1
|
Onisiforou A, Zanos P. From Viral Infections to Alzheimer's Disease: Unveiling the Mechanistic Links Through Systems Bioinformatics. J Infect Dis 2024; 230:S128-S140. [PMID: 39255398 PMCID: PMC11385591 DOI: 10.1093/infdis/jiae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Emerging evidence suggests that viral infections may contribute to Alzheimer's disease (AD) onset and/or progression. However, the extent of their involvement and the mechanisms through which specific viruses increase AD susceptibility risk remain elusive. METHODS We used an integrative systems bioinformatics approach to identify viral-mediated pathogenic mechanisms, by which Herpes Simplex Virus 1 (HSV-1), Human Cytomegalovirus (HCMV), Epstein-Barr virus (EBV), Kaposi Sarcoma-associated Herpesvirus (KSHV), Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), Influenza A Virus (IAV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) could facilitate AD pathogenesis via virus-host protein-protein interactions (PPIs). We also explored potential synergistic pathogenic effects resulting from herpesvirus reactivation (HSV-1, HCMV, and EBV) during acute SARS-CoV-2 infection, potentially increasing AD susceptibility. RESULTS Herpesviridae members (HSV-1, EBV, KSHV, HCMV) impact AD-related processes like amyloid-β (Aβ) formation, neuronal death, and autophagy. Hepatitis viruses (HBV, HCV) influence processes crucial for cellular homeostasis and dysfunction, they also affect microglia activation via virus-host PPIs. Reactivation of HCMV during SARS-CoV-2 infection could potentially foster a lethal interplay of neurodegeneration, via synergistic pathogenic effects on AD-related processes like response to unfolded protein, regulation of autophagy, response to oxidative stress, and Aβ formation. CONCLUSIONS These findings underscore the complex link between viral infections and AD development. Viruses impact AD-related processes through shared and distinct mechanisms, potentially influencing variations in AD susceptibility.
Collapse
Affiliation(s)
- Anna Onisiforou
- Department of Psychology, Translational Neuropharmacology Laboratory, University of Cyprus, Nicosia 2109, Cyprus
| | - Panos Zanos
- Department of Psychology, Translational Neuropharmacology Laboratory, University of Cyprus, Nicosia 2109, Cyprus
| |
Collapse
|
2
|
Onisiforou A, Spyrou GM. Systems Bioinformatics Reveals Possible Relationship between COVID-19 and the Development of Neurological Diseases and Neuropsychiatric Disorders. Viruses 2022; 14:2270. [PMID: 36298824 PMCID: PMC9611753 DOI: 10.3390/v14102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is associated with increased incidence of neurological diseases and neuropsychiatric disorders after infection, but how it contributes to their development remains under investigation. Here, we investigate the possible relationship between COVID-19 and the development of ten neurological disorders and three neuropsychiatric disorders by exploring two pathological mechanisms: (i) dysregulation of host biological processes via virus-host protein-protein interactions (PPIs), and (ii) autoreactivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epitopes with host "self" proteins via molecular mimicry. We also identify potential genetic risk factors which in combination with SARS-CoV-2 infection might lead to disease development. Our analysis indicated that neurodegenerative diseases (NDs) have a higher number of disease-associated biological processes that can be modulated by SARS-CoV-2 via virus-host PPIs than neuropsychiatric disorders. The sequence similarity analysis indicated the presence of several matching 5-mer and/or 6-mer linear motifs between SARS-CoV-2 epitopes with autoreactive epitopes found in Alzheimer's Disease (AD), Parkinson's Disease (PD), Myasthenia Gravis (MG) and Multiple Sclerosis (MS). The results include autoreactive epitopes that recognize amyloid-beta precursor protein (APP), microtubule-associated protein tau (MAPT), acetylcholine receptors, glial fibrillary acidic protein (GFAP), neurofilament light polypeptide (NfL) and major myelin proteins. Altogether, our results suggest that there might be an increased risk for the development of NDs after COVID-19 both via autoreactivity and virus-host PPIs.
Collapse
Affiliation(s)
| | - George M. Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2370, Cyprus
| |
Collapse
|
3
|
Schmidt SAJ, Veres K, Sørensen HT, Obel N, Henderson VW. Incident Herpes Zoster and Risk of Dementia: A Population-Based Danish Cohort Study. Neurology 2022; 99:e660-e668. [PMID: 35676090 PMCID: PMC9484607 DOI: 10.1212/wnl.0000000000200709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/24/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Herpes zoster (HZ) is caused by reactivation of the neurotrophic varicella-zoster virus (VZV). Zoster may contribute to development of dementia through neuroinflammation, cerebral vasculopathy, or direct neural damage, but epidemiologic evidence is limited. We used data from linked nationwide Danish registries to conduct a cohort study of the association between zoster and dementia during 1997-2017. As secondary aims, we examined whether associations were more pronounced for zoster involving cranial nerves (mainly ophthalmic zoster) or the CNS and Alzheimer disease as an outcome. METHODS We included people aged ≥40 years with zoster and a general population comparison cohort matched 5:1 by sex and birth year. We identified zoster and dementia in the registries using prescription records in the community and hospital diagnoses. We used Cox regression to compute confounder-adjusted hazard ratios (HRs) with 95% CIs for dementia associated with zoster during 0-1 year and 1-21 years of follow-up. We compared the cumulative incidence of dementia, inverse probability weighted for confounders. RESULTS The study included 247,305 people with zoster and 1,235,890 matched general population comparators (median age 64 years; 61% female). The HR of all-cause dementia was 0.98 (95% CI 0.92-1.04) during the first year and 0.93 (95% CI 0.90-0.95) thereafter in people with zoster vs matched comparators. Dementia was diagnosed in 9.7% of patients with zoster and 10.3% of matched comparators by the end of follow-up. We observed no increased long-term risk of dementia in subgroup analyses, except possibly in people with CNS infection (HR 1.94; 95% CI 0.78-4.80). Analyses of Alzheimer disease as a separate outcome showed similar results. DISCUSSION HZ is not associated with an increased risk of dementia, and contrary to expectation, we found a small decrease in the risk. The explanation for this finding is unclear, and systematic errors should be considered. Patients with CNS involvement had an almost 2-fold increased relative risk of dementia. The population attributable fraction of dementia due to this rare complication is estimated at 0.014%. Therefore, universal vaccination against VZV in the elderly is unlikely to reduce dementia risk.
Collapse
Affiliation(s)
- Sigrun Alba Johannesdottir Schmidt
- From the Departments of Clinical Epidemiology (S.A.J.S., K.V., H.T.S., V.W.H.) and Dermatology (S.A.J.S.), Aarhus University Hospital, Denmark; Clinical Excellence Research Center (H.T.S.), Stanford University, CA; Department of Infectious Diseases (N.O.), Copenhagen University Hospital, Rigshospitalet, Denmark; and Departments of Epidemiology & Population Health (V.W.H.) and Neurology & Neurological Sciences (V.W.H.), Stanford University, CA.
| | - Katalin Veres
- From the Departments of Clinical Epidemiology (S.A.J.S., K.V., H.T.S., V.W.H.) and Dermatology (S.A.J.S.), Aarhus University Hospital, Denmark; Clinical Excellence Research Center (H.T.S.), Stanford University, CA; Department of Infectious Diseases (N.O.), Copenhagen University Hospital, Rigshospitalet, Denmark; and Departments of Epidemiology & Population Health (V.W.H.) and Neurology & Neurological Sciences (V.W.H.), Stanford University, CA
| | - Henrik Toft Sørensen
- From the Departments of Clinical Epidemiology (S.A.J.S., K.V., H.T.S., V.W.H.) and Dermatology (S.A.J.S.), Aarhus University Hospital, Denmark; Clinical Excellence Research Center (H.T.S.), Stanford University, CA; Department of Infectious Diseases (N.O.), Copenhagen University Hospital, Rigshospitalet, Denmark; and Departments of Epidemiology & Population Health (V.W.H.) and Neurology & Neurological Sciences (V.W.H.), Stanford University, CA
| | - Niels Obel
- From the Departments of Clinical Epidemiology (S.A.J.S., K.V., H.T.S., V.W.H.) and Dermatology (S.A.J.S.), Aarhus University Hospital, Denmark; Clinical Excellence Research Center (H.T.S.), Stanford University, CA; Department of Infectious Diseases (N.O.), Copenhagen University Hospital, Rigshospitalet, Denmark; and Departments of Epidemiology & Population Health (V.W.H.) and Neurology & Neurological Sciences (V.W.H.), Stanford University, CA
| | - Victor W Henderson
- From the Departments of Clinical Epidemiology (S.A.J.S., K.V., H.T.S., V.W.H.) and Dermatology (S.A.J.S.), Aarhus University Hospital, Denmark; Clinical Excellence Research Center (H.T.S.), Stanford University, CA; Department of Infectious Diseases (N.O.), Copenhagen University Hospital, Rigshospitalet, Denmark; and Departments of Epidemiology & Population Health (V.W.H.) and Neurology & Neurological Sciences (V.W.H.), Stanford University, CA
| |
Collapse
|
4
|
Nelson AR. Peripheral Pathways to Neurovascular Unit Dysfunction, Cognitive Impairment, and Alzheimer’s Disease. Front Aging Neurosci 2022; 14:858429. [PMID: 35517047 PMCID: PMC9062225 DOI: 10.3389/fnagi.2022.858429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. It was first described more than a century ago, and scientists are acquiring new data and learning novel information about the disease every day. Although there are nuances and details continuously being unraveled, many key players were identified in the early 1900’s by Dr. Oskar Fischer and Dr. Alois Alzheimer, including amyloid-beta (Aβ), tau, vascular abnormalities, gliosis, and a possible role of infections. More recently, there has been growing interest in and appreciation for neurovascular unit dysfunction that occurs early in mild cognitive impairment (MCI) before and independent of Aβ and tau brain accumulation. In the last decade, evidence that Aβ and tau oligomers are antimicrobial peptides generated in response to infection has expanded our knowledge and challenged preconceived notions. The concept that pathogenic germs cause infections generating an innate immune response (e.g., Aβ and tau produced by peripheral organs) that is associated with incident dementia is worthwhile considering in the context of sporadic AD with an unknown root cause. Therefore, the peripheral amyloid hypothesis to cognitive impairment and AD is proposed and remains to be vetted by future research. Meanwhile, humans remain complex variable organisms with individual risk factors that define their immune status, neurovascular function, and neuronal plasticity. In this focused review, the idea that infections and organ dysfunction contribute to Alzheimer’s disease, through the generation of peripheral amyloids and/or neurovascular unit dysfunction will be explored and discussed. Ultimately, many questions remain to be answered and critical areas of future exploration are highlighted.
Collapse
|
5
|
Onisiforou A, Spyrou GM. Identification of viral-mediated pathogenic mechanisms in neurodegenerative diseases using network-based approaches. Brief Bioinform 2021; 22:bbab141. [PMID: 34237135 PMCID: PMC8574625 DOI: 10.1093/bib/bbab141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
During the course of a viral infection, virus-host protein-protein interactions (PPIs) play a critical role in allowing viruses to replicate and survive within the host. These interspecies molecular interactions can lead to viral-mediated perturbations of the human interactome causing the generation of various complex diseases. Evidences suggest that viral-mediated perturbations are a possible pathogenic etiology in several neurodegenerative diseases (NDs). These diseases are characterized by chronic progressive degeneration of neurons, and current therapeutic approaches provide only mild symptomatic relief; therefore, there is unmet need for the discovery of novel therapeutic interventions. In this paper, we initially review databases and tools that can be utilized to investigate viral-mediated perturbations in complex NDs using network-based analysis by examining the interaction between the ND-related PPI disease networks and the virus-host PPI network. Afterwards, we present our theoretical-driven integrative network-based bioinformatics approach that accounts for pathogen-genes-disease-related PPIs with the aim to identify viral-mediated pathogenic mechanisms focusing in multiple sclerosis (MS) disease. We identified seven high centrality nodes that can act as disease communicator nodes and exert systemic effects in the MS-enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways network. In addition, we identified 12 KEGG pathways, 5 Reactome pathways and 52 Gene Ontology Immune System Processes by which 80 viral proteins from eight viral species might exert viral-mediated pathogenic mechanisms in MS. Finally, our analysis highlighted the Th17 differentiation pathway, a disease communicator node and part of the 12 underlined KEGG pathways, as a key viral-mediated pathogenic mechanism and a possible therapeutic target for MS disease.
Collapse
Affiliation(s)
- Anna Onisiforou
- Department of Bioinformatics, Cyprus Institute of Neurology & Genetics, and the Cyprus School of Molecular Medicine, Cyprus
| | - George M Spyrou
- Department of Bioinformatics, Cyprus Institute of Neurology & Genetics, and professor at the Cyprus School of Molecular Medicine, Cyprus
| |
Collapse
|
6
|
Yong SJ, Yong MH, Teoh SL, Soga T, Parhar I, Chew J, Lim WL. The Hippocampal Vulnerability to Herpes Simplex Virus Type I Infection: Relevance to Alzheimer's Disease and Memory Impairment. Front Cell Neurosci 2021; 15:695738. [PMID: 34483839 PMCID: PMC8414573 DOI: 10.3389/fncel.2021.695738] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) as a possible infectious etiology in Alzheimer’s disease (AD) has been proposed since the 1980s. The accumulating research thus far continues to support the association and a possible causal role of HSV-1 in the development of AD. HSV-1 has been shown to induce neuropathological and behavioral changes of AD, such as amyloid-beta accumulation, tau hyperphosphorylation, as well as memory and learning impairments in experimental settings. However, a neuroanatomical standpoint of HSV-1 tropism in the brain has not been emphasized in detail. In this review, we propose that the hippocampal vulnerability to HSV-1 infection plays a part in the development of AD and amnestic mild cognitive impairment (aMCI). Henceforth, this review draws on human studies to bridge HSV-1 to hippocampal-related brain disorders, namely AD and aMCI/MCI. Next, experimental models and clinical observations supporting the neurotropism or predilection of HSV-1 to infect the hippocampus are examined. Following this, factors and mechanisms predisposing the hippocampus to HSV-1 infection are discussed. In brief, the hippocampus has high levels of viral cellular receptors, neural stem or progenitor cells (NSCs/NPCs), glucocorticoid receptors (GRs) and amyloid precursor protein (APP) that support HSV-1 infectivity, as well as inadequate antiviral immunity against HSV-1. Currently, the established diseases HSV-1 causes are mucocutaneous lesions and encephalitis; however, this review revises that HSV-1 may also induce and/or contribute to hippocampal-related brain disorders, especially AD and aMCI/MCI.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Min Hooi Yong
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia.,Aging Health and Well-being Research Centre, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ishwar Parhar
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jactty Chew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia.,Aging Health and Well-being Research Centre, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|
7
|
The association between herpes simplex virus type 1 infection and Alzheimer's disease. J Clin Neurosci 2020; 82:63-70. [PMID: 33317741 DOI: 10.1016/j.jocn.2020.10.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/19/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
There is growing evidence demonstrating the relationship between herpes simplex virus type 1 (HSV-1) infection and Alzheimer's disease (AD). We searched PubMed, Embase, and Cochrane databases for relevant articles. The Newcastle-Ottawa Scale (NOS) was used to evaluate the qualities of these studies. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using random-effects models. We also performed subgroup analyses stratified by apolipoprotein ε4 (APOE ε4), NOS score, and the method of confirming AD. A total of 21 studies between 1990 and 2020 were identified. The pooled OR suggested that HSV-1 infection is a risk factor of AD: pooled OR 1.40 (95% CI: 1.13-1.75; I2 = 3%, P = 0.42). In the subgroup analyses, the pooled ORs of HSV-1 infection associated with AD were 0.75 (95% CI: 0.24-2.37) among the APOE ε4-positive individuals; 0.85 (95% CI: 0.61-1.17) among the APOE ε4-negative individuals; 1.51 (95% CI: 1.10-2.06) in the high NOS score studies; 1.23 (95% CI: 0.85-1.76) in the moderate NOS score studies; 1.47 (95% CI: 1.16-1.87) in the clinical diagnosis group, and 1.20 (95% CI: 0.77-1.87) in the autopsy group. Our up-to-date systematic review and meta-analysis suggest that HSV-1 infection is a risk factor of AD.
Collapse
|
8
|
Ooi L, Dottori M, Cook AL, Engel M, Gautam V, Grubman A, Hernández D, King AE, Maksour S, Targa Dias Anastacio H, Balez R, Pébay A, Pouton C, Valenzuela M, White A, Williamson R. If Human Brain Organoids Are the Answer to Understanding Dementia, What Are the Questions? Neuroscientist 2020; 26:438-454. [PMID: 32281909 PMCID: PMC7539594 DOI: 10.1177/1073858420912404] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Because our beliefs regarding our individuality, autonomy, and personhood are intimately bound up with our brains, there is a public fascination with cerebral organoids, the "mini-brain," the "brain in a dish". At the same time, the ethical issues around organoids are only now being explored. What are the prospects of using human cerebral organoids to better understand, treat, or prevent dementia? Will human organoids represent an improvement on the current, less-than-satisfactory, animal models? When considering these questions, two major issues arise. One is the general challenge associated with using any stem cell-generated preparation for in vitro modelling (challenges amplified when using organoids compared with simpler cell culture systems). The other relates to complexities associated with defining and understanding what we mean by the term "dementia." We discuss 10 puzzles, issues, and stumbling blocks to watch for in the quest to model "dementia in a dish."
Collapse
Affiliation(s)
- Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia.,Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia.,Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony L Cook
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Martin Engel
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Vini Gautam
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Alexandra Grubman
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Damián Hernández
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne, Victoria, Australia.,Department of Surgery, University of Melbourne, Parkville, Victoria, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Simon Maksour
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Helena Targa Dias Anastacio
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Rachelle Balez
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Alice Pébay
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne, Victoria, Australia.,Department of Surgery, University of Melbourne, Parkville, Victoria, Australia
| | - Colin Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Michael Valenzuela
- Regenerative Neuroscience Group, Brain and Mind Centre and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Anthony White
- Queensland Institute of Medical Research Berghofer, Brisbane, Queensland, Australia
| | - Robert Williamson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Warren-Gash C, Forbes HJ, Williamson E, Breuer J, Hayward AC, Mavrodaris A, Ridha BH, Rossor MN, Thomas SL, Smeeth L. Human herpesvirus infections and dementia or mild cognitive impairment: a systematic review and meta-analysis. Sci Rep 2019; 9:4743. [PMID: 30894595 PMCID: PMC6426940 DOI: 10.1038/s41598-019-41218-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Interest is growing in the role of infectious agents in the pathogenesis of dementia, but current evidence is limited. We conducted a systematic review and meta-analysis to investigate the effect of any of eight human herpesviruses on development of dementia or mild cognitive impairment (MCI). We searched the Cochrane Library, Embase, Global Health, Medline, PsycINFO, Scopus, Web of Science, clinical trials registers and grey literature sources from inception to December 2017 for observational studies with cohort, case control or self-controlled designs, or randomised controlled trials of interventions against herpesviruses. Pooled effect estimates and 95% confidence intervals (CIs) were generated through random effects meta-analyses across studies with the same design, outcome, and virus type, method and site of measurement. We included 57 studies across various geographic settings. Past infection with herpesviruses, measured by IgG seropositivity, was generally not associated with dementia risk. A single cohort study rated moderate quality showed an association between varicella zoster virus reactivation (ophthalmic zoster) and incident dementia (HR 2.97; 95%CI, 1.89 to 4.66). Recent infection with, or reactivation of, herpes simplex virus type 1 or type 1/2 unspecified, cytomegalovirus and human herpes virus-6 measured by serum IgM, high titre IgG or clinical disease may be associated with dementia or MCI, though results were inconsistent across studies and overall evidence rated very low quality. Longitudinal population studies with robust repeated virus measurements taken sufficiently proximal to dementia onset are needed to establish whether, when and among whom herpesviruses affect dementia risk.
Collapse
Affiliation(s)
- Charlotte Warren-Gash
- Faculty of Epidemiology & Population Health, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom.
| | - Harriet J Forbes
- Faculty of Epidemiology & Population Health, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Elizabeth Williamson
- Faculty of Epidemiology & Population Health, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Judith Breuer
- Division of Infection & Immunity, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Andrew C Hayward
- Institute of Epidemiology and Healthcare, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Angelique Mavrodaris
- Cambridge Institute of Public Health, University of Cambridge, Forvie site, Robinson Way, Cambridge, CB2 0SR, United Kingdom
| | - Basil H Ridha
- NIHR University College London Hospitals Biomedical Research Centre, Maple House, Tottenham Court Road, London, W1T 7DN, United Kingdom
- Dementia Research Centre, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, United Kingdom
| | - Martin N Rossor
- NIHR University College London Hospitals Biomedical Research Centre, Maple House, Tottenham Court Road, London, W1T 7DN, United Kingdom
- Dementia Research Centre, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, United Kingdom
| | - Sara L Thomas
- Faculty of Epidemiology & Population Health, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Liam Smeeth
- Faculty of Epidemiology & Population Health, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| |
Collapse
|
10
|
Tanaka S, Nagashima H. Establishment of an Alzheimer's disease model with latent herpesvirus infection using PS2 and Tg2576 double transgenic mice. Exp Anim 2017; 67:185-192. [PMID: 29187699 PMCID: PMC5955750 DOI: 10.1538/expanim.17-0066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A relationship between Alzheimer’s disease and herpes simplex virus infection has been
pointed out. We established a model of Alzheimer’s disease with a latent herpesvirus
infection using a mouse model of Alzheimer’s disease (PS2Tg2576) and examined the changes
in amyloid β (Aβ) in the brain. We crossbred female PS2 mice with male Tg2576 hemi mice
and chose PS2Tg2576 mice. After priming 5-week-old male mice with anti-pseudorabies virus
swine serum, we challenged the mouse with 100 LD50 of YS-81, a wild-type strain
of pseudorabies virus. The viral DNA was detected in nasal swabs by a reactivation test
and in the trigeminal ganglia. At two months after infection, the Aβ40 and Aβ42 levels in
the brains of the mice of the latently infected group were increased; the increase was
greater than that observed in the noninfected group. Latent pseudorabies virus infection
was established in PS2Tg2576 mice and the level of Aβ increased with the reactivation of
the latent virus.
Collapse
Affiliation(s)
- Seiichi Tanaka
- Center for Experimental Animals, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Hiroshi Nagashima
- Animal-care Co., Ltd., 5-18-14 Shinjuku, Shinjuku-ku, Tokyo 160-0022, Japan
| |
Collapse
|
11
|
Mastroeni D, Nolz J, Sekar S, Delvaux E, Serrano G, Cuyugan L, Liang WS, Beach TG, Rogers J, Coleman PD. Laser-captured microglia in the Alzheimer's and Parkinson's brain reveal unique regional expression profiles and suggest a potential role for hepatitis B in the Alzheimer's brain. Neurobiol Aging 2017; 63:12-21. [PMID: 29207277 DOI: 10.1016/j.neurobiolaging.2017.10.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/02/2017] [Accepted: 10/22/2017] [Indexed: 01/24/2023]
Abstract
Expression array data from dozens of laboratories, including our own, show significant changes in expression of many genes in Alzheimer's disease (AD) patients compared with normal controls. These data typically rely on brain homogenates, and information about transcripts specific to microglia and other central nervous system (CNS) cell types, which far outnumber microglia-specific transcripts, is lost. We therefore used single-cell laser capture methods to assess the full range of microglia-specific expression changes that occur in different brain regions (substantia nigra and hippocampus CA1) and disease states (AD, Parkinson's disease, and normal controls). Two novel pathways, neuronal repair and viral processing were identified. Based on KEGG analysis (Kyoto Encyclopedia of Genes and Genomes, a collection of biological pathways), one of the most significant viruses was hepatitis B virus (HBV) (false discovery rate < 0.00000001). Immunohistochemical analysis using HBV-core antibody in HBV-positive control, amnestic mild cognitive impairment, and HBV-positive AD cases show increased HBV immunoreactivity as disease pathology increases. These results are the first, to our knowledge, to show regional differences in human microglia. In addition, these data reveal new functions for microglia and suggest a novel risk factor for AD.
Collapse
Affiliation(s)
- Diego Mastroeni
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA.
| | - Jennifer Nolz
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Shobana Sekar
- Translational Genomics Institute, Phoenix, Arizona, USA
| | - Elaine Delvaux
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Geidy Serrano
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Lori Cuyugan
- Translational Genomics Institute, Phoenix, Arizona, USA
| | | | | | | | - Paul D Coleman
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA
| |
Collapse
|
12
|
Abstract
Human immunodeficiency virus (HIV)-infected adults who take stable antiretroviral therapy (ART) are at risk for early onset of age-related diseases. This is likely due to a complex interaction between traditional risk factors, HIV infection itself, and other factors, such as underlying immune dysfunction and persistent inflammation. HIV disrupts the balance between the host and coinfecting microbes, worsening control of these potential pathogens. For example, HIV-infected adults are more likely than the general population to have subclinical bursts of cytomegalovirus (CMV) replication at mucosal sites. Production of antigens can activate the immune system and stimulate HIV replication, and it could contribute to the pathogenesis of adverse outcomes of aging, like cardiovascular disease and neurocognitive impairment. Further investigation of the relationships between CMV, immune dysfunction, and unsuccessful aging during chronic HIV infection is warranted.
Collapse
Affiliation(s)
- Sara Gianella
- Department of Medicine, Division of Infectious Disease, University of California-San Diego, La Jolla
| | - Scott Letendre
- Department of Medicine, Division of Infectious Disease, University of California-San Diego, La Jolla
| |
Collapse
|
13
|
Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:887-900. [PMID: 26705676 PMCID: PMC4821735 DOI: 10.1016/j.bbadis.2015.12.016] [Citation(s) in RCA: 367] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 02/07/2023]
Abstract
Vascular insults can initiate a cascade of molecular events leading to neurodegeneration, cognitive impairment, and dementia. Here, we review the cellular and molecular mechanisms in cerebral blood vessels and the pathophysiological events leading to cerebral blood flow dysregulation and disruption of the neurovascular unit and the blood-brain barrier, which all may contribute to the onset and progression of dementia and Alzheimer's disease (AD). Particularly, we examine the link between neurovascular dysfunction and neurodegeneration including the effects of AD genetic risk factors on cerebrovascular functions and clearance of Alzheimer's amyloid-β peptide toxin, and the impact of vascular risk factors, environment, and lifestyle on cerebral blood vessels, which in turn may affect synaptic, neuronal, and cognitive functions. Finally, we examine potential experimental treatments for dementia and AD based on the neurovascular model, and discuss some critical questions to be addressed by future studies. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Amy R Nelson
- Department of Physiology and Biophysics and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Melanie D Sweeney
- Department of Physiology and Biophysics and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Abhay P Sagare
- Department of Physiology and Biophysics and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Berislav V Zlokovic
- Department of Physiology and Biophysics and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
14
|
Steel AJ, Eslick GD. Herpes Viruses Increase the Risk of Alzheimer’s Disease: A Meta-Analysis. J Alzheimers Dis 2015; 47:351-64. [DOI: 10.3233/jad-140822] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Abstract
Late-onset Alzheimer's disease (AD) is the most prevalent cause of dementia among older adults, yet more than a century of research has not determined why this disease develops. One prevailing hypothesis is that late-onset AD is caused by infectious pathogens, an idea widely studied in both humans and experimental animal models. This review examines the infectious AD etiology hypothesis and summarizes existing evidence associating infectious agents with AD in humans. The various mechanisms through which different clinical and subclinical infections could cause or promote the progression of AD are considered, as is the concordance between putative infectious agents and the epidemiology of AD. We searched the PubMed, Web of Science, and EBSCO databases for research articles pertaining to infections and AD and systematically reviewed the evidence linking specific infectious pathogens to AD. The evidence compiled from the literature linking AD to an infectious cause is inconclusive, but the amount of evidence suggestive of an association is too substantial to ignore. Epidemiologic, clinical, and basic science studies that could improve on current understanding of the associations between AD and infections and possibly uncover ways to control this highly prevalent and debilitating disease are suggested.
Collapse
Affiliation(s)
| | - Robert Wallace
- Correspondence to Dr. Robert Wallace, Department of Epidemiology, College of Public Health, The University of Iowa, 105 River St. Iowa City, IA 52242 (e-mail: )
| |
Collapse
|
16
|
Carter CJ. The Fox and the Rabbits-Environmental Variables and Population Genetics (1) Replication Problems in Association Studies and the Untapped Power of GWAS (2) Vitamin A Deficiency, Herpes Simplex Reactivation and Other Causes of Alzheimer's Disease. ISRN NEUROLOGY 2011; 2011:394678. [PMID: 22389816 PMCID: PMC3263564 DOI: 10.5402/2011/394678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 04/20/2011] [Indexed: 01/14/2023]
Abstract
Classical population genetics shows that varying permutations of genes and risk factors permit or disallow the effects of causative agents, depending on circumstance. For example, genes and environment determine whether a fox kills black or white rabbits on snow or black ash covered islands. Risk promoting effects are different on each island, but obscured by meta-analysis or GWAS data from both islands, unless partitioned by different contributory factors. In Alzheimer's disease, the foxes appear to be herpes, borrelia or chlamydial infection, hypercholesterolemia, hyperhomocysteinaemia, diabetes, cerebral hypoperfusion, oestrogen depletion, or vitamin A deficiency, all of which promote beta-amyloid deposition in animal models—without the aid of gene variants. All relate to risk factors and subsets of susceptibility genes, which condition their effects. All are less prevalent in convents, where nuns appear less susceptible to the ravages of ageing. Antagonism of the antimicrobial properties of beta-amyloid by Abeta autoantibodies in the ageing population, likely generated by antibodies raised to beta-amyloid/pathogen protein homologues, may play a role in this scenario. These agents are treatable by diet and drugs, vitamin supplementation, pathogen detection and elimination, and autoantibody removal, although again, the beneficial effects of individual treatments may be tempered by genes and environment.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, Flat 4, 20 Upper Maze Hill, St Leonards-on-Sea, East Sussex, TN38 0LG, UK
| |
Collapse
|
17
|
Carter CJ. Alzheimer's disease: a pathogenetic autoimmune disorder caused by herpes simplex in a gene-dependent manner. Int J Alzheimers Dis 2010; 2010:140539. [PMID: 21234306 PMCID: PMC3018626 DOI: 10.4061/2010/140539] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/27/2010] [Accepted: 10/22/2010] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex is implicated in Alzheimer's disease and viral infection produces Alzheimer's disease like pathology in mice. The virus expresses proteins containing short contiguous amino acid stretches (5–9aa “vatches” = viralmatches) homologous to APOE4, clusterin, PICALM, and complement receptor 1, and to over 100 other gene products relevant to Alzheimer's disease, which are also homologous to proteins expressed by other pathogens implicated in Alzheimer's disease. Such homology, reiterated at the DNA level, suggests that gene association studies have been tracking infection, as well as identifying key genes, demonstrating a role for pathogens as causative agents. Vatches may interfere with the function of their human counterparts, acting as dummy ligands, decoy receptors, or via interactome interference. They are often immunogenic, and antibodies generated in response to infection may target their human counterparts, producing protein knockdown, or generating autoimmune responses that may kill the neurones in which the human homologue resides, a scenario supported by immune activation in Alzheimer's disease. These data may classify Alzheimer's disease as an autoimmune disorder created by pathogen mimicry of key Alzheimer's disease-related proteins. It may well be prevented by vaccination and regular pathogen detection and elimination, and perhaps stemmed by immunosuppression or antibody adsorption-related therapies.
Collapse
Affiliation(s)
- C J Carter
- Polygenic Pathways, Flat 4, 20 Upper Maze Hill, Saint Leonard's on Sea, East Sussex TN38 OLG, UK
| |
Collapse
|
18
|
APP, APOE, complement receptor 1, clusterin and PICALM and their involvement in the herpes simplex life cycle. Neurosci Lett 2010; 483:96-100. [PMID: 20674675 DOI: 10.1016/j.neulet.2010.07.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/29/2010] [Accepted: 07/23/2010] [Indexed: 12/19/2022]
Abstract
The major Alzheimer's disease susceptibility genes (APOE, clusterin, complement receptor 1 (CR1) and phosphatidylinositol binding clathrin assembly protein, PICALM) can be implicated directly (APOE, CR1) or indirectly (clusterin and PICALM) in the herpes simplex life cycle. The virus binds to proteoliposomes containing APOE or APOA1 and also to CR1, and both clusterin and PICALM are related to a mannose-6-phosphate receptor used by the virus for cellular entry and intracellular transport. PICALM also binds to a nuclear exportin used by the virus for nuclear egress. Clusterin and complement receptor 1 are both related to the complement pathways and play a general role in pathogen defence. In addition, the amyloid precursor protein APP is involved in herpes viral transport and gamma-secretase cleaves a number of receptors used by the virus for cellular entry. APOE, APOA1 and clusterin, or alpha 2-macroglobulin, insulysin and caspase 3, which also bind to the virus, are involved in beta-amyloid clearance or degradation, as are the viral binding complement components, C3 and CR1. There are multiple ways in which the products of key susceptibility genes might be able to modify the viral life cycle and in turn the virus interacts with key proteins involved in APP and beta-amyloid processing. These interactions support a role for the herpes simplex virus in Alzheimer's disease pathology and suggest that antiviral agents or vaccination might be considered as viable therapeutic strategies in Alzheimer's disease.
Collapse
|
19
|
Donev R, Kolev M, Millet B, Thome J. Neuronal death in Alzheimer's disease and therapeutic opportunities. J Cell Mol Med 2009; 13:4329-48. [PMID: 19725918 PMCID: PMC4515050 DOI: 10.1111/j.1582-4934.2009.00889.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disease that affects approximately 24 million people worldwide. A number of different risk factors have been implicated in AD; however, neuritic (amyloid) plaques are considered as one of the defining risk factors and pathological hallmarks of the disease. In the past decade, enormous efforts have been devoted to understand the genetics and molecular pathogenesis leading to neuronal death in AD, which has been transferred into extensive experimental approaches aimed at reversing disease progression. Modern medicine is facing an increasing number of treatments available for vascular and neurodegenerative brain diseases, but no causal or neuroprotective treatment has yet been established. Almost all neurological conditions are characterized by progressive neuronal dysfunction, which, regardless of the pathogenetic mechanism, finally leads to neuronal death. The particular emphasis of this review is on risk factors and mechanisms resulting in neuronal loss in AD and current and prospective opportunities for therapeutic interventions. This review discusses these issues with a view to inspiring the development of new agents that could be useful for the treatment of AD.
Collapse
Affiliation(s)
- Rossen Donev
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | | | | | | |
Collapse
|
20
|
Eradication of Helicobacter pylori may be beneficial in the management of Alzheimer’s disease. J Neurol 2009; 256:758-67. [DOI: 10.1007/s00415-009-5011-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/26/2008] [Accepted: 12/10/2008] [Indexed: 12/13/2022]
|
21
|
Burgos JS, Serrano-Saiz E, Sastre I, Valdivieso F. ICP47 mediates viral neuroinvasiveness by induction of TAP protein following intravenous inoculation of herpes simplex virus type 1 in mice. J Neurovirol 2007; 12:420-7. [PMID: 17162658 DOI: 10.1080/13550280601009546] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) expresses an immediate-early protein, ICP47, that blocks the major histocompatibility complex class I antigen presentation pathway by binding to the transporter associated with antigen presentation (TAP). The result is the virus' evasion of the immune system. Although the interaction between ICP47 and TAP has been examined in vitro, this paper is the first to report their interaction in vivo. In C57BL/6 adult female mice, ICP47-defective virus (Delta ICP47, F strain) was less able to invade the organs studied than was wild-type HSV-1 F strain, showing that ICP47 influences general invasiveness. However, the neuroinvasiveness of the Delta ICP47 virus was recovered in TAP-deficient mice, indicating that the TAP-ICP47 interaction is specific to neural tissues. HSV-1 F strain showed no significant differences in their invasiveness in TAP-deficient and wild-type mice. Therefore, although ICP47 appears to be essential for invasion, the presence of TAP appears not to be crucial. Western blotting showed TAP1 expression to increase by at least fourfold in the brains and adrenal glands of infected mice. This suggests that TAP plays an important role in the host defense system. This increased expression may be particularly important in the encephalon since the baseline protein levels of this organ are low (ratio adrenal protein level/encephalon protein level > 100). However, Delta ICP47 virus provoked no significant increase in the brain TAP1 levels of wild-type mice because it could not invade this organ. These results suggest that ICP47 plays a role in infection, and that TAP1 production is regulated during viral challenge.
Collapse
Affiliation(s)
- Javier S Burgos
- Departamento de Biología Molecular and Centro de Biologí Molecular Severo Ochoa, C.S.I.C.-U.A.M., Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | |
Collapse
|
22
|
Hill JM, Bhattacharjee PS, Neumann DM. Apolipoprotein E alleles can contribute to the pathogenesis of numerous clinical conditions including HSV-1 corneal disease. Exp Eye Res 2006; 84:801-11. [PMID: 17007837 PMCID: PMC2217677 DOI: 10.1016/j.exer.2006.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 07/19/2006] [Accepted: 08/03/2006] [Indexed: 11/18/2022]
Abstract
Apolipoprotein E (ApoE) alleles have been reported to affect the clinical outcome of numerous cardiovascular, neurodegenerative, and viral infectious diseases, including atherosclerosis, Alzheimer's disease (AD), hepatitis C, and HIV. The major alleles of ApoE are 2, 3, and 4. ApoE genotypes have been hypothesized to regulate many biological functions, resulting in significant changes in the onset and/or outcome (severity and duration) of several clinical conditions. Based on genetic analyses in human and animal studies using knockout (ApoE -/-) mice and mice transgenic for human 3 and 4, we present evidence that strongly suggests that the ApoE alleles can regulate the pathogenesis of ocular herpes simplex virus type 1 (HSV-1) infections. This review will summarize the major studies that support this hypothesis. Significant gender based differences in HSV-1 pathogenesis have also been reported, suggesting that hormonal regulation combined with ApoE genotype plays a significant role in HSV-1 pathogenesis. Identification of specific mechanisms in ocular HSV-1 infections related to the ApoE alleles and gender could lead to therapeutic intervention based on the properties of the apoE isoforms. While many clinical investigations have been reported and, to a lesser extent, transgenic mouse studies have been conducted, no specific mechanisms of how ApoE induces or alters clinical disease are known.
Collapse
Affiliation(s)
- James M Hill
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
23
|
Aiello AE, Haan M, Blythe L, Moore K, Gonzalez JM, Jagust W. The influence of latent viral infection on rate of cognitive decline over 4 years. J Am Geriatr Soc 2006; 54:1046-54. [PMID: 16866674 DOI: 10.1111/j.1532-5415.2006.00796.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To examine whether cytomegalovirus (CMV) and herpes simplex virus type-1 (HSV-1) are associated with cognitive decline over a 4-year period and to assess whether C-reactive protein (CRP) modifies these relationships. DESIGN Prospective cohort study over a 4-year period. SETTING Community-dwelling elderly population. PARTICIPANTS The sample was a subset (1,204/1,789) of participants in the Sacramento Area Latino Study on Aging (SALSA) aged 60 to 100. MEASUREMENTS Participants were screened annually over a 4-year period for cognitive function and episodic memory. Cognitive function was assessed using the modified Mini-Mental State Examination, and episodic memory was assessed using a word list-learning test of delayed recall. Baseline serum samples were assayed for levels of immunoglobulin G antibodies to CMV and HSV-1 and for levels of CRP. RESULTS There was a significantly higher rate of cognitive decline over the 4-year period in subjects with the highest CMV antibody levels at baseline than in individuals with the lowest levels (beta=-0.053, standard error =0.018; P=.003), after controlling for age, sex, education, income, and chronic health conditions. There was no association between HSV-1 antibody levels and cognitive decline. CRP did not modify the relationship between viral antibody levels and cognitive decline. CONCLUSION This is the first study to show that individuals with higher levels of antibody to CMV experience a more-rapid rate of cognitive decline than those with lower levels. Understanding the mechanisms by which CMV influences cognition may aid development of intervention strategies targeting infection, viral reactivation, and immune response over the life course.
Collapse
Affiliation(s)
- Allison E Aiello
- Center for Social Epidemiology and Population Health, Ann Arbor, Michigan 48104, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Hill JM, Gebhardt BM, Azcuy AM, Matthews KE, Lukiw WJ, Steiner I, Thompson HW, Ball MJ. Can a herpes simplex virus type 1 neuroinvasive score be correlated to other risk factors in Alzheimer's disease? Med Hypotheses 2005; 64:320-7. [PMID: 15607565 DOI: 10.1016/j.mehy.2003.11.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 11/24/2003] [Indexed: 01/05/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is latent in the nervous system of most humans. Ball [Can J Neurol Sci 9 (1982) 303] first suggested the hypothesis that HSV-1 could be involved in the pathogenesis of Alzheimer's Disease (AD) by noting that regions of the brain particularly and earliest affected in AD were the same as those most damaged during HSV encephalitis. Data from Itzhaki's research suggests that HSV-1 in the brain and the carriage of an apolipoprotein E allele 4 (ApoE e4) together confer risk for AD [J Pathol 97 (2002) 395], [Mol Chem Neuropathol 28 (1996) 135], [Alzheimer's Rep 1 (1998) 173], [Biochem Soc Trans 26 (1998) 273]. Of the two other studies based on Itzhaki's findings, one showed similar results [Lancet 349 (1997) 1102], and the other showed a similar trend [Lancet 351 (1998) 1330], [Lancet 352 (1998) 1312]. To further examine the role of HSV-1 in the etiology of AD, we have formulated a Neuroinvasive Score that quantifies the presence and viral load of HSV-1 in eight brain regions. These regions are: entorhinal cortex, hippocampus, pons, cerebellum, and neocortex (temporal, parietal, occipital, and frontal). We hypothesize that the Neuroinvasive Score that encompasses the presence, amount, and extent of HSV-1 spreading (neuroinvasiveness), will correlate with the genetic risk factor, ApoE e4, in the assessment of autopsy samples from AD patients. If the neuroinvasive score can be directly correlated to the different stages of AD (mild, moderate, severe), this will strengthen the hypothesis that HSV-1 is involved in AD and that ApoE e4 also confers risk for the development and progression of AD.
Collapse
Affiliation(s)
- J M Hill
- Departments of Ophthalmology, Neuroscience, Pharmacology, and Microbiology, LSU Health Sciences Center, New Orleans, LA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Percy ME, Potyomkina Z, Dalton AJ, Fedor B, Mehta P, Andrews DF, Mazzulli T, Murk L, Warren AC, Wallace RA, Chau H, Jeng W, Moalem S, O'Brien L, Schellenberger S, Tran H, Wu L. Relation between apolipoprotein E genotype, hepatitis B virus status, and thyroid status in a sample of older persons with Down syndrome. Am J Med Genet A 2003; 120A:191-8. [PMID: 12833399 DOI: 10.1002/ajmg.a.20099] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dementia of the Alzheimer type (DAT) is common in older persons with Down syndrome (DS). There are three common alleles of the apolipoprotein E (ApoE) gene (Sigma 2, Sigma 3, and Sigma 4) resulting in three different isoforms (E2, E3, and E4) and six different genotypes (2,2; 2,3; 2,4; 3,3; 3,4; and 4,4). Sigma 4 is a risk factor for DAT whereas Sigma 2 appears prophylactic. As hepatitis B virus (HBV) infection and hypothyroidism also are common in DS, we evaluated associations between ApoE type, HBV status, and thyroid status in a sample of older persons with DS (n = 55; mean age, 44.3 +/- 10.8 years) using chi-squared analysis. Participants were classified as E2 (2,2 or 2,3), E3 (3,3), or E4 (3,4 or 4,4); positive for markers of HBV infection in the present or past (i.e., total HBcAb+ and/or HBsAg+ with or without infectivity, defined as HBV+) or negative for markers of HBV infection (defined as HBV-) and, currently receiving thyroid hormone supplement (defined as "hypothyroidism") or having normal thyroid function. The majority of the HBV+ were currently HBcAb+ and HBsAb+, but not HBsAg+. In females, there was an ApoE allele effect on thyroid status (P < or = 0.01), E2 being negatively (P < or = 0.01) and E4 being positively (P < or = 0.05) associated with "hypothyroidism". There was no evidence for an ApoE allele effect on thyroid status in males. There was no evidence for an ApoE allele effect on HBV status, or for an HBV status effect on thyroid status. As thyroid status can affect cognitive function, ApoE allele effects in DAT may, in part, be thyroid effects.
Collapse
Affiliation(s)
- Maire E Percy
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cheon MS, Bajo M, Gulesserian T, Cairns N, Lubec G. Evidence for the relation of herpes simplex virus type 1 to Down syndrome and Alzheimer's disease. Electrophoresis 2001; 22:445-8. [PMID: 11258753 DOI: 10.1002/1522-2683(200102)22:3<445::aid-elps445>3.0.co;2-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The peripheral and central nervous system are harbouring herpes simplex virus type 1 (HSV-1) and this virus has been proposed to be implicated in the aetiology of Alzheimer's disease (AD). We tested whether the HSV-1 genome is found indeed in the brain of controls, patients with AD and Down syndrome (DS) and whether HSV-1 infectious proteins in brain were induced. Moreover, we tested whether interleukin (IL)-6, a marker for neuroinflammation, is found in brains of AD and DS. HSV-1 glycoprotein D gene, as well as viral phosphoprotein and glycoprotein were detected in all brain samples. IL-6 was detectable in seven out of the eight AD and all of the eight DS patients, but only three out of ten controls in the frontal cortex. IL-6 in cerebellum was detectable in all AD and DS patients, but only three out of nine controls. In conclusion, we propose that the detection of HSV-1 genome and HSV-1 inducible protein IL-6 not only shows the presence in human brain, but may indicate a role for HSV-1 in the process of neuroinflammation and apoptosis, known to occur in both neurodegenerative disorders, AD and DS.
Collapse
Affiliation(s)
- M S Cheon
- Department of Pediatrics, University of Vienna, Austria
| | | | | | | | | |
Collapse
|
27
|
Abstract
Primary prevention will become increasingly important as dementia prevalence increases and effective retardive therapies are developed. To date, only one randomized controlled trial (involving treatment of systolic hypertension) has demonstrated that the incidence of dementia can be reduced. Physicians should remain alert to possible secondary causes of dementia and correct these whenever possible. Primary and secondary prevention of stroke should reduce dementia related to cerebrovascular disease either directly or as a comorbid factor in Alzheimer's disease (AD). Epidemiological studies have revealed a number of risk factors for AD including genetic mutation, susceptibility genes, positive family history, Down's syndrome, age, sex, years of education, head trauma and neurotoxins. In case-control studies non-steroidal anti-inflammatory medication and estrogen replacement therapy appear to decrease the relative risk of developing AD. Further research to develop and test preventative therapies in AD and other dementias should be strongly encouraged.
Collapse
Affiliation(s)
- S E Black
- Department of Medicine, Neurology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
28
|
Abstract
Until recently, the only risk factors implicated in noninherited cases of Alzheimer's disease were increasing age, Down's syndrome, and probably, head injury. Having found that herpes simplex type 1 virus (HSV1) is present in the brain of many elderly people, we discovered that it is a risk factor for Alzheimer's disease when in the central nervous system of APOE-epsilon4 allele carriers. On the basis of this result and our finding that apoE-epsilon4 is a risk factor for herpes labialis, we suggested that the combination of virus and genetic factor is particularly damaging in the nervous system. The present review describes 1) the search for HSV1 in human brain; 2) HSV1 infection of the peripheral nervous system; 3) HSV1 infection of the central nervous system; 4) how APOE genotype might influence HSV1 infection; 5) possible APOE genotype effect on viral latency and its reactivation; 6) interactions of viruses with lipoproteins, their components, and lipoprotein receptors; 7) the role of APOE in repair; 8) pathological processes in AD and their relationship to prior damage; and 9) implications for the prevention or treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- C B Dobson
- Department of Optometry and Neuroscience, University of Manchester Institute of Science and Technology, United Kingdom
| | | |
Collapse
|
29
|
Lin WR, Casas I, Wilcock GK, Itzhaki RF. Neurotropic viruses and Alzheimer's disease: a search for varicella zoster virus DNA by the polymerase chain reaction. J Neurol Neurosurg Psychiatry 1997; 62:586-9. [PMID: 9219743 PMCID: PMC1074141 DOI: 10.1136/jnnp.62.6.586] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND In studies on the possible role of viruses in the aetiopathogenesis of Alzheimer's disease, herpes simplex virus type 1 (HSV1) DNA was detected by the polymerase chain reaction (PCR) in a high proportion of normal elderly people and of patients with Alzheimer's disease. The combination of HSV1 and a host factor, the type 4 allele of the gene for apolipoprotein E, is a strong risk factor for the disease. METHODS Brain specimens were examined for another herpes virus, varicella zoster (VZV), which, like HSV1, is neurotropic, has a predilection for residing latently in the peripheral nervous system, and can reactivate. RESULTS Using primers for sequences in the VZV origin of replication gene or thymidine kinase gene, VZV DNA was not found in any of 24 samples (18 HSV1 positive), from 17 patients with Alzheimer's disease, nor in 20 samples (12 HSV1 positive from 12 aged normal people. Hybridisation of the PCR products with a radiolabelled oligonucleotide probe capable of detecting less than 10 copies of the target sequence, confirmed the absence of VZV DNA. CONCLUSION The presence of one neurotropic virus--HSV1--and the absence of another--VZV--in aged human brains is consistent with a role for HSV1 in the aetiology of Alzheimer's disease.
Collapse
Affiliation(s)
- W R Lin
- Department of Optometry and Vision Sciences, UMIST, Manchester, UK
| | | | | | | |
Collapse
|
30
|
Itzhaki RF, Lin WR, Shang D, Wilcock GK, Faragher B, Jamieson GA. Herpes simplex virus type 1 in brain and risk of Alzheimer's disease. Lancet 1997; 349:241-4. [PMID: 9014911 DOI: 10.1016/s0140-6736(96)10149-5] [Citation(s) in RCA: 420] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The apolipoprotein E epsilon 4 (APOE-epsilon 4) allele is a risk factor for Alzheimer's disease (AD), but it is neither essential nor sufficient for development of the disease. Other factors-genetic or environmental-must therefore have a role. By means of a PCR we have detected herpes simplex virus type 1 (HSV1) in latent form in brains of elderly people with and without AD. We have postulated that limited reactivation of the virus causes more damage in AD patients than in elderly people without AD because of a difference in the hosts. We now report the APOE genotypes of AD patients and non-AD sufferers with and without HSV1 in brain. METHODS DNA was extracted from 84 samples of brain from 46 AD patients (39 temporal lobe, 39 frontal lobe, three hippocampus) and from 75 samples of brain from 44 non-AD elderly people (33 temporal lobe, 36 frontal lobe, six hippocampus). PCR amplification was used to detect HSV1 thymidine kinase gene and the host APOE gene. FINDINGS By multiple logistic regression, the APOE-epsilon 4 allele frequency was significantly higher in the patients positive for HSV1 in brain than in the HSV1-negative AD group, the HSV1-positive non-AD group, or the HSV1-negative non-AD group (52.8% vs 10.0%, 3.6%, and 6.3%, respectively). The odds ratio for APOE-epsilon 4 in the HSV1-positive AD group compared with HSV1-negative non-AD group was 16.8 (95% CI 3.61-77.8) and in the HSV1-negative AD group, 1.67 (0.21-13.4). We also compared APOE genotypes of 40 people who had recurrent cold sores and 33 non-sufferers; the APOE-epsilon 4 allele frequencies were 36% and 9%, respectively (p < 0.0001). INTERPRETATION These findings suggest that the combination of HSV1 in brain and carriage of an APOE-epsilon 4 allele is a strong risk factor for AD, whereas either of these features alone does not increase the risk of AD. The findings in people with cold sores support our hypothesis that APOE-epsilon 4 and HSV1 together are damaging in the nervous system.
Collapse
Affiliation(s)
- R F Itzhaki
- Molecular Neurobiology Laboratory, Department of Optometry and Vision Sciences, UMIST, Manchester
| | | | | | | | | | | |
Collapse
|
31
|
Kwon YJ, Tsai J, Relkin NR. NIA/AIzA Conference on apolipoprotein E genotyping in Alzheimer's disease. Bibliography. Ann N Y Acad Sci 1996; 802:177-224. [PMID: 9012315 DOI: 10.1111/j.1749-6632.1996.tb32609.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|