three limbic brain regions, the prefrontal cortex (PFC), caudate putamen and nucleus accumbens, were removed for measurement of gene expression and determination of morphological changes using quantitative real-time PCR (qRT-PCR) array, western blotting and immunohistochemical staining. GN altered myelin gene expression at both the mRNA and protein levels, with striking sex differences. Aberrant expression of myelin-related transcription and trophic factors was seen in GN animals, which correlated highly with the alterations in the myelin gene expression. These correlations suggest that these factors contribute to GN-induced alterations in myelin gene expression and also indicate abnormal function of oligodendrocytes (OLGs), the myelin-producing cells in the CNS. It is unlikely that these changes are attributable solely to an alteration in the number of OLGs, as the cell number was changed only in the PFC of GN males. Together, our findings suggest that abnormal brain myelination underlies various psychiatric disorders and drug abuse associated with prenatal exposure to cigarette smoke.
Collapse
Affiliation(s)
- J Cao
- Section of Neurobiology, Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| | - J Wang
- Section of Neurobiology, Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| | - J B Dwyer
- Department of Pharmacology, University of California, Irvine, CA, USA
| | - N M Gautier
- Section of Neurobiology, Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| | - S Wang
- Section of Neurobiology, Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| | - F M Leslie
- Department of Pharmacology, University of California, Irvine, CA, USA
| | - M D Li
- Section of Neurobiology, Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA,Section of Neurobiology, Department of Psychiatry and Neurobehavioral Sciences, University of Virginia,, PO Box 800623, 1670 Discovery Drive, Suite 110, Charlottesville, VA 22911, USA. E-mails: or
| |
Collapse
|
10
|
A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat Methods 2012; 9:917-22. [PMID: 22796663 PMCID: PMC3433633 DOI: 10.1038/nmeth.2105] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/22/2012] [Indexed: 01/28/2023]
Abstract
Current methods for studying central nervous system myelination necessitate permissive axonal substrates conducive to myelin wrapping by oligodendrocytes. We have developed a neuron-free culture system in which electron-spun nanofibers of varying sizes substitute for axons as a substrate for oligodendrocyte myelination, thereby allowing manipulation of the biophysical elements of axonal-oligodendroglial interactions. To investigate axonal regulation of myelination, this system effectively uncouples the role of molecular (inductive) cues from that of biophysical properties of the axon. We use this method to uncover the causation and sufficiency of fiber diameter in the initiation of concentric wrapping by rat oligodendrocytes. We also show that oligodendrocyte precursor cells display sensitivity to the biophysical properties of fiber diameter and initiate membrane ensheathment before differentiation. The use of nanofiber scaffolds will enable screening for potential therapeutic agents that promote oligodendrocyte differentiation and myelination and will also provide valuable insight into the processes involved in remyelination.
Collapse
|
11
|
Fletcher JL, Kondagari GS, Wright AL, Thomson PC, Williamson P, Taylor RM. Myelin genes are downregulated in canine fucosidosis. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1418-26. [PMID: 21683140 DOI: 10.1016/j.bbadis.2011.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/12/2011] [Accepted: 06/02/2011] [Indexed: 01/29/2023]
Abstract
The processes regulating the complex neurodegenerative cascade of vacuolation, neuroinflammation, neuronal loss and myelin deficits in fucosidosis, a neurological lysosomal storage disorder, remain unclear. To elucidate these processes the gene expression profile of the cerebral cortex from untreated and intrathecal enzyme replacement therapy treated fucosidosis pups and age-matched unaffected controls were examined. Neuroinflammation and cell death processes were identified to have a major role in fucosidosis pathophysiology with 37% of differentially expressed (DE) genes involved in these processes. Critical, specific, early decreases in expression levels of key genes in myelin assembly were identified by gene expression profiling, including myelin-associated glycoprotein (MAG), myelin and lymphocyte protein (MAL), and oligodendrocyte myelin paranodal and inner loop protein (OPALIN). These gene expression changes may be indicative of early neuronal loss causing reduced electrical impulses required for oligodendrocyte maturation.
Collapse
Affiliation(s)
- Jessica L Fletcher
- Teh Faculty of Veterinary Science, The UNiversity of Sydney, Camperdown NSW, 2006, Autralia.
| | | | | | | | | | | |
Collapse
|
12
|
Disruption of Nectin-like 1 cell adhesion molecule leads to delayed axonal myelination in the CNS. J Neurosci 2009; 28:12815-9. [PMID: 19036974 DOI: 10.1523/jneurosci.2665-08.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nectin-like 1 (Necl-1) is a neural-specific cell adhesion molecule that is expressed in both the CNS and PNS. Previous in vitro studies suggested that Necl-1 expression is essential for the axon-glial interaction and myelin sheath formation in the PNS. To investigate the in vivo role of Necl-1 in axonal myelination of the developing nervous system, we generated the Necl-1 mutant mice by replacing axons 2-5 with the LacZ reporter gene. Expression studies revealed that Necl-1 is exclusively expressed by neurons in the CNS. Disruption of Necl-1 resulted in developmental delay of axonal myelination in the optic nerve and spinal cord, suggesting that Necl-1 plays an important role in the initial axon-oligodendrocyte recognition and adhesion in CNS myelination.
Collapse
|
13
|
Brinkmann BG, Agarwal A, Sereda MW, Garratt AN, Müller T, Wende H, Stassart RM, Nawaz S, Humml C, Velanac V, Radyushkin K, Goebbels S, Fischer TM, Franklin RJ, Lai C, Ehrenreich H, Birchmeier C, Schwab MH, Nave KA. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 2008; 59:581-95. [PMID: 18760695 DOI: 10.1016/j.neuron.2008.06.028] [Citation(s) in RCA: 276] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 04/18/2008] [Accepted: 06/27/2008] [Indexed: 10/21/2022]
Abstract
Understanding the control of myelin formation by oligodendrocytes is essential for treating demyelinating diseases. Neuregulin-1 (NRG1) type III, an EGF-like growth factor, is essential for myelination in the PNS. It is thus thought that NRG1/ErbB signaling also regulates CNS myelination, a view suggested by in vitro studies and the overexpression of dominant-negative ErbB receptors. To directly test this hypothesis, we generated a series of conditional null mutants that completely lack NRG1 beginning at different stages of neural development. Unexpectedly, these mice assemble normal amounts of myelin. In addition, double mutants lacking oligodendroglial ErbB3 and ErbB4 become myelinated in the absence of any stimulation by neuregulins. In contrast, a significant hypermyelination is achieved by transgenic overexpression of NRG1 type I or NRG1 type III. Thus, NRG1/ErbB signaling is markedly different between Schwann cells and oligodendrocytes that have evolved an NRG/ErbB-independent mechanism of myelination control.
Collapse
Affiliation(s)
- Bastian G Brinkmann
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen 37075, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Oligodendrocytes and Schwann cells are highly specialized glial cells that wrap axons with a multilayered myelin membrane for rapid impulse conduction. Investigators have recently identified axonal signals that recruit myelin-forming Schwann cells from an alternate fate of simple axonal engulfment. This is the evolutionary oldest form of axon-glia interaction, and its function is unknown. Recent observations suggest that oligodendrocytes and Schwann cells not only myelinate axons but also maintain their long-term functional integrity. Mutations in the mouse reveal that axonal support by oligodendrocytes is independent of myelin assembly. The underlying mechanisms are still poorly understood; we do know that to maintain axonal integrity, mammalian myelin-forming cells require the expression of some glia-specific proteins, including CNP, PLP, and MAG, as well as intact peroxisomes, none of which is necessary for myelin assembly. Loss of glial support causes progressive axon degeneration and possibly local inflammation, both of which are likely to contribute to a variety of neuronal diseases in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany.
| | | |
Collapse
|
15
|
Melli G, Höke A. Canadian Association of Neurosciences review: regulation of myelination by trophic factors and neuron-glial signaling. Can J Neurol Sci 2007; 34:288-95. [PMID: 17803025 DOI: 10.1017/s0317167100006703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Myelination in the nervous system is a tightly regulated process that is mediated by both soluble and non-soluble factors acting on axons and glial cells. This process is bi-directional and involves a variety of neurotrophic and gliotrophic factors acting in paracrine and autocrine manners. Neuron-derived trophic factors play an important role in the control of early proliferation and differentiation of myelinating glial cells. At later stages of development, same molecules may play a different role and act as inducers of myelination rather than cell survival signals for myelinating glial cells. In return, myelinating glial cells provide trophic support for axons and protect them from injury. Chronic demyelination leads to secondary axonal degeneration that is responsible for long-term disability in primary demyelinating diseases such as multiple sclerosis and inherited demyelinating peripheral neuropathies. A better understanding of the molecular mechanisms controlling myelination may yield novel therapeutic targets for demyelinating nervous system disorders.
Collapse
Affiliation(s)
- Giorgia Melli
- Neuromuscular Diseases Unit (GM), IRCSS Foundation Neurological Institute Carlo Besta, via Celoria. II11 20133 - Milan, Italy
| | | |
Collapse
|
16
|
Lee X, Yang Z, Shao Z, Rosenberg SS, Levesque M, Pepinsky RB, Qiu M, Miller RH, Chan JR, Mi S. NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination. J Neurosci 2007; 27:220-5. [PMID: 17202489 PMCID: PMC6672289 DOI: 10.1523/jneurosci.4175-06.2007] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons and glia share a mutual dependence in establishing a functional relationship, and none is more evident than the process by which axons control myelination. Here, we identify LRR and Ig domain-containing, Nogo receptor-interacting protein (LINGO-1) as a potent axonal inhibitor of oligodendrocyte differentiation and myelination that is regulated by nerve growth factor and its cognate receptor TrkA in a dose-dependent manner. Whereas LINGO-1 expressed by oligodendrocyte progenitor cells was previously identified as an inhibitor of differentiation, we demonstrate that axonal expression of LINGO-1 inhibits differentiation with equal potency. Disruption of LINGO-1 on either cell type is sufficient to overcome the inhibitory action and promote differentiation and myelination, independent of axon diameter. Furthermore, these results were recapitulated in transgenic mice overexpressing the full length LINGO-1 under the neuronal promoter synapsin. Myelination was greatly inhibited in the presence of enforced axonal LINGO-1. The implications of these results relate specifically to the development of potential therapeutics targeting extrinsic growth factors that may regulate the axonal expression of modulators of oligodendrocyte development.
Collapse
Affiliation(s)
- Xinhua Lee
- Department of Discovery Biology, Biogen Idec, Cambridge, Massachusetts 02142
| | - Zhongshu Yang
- Department of Discovery Biology, Biogen Idec, Cambridge, Massachusetts 02142
| | - Zhaohui Shao
- Department of Discovery Biology, Biogen Idec, Cambridge, Massachusetts 02142
| | - Sheila S. Rosenberg
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, California 90033
| | - Melissa Levesque
- Department of Discovery Biology, Biogen Idec, Cambridge, Massachusetts 02142
| | - R. Blake Pepinsky
- Department of Discovery Biology, Biogen Idec, Cambridge, Massachusetts 02142
| | - Mengsheng Qiu
- Department of Anatomy and Neurobiology, University of Louisville, Louisville, Kentucky 40202, and
| | - Robert H. Miller
- Department of Neurosciences, Case School of Medicine, Cleveland, Ohio 44106
| | - Jonah R. Chan
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, California 90033
| | - Sha Mi
- Department of Discovery Biology, Biogen Idec, Cambridge, Massachusetts 02142
| |
Collapse
|
17
|
Rosenberg SS, Ng BK, Chan JR. The quest for remyelination: a new role for neurotrophins and their receptors. Brain Pathol 2007; 16:288-94. [PMID: 17107598 PMCID: PMC8095791 DOI: 10.1111/j.1750-3639.2006.00035.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The formation of myelin is dependent on a reciprocal and intimate relationship between neurons and the myelin-forming glia. Recently, the neurotrophin family of growth factors has been shown to regulate the complex cell-cell interactions that control myelination. Neurotrophins and their receptors influence myelin formation via two distinct mechanisms, either by acting on the neurons, changing the axonal signals that control myelination, or by acting directly on the myelin-forming glia. In this review, we will discuss research highlighting the ability of neurotrophins to both promote and inhibit the myelination process. As reflected in the work presented here, these effects are dependent on a delicate balance of which neurotrophins are expressed, and what receptors are activated. Additionally, we examine an emerging model in which the growth factors that promote the early survival and differentiation of particular sets of neurons later play important roles as key regulators in glial development. Characterizing the temporal expression and the cellular targets of neurotrophins, both during development and after injury, represents a pivotal step in developing a greater understanding of the myelination process, contributing to the development of effective treatments for demyelinating conditions. We conclude this review by discussing the potential for neurotrophins as therapeutics in the quest for remyelination.
Collapse
Affiliation(s)
- Sheila S. Rosenberg
- Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Department of Cell and Neurobiology and the Neuroscience Graduate Program, Los Angeles, Calif
| | - Benjamin K. Ng
- Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Department of Cell and Neurobiology and the Neuroscience Graduate Program, Los Angeles, Calif
| | - Jonah R. Chan
- Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Department of Cell and Neurobiology and the Neuroscience Graduate Program, Los Angeles, Calif
| |
Collapse
|
18
|
David S, Hila S, Fosbrink M, Rus H, Koski CL. JNK1 activation mediates C5b-9-induced P0 mRNA instability and P0 gene expression in Schwann cells. J Peripher Nerv Syst 2006; 11:77-87. [PMID: 16519786 DOI: 10.1111/j.1085-9489.2006.00067.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protein zero (P0) glycoprotein is an important component of compact peripheral nerve myelin produced by the glial cells of the mammalian peripheral nervous system. P0 mRNA expression is reduced following exposure of Schwann cells to sublytic C5b-9, the terminal activation complex of the complement cascade. Sublytic complement treatment decreased P0 mRNA by 81% within 6 h and required C5b-9 assembly. C5b-9 induced a threefold increase in both JNK1 activity and c-jun mRNA within 20 and 30 min, respectively, compared with cells treated with either human serum depleted of complement component C7 (C7dHS) or medium alone. Sublytic C5b-9 stimulation, in the presence of the transcription inhibitor Actinomycin D, decreased P0 mRNA expression by 52%, indicating that mRNA was selectively destabilized. This effect was prevented by pretreatment with L-JNK inhibitor 1 (L-JNKI1). To study a potential inhibition of P0 gene transcription, we transfected Schwann cells with a P0 promoter-firefly luciferase construct. Sublytic C5b-9 stimulation of the transfected cells decreased luciferase activity by 82% at 6 h, and this effect was prevented by pretreatment with L-JNKI1 inhibitor. Our results indicate that the ability of C5b-9 in vitro to affect P0 gene expression is mediated via JNK1 activation that leads to enhanced mRNA decay and transcriptional repression of P0.
Collapse
Affiliation(s)
- Stefan David
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
19
|
Inoue K. PLP1-related inherited dysmyelinating disorders: Pelizaeus-Merzbacher disease and spastic paraplegia type 2. Neurogenetics 2004; 6:1-16. [PMID: 15627202 DOI: 10.1007/s10048-004-0207-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 11/17/2004] [Indexed: 10/26/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) and its allelic disorder, spastic paraplegia type 2 (SPG2), are among the best-characterized dysmyelinating leukodystrophies of the central nervous system (CNS). Both PMD and SPG2 are caused by mutations in the proteolipid protein 1 (PLP1) gene, which encodes a major component of CNS myelin proteins. Distinct types of mutations, including point mutations and genomic duplications and deletions, have been identified as causes of PMD/SPG2 that act through different molecular mechanisms. Studies of various PLP1 mutants in humans and animal models have shed light on the genomic, molecular, and cellular pathogeneses of PMD/SPG2. Recent discoveries include complex mutational mechanisms and associated disease phenotypes, novel cellular pathways that lead to the degeneration of oligodendrocytes, and genomic architectural features that result in unique chromosomal rearrangements. Here, I review the previous and current knowledge of the molecular pathogenesis of PMD/SPG2 and delineate future directions for PMD/SPG2 studies.
Collapse
Affiliation(s)
- Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
20
|
Chan JR, Watkins TA, Cosgaya JM, Zhang C, Chen L, Reichardt LF, Shooter EM, Barres BA. NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron 2004; 43:183-91. [PMID: 15260955 PMCID: PMC2758239 DOI: 10.1016/j.neuron.2004.06.024] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 05/19/2004] [Accepted: 06/16/2004] [Indexed: 10/26/2022]
Abstract
Axons dictate whether or not they will become myelinated in both the central and peripheral nervous systems by providing signals that direct the development of myelinating glia. Here we identify the neurotrophin nerve growth factor (NGF) as a potent regulator of the axonal signals that control myelination of TrkA-expressing dorsal root ganglion neurons (DRGs). Unexpectedly, these NGF-regulated axonal signals have opposite effects on peripheral and central myelination, promoting myelination by Schwann cells but reducing myelination by oligodendrocytes. These findings indicate a novel role for growth factors in regulating the receptivity of axons to myelination and reveal that different axonal signals control central and peripheral myelination.
Collapse
Affiliation(s)
- Jonah R. Chan
- Department of Neurobiology, Stanford University School of Medicine, Fairchild Science Building D235, Stanford, California 94305
| | - Trent A. Watkins
- Department of Neurobiology, Stanford University School of Medicine, Fairchild Science Building D235, Stanford, California 94305
- Correspondence:
| | - José M. Cosgaya
- Department of Neurobiology, Stanford University School of Medicine, Fairchild Science Building D235, Stanford, California 94305
| | - ChunZhao Zhang
- Department of Neurobiology, Stanford University School of Medicine, Fairchild Science Building D235, Stanford, California 94305
| | - Lian Chen
- Department of Neurobiology, Stanford University School of Medicine, Fairchild Science Building D235, Stanford, California 94305
| | - Louis F. Reichardt
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143
| | - Eric M. Shooter
- Department of Neurobiology, Stanford University School of Medicine, Fairchild Science Building D235, Stanford, California 94305
| | - Ben A. Barres
- Department of Neurobiology, Stanford University School of Medicine, Fairchild Science Building D235, Stanford, California 94305
| |
Collapse
|
21
|
Fields RD. Volume transmission in activity-dependent regulation of myelinating glia. Neurochem Int 2004; 45:503-9. [PMID: 15186916 DOI: 10.1016/j.neuint.2003.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2003] [Indexed: 11/28/2022]
Abstract
The importance of neural impulse activity in regulating neuronal plasticity is widely appreciated; increasingly, it is becoming apparent that activity-dependent communication between neurons and glia is critical in regulating many aspects of nervous system development and plasticity. This communication takes place not only at the synapse, but also between premyelinating axons and glia, which form myelin in the PNS and CNS. Recent work indicates that neural impulse activity releases ATP and adenosine from non-synaptic regions of neurons, which activates purinergic receptors on myelinating glia. Acting through this receptor system, neural impulse activity can regulate gene expression, mitosis, differentiation, and myelination of Schwann cells (SCs) and oligodendrocytes, helping coordinate nervous system development with functional activity in the perinatal period. ATP and adenosine have opposite effects on differentiation of Schwann cells and oligodendrocytes, providing a possible explanation for the opposite effects of impulse activity reported on myelination in the CNS and PNS.
Collapse
Affiliation(s)
- R Douglas Fields
- Nervous System Development and Plasticity Section, National Institutes of Health, NICHD, Bldg. 49, Room 5A78, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Abstract
The developing nervous system has been long recognized as a primary target for a variety of toxicants. To date, most efforts to understand the impact of neurotoxic agents on the brain have focused primarily on neurons and to a lesser degree astroglia as cellular targets. The role of oligodendroglia, the myelin-forming cells in the central nervous system (CNS), in developmental neurotoxicity has been emphasized only in recent years. Oligodendrocytes originate from migratory, mitotic progenitors that mature progressively into postmitotic myelinating cells. During differentiation, oligodendroglial lineage cells pass through a series of distinct phenotypic stages that are characterized by different proliferative capacities and migratory abilities, as well as dramatic changes in morphology with sequential expression of unique developmental markers. In recent years, it has become appreciated that oligodendrocyte lineage cells have important functions other than those related to myelin formation and maintenance, including participation in neuronal survival and development, as well as neurotransmission and synaptic function. Substantial knowledge has accumulated on the control of oligodendroglial survival, migration, proliferation, and differentiation, as well as the cellular and molecular events involved in oligodendroglial development and myelin formation. Recently, studies have been initiated to address the role of oligodendrocyte lineage cells in neurotoxic processes. This article examines recent progress in oligodendroglial biology, focuses attention on the characteristic features of the oligodendrocyte developmental lineage as a model system for neurotoxicological studies, and explores the role of oligodendrocyte lineage cells in developmental neurotoxicity. The potential role of oligodendroglia in environmental lead neurotoxicity is presented to exemplify this thesis.
Collapse
Affiliation(s)
- Wenbin Deng
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901-8525, USA
| | | |
Collapse
|
23
|
Back SA, Luo NL, Borenstein NS, Volpe JJ, Kinney HC. Arrested oligodendrocyte lineage progression during human cerebral white matter development: dissociation between the timing of progenitor differentiation and myelinogenesis. J Neuropathol Exp Neurol 2002; 61:197-211. [PMID: 11853021 DOI: 10.1093/jnen/61.2.197] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Immature oligodendrocytes (OLs) derive from a large pool of late OL progenitors that populate human cerebral white matter throughout the latter half of gestation. We recently reported that a minor population of immature OLs are present in human cerebral white matter for at least 3 months before these cells commit to myelinogenesis around 30 wk postconceptional age. Since this finding supports dissociation between the events that regulate human immature OL maturation and their commitment to myelinogenesis, we characterized here the cellular sequence of events that characterize immature OLs during the transition from a premyelinating to a myelinating state. Commitment of immature OLs to myelinogenesis in human cerebral white matter correlated with the longitudinal extension of specialized processes, designated "pioneer processes," that made multiple types of apparent contacts with axons. This event coincided with the appearance of 3 distinct populations of sheaths that varied in their labeling for myelin basic protein (MBP). Since few axons initially labeled for MBP, this supported the occurrence in vivo of O4-negative, O1-positive premyelin sheaths that precede MBP-positive compacted myelin. These observations identify 3 sequential stages of early myelinogenesis: 1) the initial ensheathment of axons by premyelin sheaths generated by immature OLs; 2) the initial insertion of MBP into transitional sheaths; and 3) the generation of MBP-rich mature myelin.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
24
|
Takanashi J, Inoue K, Tomita M, Kurihara A, Morita F, Ikehira H, Tanada S, Yoshitome E, Kohno Y. Brain N-acetylaspartate is elevated in Pelizaeus-Merzbacher disease with PLP1 duplication. Neurology 2002; 58:237-41. [PMID: 11805250 DOI: 10.1212/wnl.58.2.237] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess alterations in brain metabolites of patients with Pelizaeus-Merzbacher disease (PMD) with the proteolipid protein gene 1 (PLP1) duplications using quantitative proton MRS. METHODS Five unrelated male Japanese patients with PMD with PLP1 duplications were analyzed using automated proton brain examination with the point resolved spectroscopy technique (repetition and echo time of 5,000 and 30 msec). Localized spectra in the posterior portion of the centrum semiovale were acquired, and absolute metabolite concentrations were calculated using the LCModel. RESULTS Absolute concentrations of N-acetylaspartate (NAA), creatine (Cr), and myoinositol (MI) were increased by 16% (p < 0.01), 43% (p < 0.001), and 31% (p < 0.01) in patients with PMD as compared with age-matched controls. There was no statistical difference in choline concentration. CONCLUSION The increased concentration of NAA, which could not be detected by previous relative quantitation methods, suggests two possibilities: axonal involvement secondary to dysmyelination, or increased cell population of oligodendrocyte progenitors. Elevated Cr and MI concentrations may reflect the reactive astrocytic gliosis. Our study thus emphasizes the importance of absolute quantitation of metabolites to investigate the disease mechanism of the dysmyelinating disorders of the CNS.
Collapse
Affiliation(s)
- J Takanashi
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Abstract
Schwann cell proliferation is regulated by multiple growth factors and axonal signals. However, the molecules that control growth arrest of Schwann cells are not well defined. Here we describe regulation of the cyclin-dependent kinase-2 (CDK2) protein, an enzyme that is necessary for the transition from G1 to S phase. Levels of CDK2 protein were elevated in proliferating Schwann cells cultured in serum and forskolin. However, when cells were grown with either serum-free media or at high densities, CDK2 levels declined to low levels. The decrease in CDK2 levels was associated with growth arrest of Schwann cells. The modulation of CDK2 appears to be regulated at the transcriptional level, because CDK2 mRNA levels and its promoter activity both decline during cell cycle arrest. Furthermore, analysis of the CDK2 promoter suggests that Sp1 DNA binding sites are essential for maximal activation in Schwann cells. Together, these data suggest that CDK2 may represent a significant target of developmental signals that regulate Schwann cell proliferation and that this regulation is mediated, in part, through regulation of Sp1 transcriptional activity.
Collapse
|
27
|
Ninjurin2, a novel homophilic adhesion molecule, is expressed in mature sensory and enteric neurons and promotes neurite outgrowth. J Neurosci 2000. [PMID: 10627596 DOI: 10.1523/jneurosci.20-01-00187.2000] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A large number of cell adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interaction during development, differentiation and regeneration of the peripheral nervous system. Here, we report the identification of a novel cell surface adhesion molecule, ninjurin2 (for nerve injury induced protein 2). Ninjurin2 is a homolog of a homophilic cellular adhesion molecule, ninjurin1, that was previously isolated as a gene induced in Schwann cells after nerve injury. Ninjurin1 and 2 share conserved hydrophobic regions for their transmembrane domains; however, they do not contain comparable adhesion motifs nor do they interact with each other. In the peripheral nervous system, ninjurin2 is expressed constitutively in mature sensory and enteric neurons but not in glial cells or in autonomic ganglia. Ninjurin2 is upregulated in Schwann cells surrounding the distal segment of injured nerve with a time course similar to that of ninjurin1, neural CAM, and L1. Ninjurin2 promotes neurite outgrowth from primary cultured dorsal root ganglion neurons, presumably via homophilic cellular interactions. Ninjurin2 is also highly expressed in hematopoietic and lymphatic tissues. Finally, the ninjurin2 gene is located on human chromosome 12p13 in which several disorders of unknown etiology have been mapped, including inflammatory bowel disease and acrocallosal syndrome.
Collapse
|
28
|
Abstract
Complement cascade activation on peripheral nerve myelin can cause myelin destruction. Although terminal complement complexes (TCCs) are transiently detected on Schwann cells (SchCs) during inflammatory neuropathy, SchCs appear resistant to complement-mediated lysis, and little is known about the functional consequences of sublytic TCC deposition on SchCs. We studied the effects of sublytic complement in modulating myelin gene expression at the posttranscriptional and transcriptional levels. Cultured SchCs, stimulated to express protein zero (P0), were treated with sensitizing antibody (Ab) and normal human serum (NHS) complement. P0 mRNA content decreased by 71% during 12 h. In the presence of actinomycin D, P0 mRNA levels declined 50% following incubation with Ab plus 10% NHS over 6 h, compared with control levels, suggesting enhanced P0 mRNA degradation. The decreases, in part, reflected TCC formation because C7 reconstitution of Ab plus C7-depleted human serum (C7dHS) or TCCs assembled from purified components down-regulated P0 mRNA 53 and 55% over that of Ab plus C7dHS or heat-activated components, respectively. Expression of a P0 promoter/luciferase reporter construct transiently transfected into SchCs was reduced 70% by sublytic TCCs at 6 h, demonstrating that P0 gene transcription was also inhibited. c-jun mRNA was up-regulated within 30 min by sublytic TCCs, before the reduction in P0 mRNA expression. Our data suggest that sublytic complement activation on SchCs may contribute to peripheral nerve demyelination by decreasing expression of genes important in myelin formation and compaction.
Collapse
Affiliation(s)
- S M Dashiell
- Department of Pathology, University of Maryland School of Medicine, Baltimore, USA
| | | |
Collapse
|
29
|
Inoue K, Tanabe Y, Lupski JR. Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann Neurol 1999; 46:313-8. [PMID: 10482261 DOI: 10.1002/1531-8249(199909)46:3<313::aid-ana6>3.0.co;2-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We describe an unique patient presenting with severe leukodystrophy compatible with Pelizaeus-Merzbacher disease and peripheral neuropathy consistent with Charcot-Marie-Tooth disease type 1 in addition to Waardenburg-Hirschsprung syndrome. A novel mutation was identified in her SOX10 gene, which encodes a transcription factor preferentially expressed in the late embryonic glial cell lineage and in mature myelin-forming cells of both the central nervous system and peripheral nervous system, as well as in the early neural crest cells. Heterozygous SOX10 loss-of-function mutations have been reported in patients with Waardenburg-Hirschsprung syndrome and its murine model, Dominant megacolon. However, neither Waardenburg-Hirschsprung syndrome patients nor Dominant megacolon mice have dysmyelinating features, suggesting the question of how SOX10 acts in the glial lineage in vivo. The novel mutation described herein does not disrupt the coding region but extends the peptide and hence is likely to act as a dominant-negative allele. Our findings indicate that dysfunction of SOX10 may lead to deficiency of myelination in the central nervous system and peripheral nervous system as well as hypopigmentation and enteric aganglionosis.
Collapse
Affiliation(s)
- K Inoue
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
30
|
Abstract
Insufficient nutrition is known to lead to disturbances in postnatal myelin formation. This study aims to demonstrate that early myelination is altered in human twin pregnancies. Five brains of twins with a symmetric blood supply and three brains of twins with chronic fetal-fetal transfusion syndrome (one hypervolemic acceptor and two hypoxemic donors) were investigated and compared with six brains of singletons. The globus pallidus, where myelination normally starts within the prosencephalon, was studied immunohistochemically using antibodies against myelin basic protein (MBP) and with the aid of electron microscopy. In twins and donors, MBP-immunostained somata of myelin-forming oligodendrocytes were packed densely within the globus pallidus, whereas in singletons and acceptors an intense fibrous immunoreactivity was observed. Electron micrographs revealed noncompacted myelin in twins, whereas in singletons the multilaminar structure of compact myelin was observed. The results demonstrate a distinct qualitative alteration in myelination because of nutritional insufficiency during pregnancy. The lack of MBP-positive fibers (i.e., compact myelin sheaths) may be correlated to impaired maturation of oligodendroglia. The alterations described here may reflect a delayed incorporation of MBP into the processes so that the formation of compact myelin is retarded.
Collapse
Affiliation(s)
- N Ulfig
- Department of Anatomy, University of Rostock, Germany
| | | | | |
Collapse
|
31
|
Abstract
Dys- and demyelination are the common endpoints of several inherited diseases of glial cells, which elaborate myelin and which maintain the myelin sheath very much like an "external" cellular organelle. Whereas some of the genes that are affected by mutations appear to be glial-specific, other genes are expressed in many cell types but their defect is restricted to oligodendrocytes or Schwann cells. Many of the disease genes and their encoded proteins have been studied with the help of mouse models, and a number of different molecular pathomechanisms have emerged which have been summarized in Figure 8. Some of the new concepts in the field, which have been addressed in this review, have only emerged because similar pathomechanisms were discovered for different myelin proteins. Mouse models have clearly helped to address both, the molecular pathology of myelin diseases and the normal function of myelin genes, but as discussed in this review, these questions turned out to be very different. Despite the progress in understanding the role of the abundant myelin proteins, there also remain a number of open questions that concern, among other things, the initial axon-glia recognition, the assembly process of the myelin sheath, and the long-term interaction of axons with their myelinating glia. Finally, animal models of human neurological diseases should not be restricted to the study of pathology, but they should also contribute to the development of experimental treatments. It is encouraging that a few attempts have been made.
Collapse
Affiliation(s)
- H Werner
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Fraher J, Dockery P. A strong myelin thickness-axon size correlation emerges in developing nerves despite independent growth of both parameters. J Anat 1998; 193 ( Pt 2):195-201. [PMID: 9827635 PMCID: PMC1467839 DOI: 10.1046/j.1469-7580.1998.19320195.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The axon determines whether or not it is myelinated by the Schwann cell. At maturity there is a positive correlation between sheath thickness and axon calibre. This correlation is initially very low or absent, but gradually strengthens during development. This increase could come about because the axon continuously controls Schwann cell myelinating activity, so that a given axon calibre is associated with a particular myelin sheath thickness, an interaction which would entail the Schwann cell continuously monitoring and responding to axon size. This seems unnecessarily complex. This theoretical study shows that the strong correlation between the 2 parameters within a given myelinated fibre population may come about in a much simpler way than outlined above. This is demonstrated by modelling the growth and myelination of a hypothetical population, utilising data from earlier studies on cervical ventral motoneuron axon development. The hypothesis tested shows that the only instructive interactions by the axon on the Schwann cell necessary for the strong correlation between the 2 parameters to emerge are for the initiation of myelination, its continuation and its termination. These could result from a single stimulus being switched on, persisting for a time and being switched off. Under this influence, the Schwann cell is assumed to proceed to form the myelin sheath at a constant rate which it itself inherently determines, in the absence of any quantitative influence exerted by the axon. This continues until the stimulus for myelination ceases to emanate from the axon. The validity of the hypothesis is demonstrated, because the resulting myelin-axon relationships correspond closely to those observed during development.
Collapse
Affiliation(s)
- J Fraher
- Department of Anatomy, University College, Cork, Ireland.
| | | |
Collapse
|