1
|
Targeting the Sphingolipid Rheostat in Gliomas. Int J Mol Sci 2022; 23:ijms23169255. [PMID: 36012521 PMCID: PMC9408832 DOI: 10.3390/ijms23169255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022] Open
Abstract
Gliomas are highly aggressive cancer types that are in urgent need of novel drugs and targeted therapies. Treatment protocols have not improved in over a decade, and glioma patient survival remains among the worst of all cancer types. As a result, cancer metabolism research has served as an innovative approach to identifying novel glioma targets and improving our understanding of brain tumors. Recent research has uncovered a unique metabolic vulnerability in the sphingolipid pathways of gliomas that possess the IDH1 mutation. Sphingolipids are a family of lipid signaling molecules that play a variety of second messenger functions in cellular regulation. The two primary metabolites, sphingosine-1-phosphate (S1P) and ceramide, maintain a rheostat balance and play opposing roles in cell survival and proliferation. Altering the rheostat such that the pro-apoptotic signaling of the ceramides outweighs the pro-survival S1P signaling in glioma cells diminishes the hallmarks of cancer and enhances tumor cell death. Throughout this review, we discuss the sphingolipid pathway and identify the enzymes that can be most effectively targeted to alter the sphingolipid rheostat and enhance apoptosis in gliomas. We discuss each pathway’s steps based on their site of occurrence in the organelles and postulate novel targets that can effectively exploit this vulnerability.
Collapse
|
2
|
Brodsky VY. Gangliosides in Orchestration of Intercellular Communication, Development, Neuronal Pathology and Carcinogenesis. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Li Z, Zhang L, Liu D, Wang C. Ceramide glycosylation and related enzymes in cancer signaling and therapy. Biomed Pharmacother 2021; 139:111565. [PMID: 33887691 DOI: 10.1016/j.biopha.2021.111565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 02/09/2023] Open
Abstract
Ceramides, the core of the sphingolipid metabolism, draw wide attention as tumor suppressor, and act directly on mitochondria to trigger apoptotic cell death. Ceramide-based therapies are being developed by using promote ceramide generating agents. The ceramide metabolism balance is regulated by multifaceted factors in cancer development. Ceramide metabolic enzymes can increase the elimination of ceramide and counteract the anti-tumor effects of ceramide. However, recent research showed that these metabolic enzymes were highly expressed in several cancers. Especially ceramide glycosyltransferases, they catalyze ceramide glycosylation and synthesis the skeleton of glycosphingolipids (GSLs), play an important role in regulating tumor progression and have a significant correlation with the poor prognosis of cancer patients. To further understand the biological characteristics of ceramide metabolism in tumor, this review focuses on the role of ceramide glycosylation and related enzymes in cancer signaling and therapy. Besides, the research on multidrug resistance and potential inhibitors of ceramide glycosyltransferases are also discussed. Advance study on the structure of ceramide glycosyltransferases and ceramide glycosylation signaling pathway will open the path to new therapies and treatments.
Collapse
Affiliation(s)
- Zibo Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lin Zhang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Dan Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Caiyan Wang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
4
|
Kroll A, Cho HE, Kang MH. Antineoplastic Agents Targeting Sphingolipid Pathways. Front Oncol 2020; 10:833. [PMID: 32528896 PMCID: PMC7256948 DOI: 10.3389/fonc.2020.00833] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Emerging studies in the enigmatic area of bioactive lipids have made many exciting new discoveries in recent years. Once thought to play a strictly structural role in cellular function, it has since been determined that sphingolipids and their metabolites perform a vast variety of cellular functions beyond what was previously believed. Of utmost importance is their role in cellular signaling, for it is now well understood that select sphingolipids serve as bioactive molecules that play critical roles in both cancer cell death and survival, as well as other cellular responses such as chronic inflammation, protection from intestinal pathogens, and intrinsic protection from intestinal contents, each of which are associated with oncogenesis. Importantly, it has been demonstrated time and time again that many different tumors display dysregulation of sphingolipid metabolism, and the exact profile of said dysregulation has been proven to be useful in determining not only the presence of a tumor, but also the susceptibility to various chemotherapeutic drugs, as well as the metastasizing characteristics of the malignancies. Since these discoveries surfaced it has become apparent that the understanding of sphingolipid metabolism and profile will likely become of great importance in the clinic for both chemotherapy and diagnostics of cancer. The goal of this paper is to provide a comprehensive review of the current state of chemotherapeutic agents that target sphingolipid metabolism that are undergoing clinical trials. Additionally, we will formulate questions involving the use of sphingolipid metabolism as chemotherapeutic targets in need of further research.
Collapse
Affiliation(s)
- Alexander Kroll
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hwang Eui Cho
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Min H Kang
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
5
|
Tang YC, Yuwen H, Wang K, Bruno PM, Bullock K, Deik A, Santaguida S, Trakala M, Pfau SJ, Zhong N, Huang T, Wang L, Clish CB, Hemann MT, Amon A. Aneuploid Cell Survival Relies upon Sphingolipid Homeostasis. Cancer Res 2017; 77:5272-5286. [PMID: 28775166 DOI: 10.1158/0008-5472.can-17-0049] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/13/2017] [Accepted: 07/25/2017] [Indexed: 01/26/2023]
Abstract
Aneuploidy, a hallmark of cancer cells, poses an appealing opportunity for cancer treatment and prevention strategies. Using a cell-based screen to identify small molecules that could selectively kill aneuploid cells, we identified the compound N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenylethyl]-decanamide monohydrochloride (DL-PDMP), an antagonist of UDP-glucose ceramide glucosyltransferase. DL-PDMP selectively inhibited proliferation of aneuploid primary mouse embryonic fibroblasts and aneuploid colorectal cancer cells. Its selective cytotoxic effects were based on further accentuating the elevated levels of ceramide, which characterize aneuploid cells, leading to increased apoptosis. We observed that DL-PDMP could also enhance the cytotoxic effects of paclitaxel, a standard-of-care chemotherapeutic agent that causes aneuploidy, in human colon cancer and mouse lymphoma cells. Our results offer pharmacologic evidence that the aneuploid state in cancer cells can be targeted selectively for therapeutic purposes, or for reducing the toxicity of taxane-based drug regimens. Cancer Res; 77(19); 5272-86. ©2017 AACR.
Collapse
Affiliation(s)
- Yun-Chi Tang
- The Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hui Yuwen
- The Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiying Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peter M Bruno
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kevin Bullock
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Amy Deik
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Stefano Santaguida
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Marianna Trakala
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sarah J Pfau
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Na Zhong
- The Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
6
|
Binnington B, Nguyen L, Kamani M, Hossain D, Marks DL, Budani M, Lingwood CA. Inhibition of Rab prenylation by statins induces cellular glycosphingolipid remodeling. Glycobiology 2016; 26:166-80. [PMID: 26405105 PMCID: PMC4691287 DOI: 10.1093/glycob/cwv084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/17/2022] Open
Abstract
Statins, which specifically inhibit HMG Co-A reductase, the rate-limiting step of cholesterol biosynthesis, are widely prescribed to reduce serum cholesterol and cardiac risk, but many other effects are seen. We now show an effect of these drugs to induce profound changes in the step-wise synthesis of glycosphingolipids (GSLs) in the Golgi. Glucosylceramide (GlcCer) was increased several-fold in all cell lines tested, demonstrating a widespread effect. Additionally, de novo or elevated lactotriaosylceramide (Lc3Cer; GlcNAcβ1-3Galβ1-4GlcCer) synthesis was observed in 70%. Western blot showed that GlcCer synthase (GCS) was elevated by statins, and GCS and Lc3Cer synthase (Lc3S) activities were increased; however, transcript was elevated for Lc3S only. Supplementation with the isoprenoid precursor, geranylgeranyl pyrophosphate (GGPP), a downstream product of HMG Co-A reductase, reversed statin-induced glycosyltransferase and GSL elevation. The Rab geranylgeranyl transferase inhibitor 3-PEHPC, but not specific inhibitors of farnesyl transferase, or geranylgeranyl transferase I, was sufficient to replicate statin-induced GlcCer and Lc3Cer synthesis, supporting a Rab prenylation-dependent mechanism. While total cholesterol was unaffected, the trans-Golgi network (TGN) cholesterol pool was dissipated and medial Golgi GCS partially relocated by statins. GSL-dependent vesicular retrograde transport of Verotoxin and cholera toxin to the Golgi/endoplasmic reticulum were blocked after statin or 3-PEHPC treatment, suggesting aberrant, prenylation-dependent vesicular traffic as a basis of glycosyltransferase increase and GSL remodeling. These in vitro studies indicate a previously unreported link between Rab prenylation and regulation of GCS activity and GlcCer metabolism.
Collapse
Affiliation(s)
- Beth Binnington
- Research Institute, Program in Molecular Structure and Function, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 1X8, Canada
| | - Long Nguyen
- Research Institute, Program in Molecular Structure and Function, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 1X8, Canada
| | - Mustafa Kamani
- Research Institute, Program in Molecular Structure and Function, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 1X8, Canada Department of Biochemistry
| | - Delowar Hossain
- Research Institute, Program in Molecular Structure and Function, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 1X8, Canada
| | - David L Marks
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - Monique Budani
- Research Institute, Program in Molecular Structure and Function, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 1X8, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Clifford A Lingwood
- Research Institute, Program in Molecular Structure and Function, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 1X8, Canada Department of Biochemistry Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
7
|
Mahata B, Banerjee A, Kundu M, Bandyopadhyay U, Biswas K. TALEN mediated targeted editing of GM2/GD2-synthase gene modulates anchorage independent growth by reducing anoikis resistance in mouse tumor cells. Sci Rep 2015; 5:9048. [PMID: 25762467 PMCID: PMC4357006 DOI: 10.1038/srep09048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/16/2015] [Indexed: 01/08/2023] Open
Abstract
Complex ganglioside expression is highly deregulated in several tumors which is further dependent on specific ganglioside synthase genes. Here, we designed and constructed a pair of highly specific transcription-activator like effector endonuclease (TALENs) to disrupt a particular genomic locus of mouse GM2-synthase, a region conserved in coding sequence of all four transcript variants of mouse GM2-synthase. Our designed TALENs effectively work in different mouse cell lines and TALEN induced mutation rate is over 45%. Clonal selection strategy is undertaken to generate stable GM2-synthase knockout cell line. We have also demonstrated non-homologous end joining (NHEJ) mediated integration of neomycin cassette into the TALEN targeted GM2-synthase locus. Functionally, clonally selected GM2-synthase knockout clones show reduced anchorage-independent growth (AIG), reduction in tumor growth and higher cellular adhesion as compared to wild type Renca-v cells. Insight into the mechanism shows that, reduced AIG is due to loss in anoikis resistance, as both knockout clones show increased sensitivity to detachment induced apoptosis. Therefore, TALEN mediated precise genome editing at GM2-synthase locus not only helps us in understanding the function of GM2-synthase gene and complex gangliosides in tumorigenicity but also holds tremendous potential to use TALENs in translational cancer research and therapeutics.
Collapse
Affiliation(s)
- Barun Mahata
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Avisek Banerjee
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Manjari Kundu
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Uday Bandyopadhyay
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Kaushik Biswas
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
8
|
Kartal Yandım M, Apohan E, Baran Y. Therapeutic potential of targeting ceramide/glucosylceramide pathway in cancer. Cancer Chemother Pharmacol 2012; 71:13-20. [PMID: 23073611 DOI: 10.1007/s00280-012-1984-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/17/2012] [Indexed: 12/25/2022]
Abstract
Sphingolipids including ceramides and its derivatives such as ceramide-1-phosphate, glucosylceramide (GlcCer), and sphingosine-1-phosphate are essential structural components of cell membranes. They now recognized as novel bioeffector molecules which control various aspects of cell growth, proliferation, apoptosis, and drug resistance. Ceramide, the central molecule of sphingolipid metabolism, generally mediates anti-proliferative responses such as inhibition of cell growth, induction of apoptosis, and/or modulation of senescence. There are two major classes of sphingolipids. One of them is glycosphingolipids which are synthesized from the hydrophobic molecule, ceramide. GlcCer, generated by glucosylceramide synthase (GCS) that transfers the glucose from UDP-glucose to ceramide, is an important glycosphingolipid metabolic intermediate. GCS regulates the balance between apoptotic ceramide and antiapoptotic GlcCer. Downregulation or inhibition of GCS results in increased apoptosis and decreased drug resistance. The mechanism underlying the drug resistance which develops with increased glucosylceramide expression is associated with P-glycoprotein. In various types of cancers, overexpression of GCS has been observed which renders GCS a good target for the treatment of cancer. This review summarizes our current knowledge on the structure and functions of glucosylceramide synthase and glucosylceramide and on the roles of glucosylceramide synthase in cancer therapy and drug resistance.
Collapse
Affiliation(s)
- Melis Kartal Yandım
- Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, Urla, Izmir 35430, Turkey
| | | | | |
Collapse
|
9
|
Gupta V, Bhinge KN, Hosain SB, Xiong K, Gu X, Shi R, Ho MY, Khoo KH, Li SC, Li YT, Ambudkar SV, Jazwinski SM, Liu YY. Ceramide glycosylation by glucosylceramide synthase selectively maintains the properties of breast cancer stem cells. J Biol Chem 2012; 287:37195-205. [PMID: 22936806 DOI: 10.1074/jbc.m112.396390] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cancer stem cells are distinguished from normal adult stem cells by their stemness without tissue homeostasis control. Glycosphingolipids (GSLs), particularly globo-series GSLs, are important markers of undifferentiated embryonic stem cells, but little is known about whether or not ceramide glycosylation, which controls glycosphingolipid synthesis, plays a role in modulating stem cells. Here, we report that ceramide glycosylation catalyzed by glucosylceramide synthase, which is enhanced in breast cancer stem cells (BCSCs) but not in normal mammary epithelial stem cells, maintains tumorous pluripotency of BCSCs. Enhanced ceramide glycosylation and globotriosylceramide (Gb3) correlate well with the numbers of BCSCs in breast cancer cell lines. In BCSCs sorted with CD44(+)/ESA(+)/CD24(-) markers, Gb3 activates c-Src/β-catenin signaling and up-regulates the expression of FGF-2, CD44, and Oct-4 enriching tumorigenesis. Conversely, silencing glucosylceramide synthase expression disrupts Gb3 synthesis and selectively kills BCSCs through deactivation of c-Src/β-catenin signaling. These findings highlight the unexploited role of ceramide glycosylation in selectively maintaining the tumorous pluripotency of cancer stem cells. It speculates that disruption of ceramide glycosylation or globo-series GSL is a useful approach to specifically target BCSCs specifically.
Collapse
Affiliation(s)
- Vineet Gupta
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sun Y, Ran H, Liou B, Quinn B, Zamzow M, Zhang W, Bielawski J, Kitatani K, Setchell KDR, Hannun YA, Grabowski GA. Isofagomine in vivo effects in a neuronopathic Gaucher disease mouse. PLoS One 2011; 6:e19037. [PMID: 21533102 PMCID: PMC3080394 DOI: 10.1371/journal.pone.0019037] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/21/2011] [Indexed: 01/19/2023] Open
Abstract
The pharmacological chaperone, isofagomine (IFG), enhances acid β-glucosidase (GCase) function by altering folding, trafficking, and activity in wild-type and Gaucher disease fibroblasts. The in vivo effects of IFG on GCase activity, its substrate levels, and phenotype were evaluated using a neuronopathic Gaucher disease mouse model, 4L;C* (V394L/V394L + saposin C-/-) that has CNS accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) as well as progressive neurological deterioration. IFG administration to 4L;C* mice at 20 or 600 mg/kg/day resulted in life span extensions of 10 or 20 days, respectively, and increases in GCase activity and protein levels in the brain and visceral tissues. Cerebral cortical GC and GS levels showed no significant reductions with IFG treatment. Increases of GC or GS levels were detected in the visceral tissues of IFG treated (600 mg/kg/day) mice. The attenuations of brain proinflammatory responses in the treated mice were evidenced by reductions in astrogliosis and microglial cell activation, and decreased p38 phosphorylation and TNFα levels. Terminally, axonal degeneration was present in the brain and spinal cord from untreated and treated 4L;C* mice. These data demonstrate that IFG exerts in vivo effects by enhancing V394L GCase protein and activity levels, and in mediating suppression of proinflammation, which led to delayed onset of neurological disease and extension of the life span of 4L;C* mice. However, this was not correlated with a reduction in the accumulation of lipid substrates.
Collapse
Affiliation(s)
- Ying Sun
- The Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Huimin Ran
- The Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Benjamin Liou
- The Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Brian Quinn
- The Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Matt Zamzow
- The Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Wujuan Zhang
- The Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jacek Bielawski
- The Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kazuyuki Kitatani
- The Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- The Department of Clinical Laboratory, Tottori University Hospital, Tottori University, Yonago, Japan
| | - Kenneth D. R. Setchell
- The Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yusuf A. Hannun
- The Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Gregory A. Grabowski
- The Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
11
|
Stefanić S, Spycher C, Morf L, Fabriàs G, Casas J, Schraner E, Wild P, Hehl AB, Sonda S. Glucosylceramide synthesis inhibition affects cell cycle progression, membrane trafficking, and stage differentiation in Giardia lamblia. J Lipid Res 2010; 51:2527-45. [PMID: 20335568 DOI: 10.1194/jlr.m003392] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Synthesis of glucosylceramide via glucosylceramide synthase (GCS) is a crucial event in higher eukaryotes, both for the production of complex glycosphingolipids and for regulating cellular levels of ceramide, a potent antiproliferative second messenger. In this study, we explored the dependence of the early branching eukaryote Giardia lamblia on GCS activity. Biochemical analyses revealed that the parasite has a GCS located in endoplasmic reticulum (ER) membranes that is active in proliferating and encysting trophozoites. Pharmacological inhibition of GCS induced aberrant cell division, characterized by arrest of cytokinesis, incomplete cleavage furrow formation, and consequent block of replication. Importantly, we showed that increased ceramide levels were responsible for the cytokinesis arrest. In addition, GCS inhibition resulted in prominent ultrastructural abnormalities, including accumulation of cytosolic vesicles, enlarged lysosomes, and clathrin disorganization. Moreover, anterograde trafficking of the encystations-specific protein CWP1 was severely compromised and resulted in inhibition of stage differentiation. Our results reveal novel aspects of lipid metabolism in G. lamblia and specifically highlight the vital role of GCS in regulating cell cycle progression, membrane trafficking events, and stage differentiation in this parasite. In addition, we identified ceramide as a potent bioactive molecule, underscoring the universal conservation of ceramide signaling in eukaryotes.
Collapse
Affiliation(s)
- Sasa Stefanić
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Darwiche N, Abou-Lteif G, Najdi T, Kozhaya L, Abou Tayyoun A, Bazarbachi A, Dbaibo G. Human T-cell lymphotropic virus type I-transformed T-cells have a partial defect in ceramide synthesis in response to N-(4-hydroxyphenyl)retinamide. Biochem J 2006; 392:231-9. [PMID: 16086670 PMCID: PMC1317682 DOI: 10.1042/bj20050578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Treatment with the synthetic retinoid HPR [N-(4-hydroxyphenyl)-retinamide] causes growth arrest and apoptosis in HTLV-I (human T-cell lymphotropic virus type-I)-positive and HTLV-I-negative malignant T-cells. It was observed that HPR-mediated growth inhibition was associated with ceramide accumulation only in HTLV-I-negative cells. The aim of the present study was to investigate the mechanism by which HPR differentially regulates ceramide metabolism in HTLV-I-negative and HTLV-I-positive malignant T-cells. Clinically achievable concentrations of HPR caused early dose-dependent increases in ceramide levels only in HTLV-I-negative cells and preceded HPR-induced growth suppression. HPR induced de novo synthesis of ceramide in HTLV-I-negative, but not in HTLV-I-positive, cells. Blocking ceramide glucosylation in HTLV-I-positive cells, which leads to accumulation of endogenous ceramide, rendered these cells more sensitive to HPR. Exogenous cell-permeant ceramides that function partially by generating endogenous ceramide induced growth suppression in all tested malignant lymphocytes, were consistently found to be less effective in HTLV-I-positive cells confirming their defect in de novo ceramide synthesis. Owing to its multipotent activities, the HTLV-I-encoded Tax protein was suspected to inhibit ceramide synthesis. Tax-transfected Molt-4 and HELA cells were less sensitive to HPR and C6-ceramide mediated growth inhibition respectively and produced lower levels of endogenous ceramide. Together, these results indicate that HTLV-I-positive cells are defective in de novo synthesis of ceramide and that therapeutic modalities that bypass this defect are more likely to be successful.
Collapse
Affiliation(s)
- Nadine Darwiche
- *Department of Biology, American University of Beirut, Beirut, Lebanon
- Correspondence should be addressed to either author (email and )
| | - Ghada Abou-Lteif
- *Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Tarek Najdi
- *Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Lina Kozhaya
- †Department of Biochemistry, American University of Beirut, Beirut, Lebanon
| | | | - Ali Bazarbachi
- ‡Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Ghassan S. Dbaibo
- †Department of Biochemistry, American University of Beirut, Beirut, Lebanon
- §Department of Pediatrics, American University of Beirut, Beirut, Lebanon
- Correspondence should be addressed to either author (email and )
| |
Collapse
|
13
|
Liu YY, Han TY, Yu JY, Bitterman A, Le A, Giuliano AE, Cabot MC. Oligonucleotides blocking glucosylceramide synthase expression selectively reverse drug resistance in cancer cells. J Lipid Res 2004; 45:933-40. [PMID: 14967819 DOI: 10.1194/jlr.m300486-jlr200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High glucosylceramide synthase (GCS) activity is one factor contributing to multidrug resistance (MDR) in breast cancer. Enforced GCS overexpression has been shown to disrupt ceramide-induced apoptosis and to confer resistance to doxorubicin. To examine whether GCS is a target for cancer therapy, we have designed and tested the effects of antisense oligodeoxyribonucleotides (ODNs) to GCS on gene expression and chemosensitivity in multidrug-resistant cancer cells. Here, we demonstrate that antisense GCS (asGCS) ODN-7 blocked cellular GCS expression and selectively increased the cytotoxicity of anticancer agents. Pretreatment with asGCS ODN-7 increased doxorubicin sensitivity by 17-fold in MCF-7-AdrR (doxorubicin-resistant) breast cancer cells and by 10-fold in A2780-AD (doxorubicin-resistant) ovarian cancer cells. In MCF-7 drug-sensitive breast cancer cells, asGCS ODN-7 only increased doxorubicin sensitivity by 3-fold, and it did not influence doxorubicin cytotoxicity in normal human mammary epithelial cells. asGCS ODN-7 was shown to be more efficient in reversing drug resistance than either the GCS chemical inhibitor d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol or the P-glycoprotein blocking agents verapamil and cyclosporin A. Experiments defining drug transport and lipid metabolism parameters showed that asGCS ODN-7 overcomes drug resistance mainly by enhancing drug uptake and ceramide-induced apoptosis. This study demonstrates that a 20-mer asGCS oligonucleotide effectively reverses MDR in human cancer cells.
Collapse
Affiliation(s)
- Yong-Yu Liu
- John Wayne Cancer Institute at Saint John's Health Center, Santa Monica, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- David K Perry
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
15
|
Diallo M, Arenz C, Schmitz K, Sandhoff K, Schepers U. RNA Interference: Analyzing the Function of Glycoproteins and Glycosylating Proteins in Mammalian Cells. Methods Enzymol 2003; 363:173-90. [PMID: 14579575 DOI: 10.1016/s0076-6879(03)01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Mustapha Diallo
- Kekulé-Institute für Organische Chemie and Biochemie, Universitat Bonn, Gerhard Domagk Strasse 1, Bonn 53121, Germany
| | | | | | | | | |
Collapse
|
16
|
Buccoliero R, Bodennec J, Futerman AH. The role of sphingolipids in neuronal development: lessons from models of sphingolipid storage diseases. Neurochem Res 2002; 27:565-74. [PMID: 12374191 DOI: 10.1023/a:1020207613196] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The study of sphingolipids has undergone a renaissance over the past decade due to the realization that these lipids are involved in a variety a biological processes, such as differentiation, apoptosis, cell growth, and cell migration. In the nervous system, sphingolipids, particularly gangliosides, have attracted particular attention as they occur at high levels and their levels change in a developmentally regulated program. Despite the fact that a large body of data has accumulated on the expression and metabolism of individual gangliosides within specific brain regions, the role of individual gangliosides in neuronal development is still poorly understood, and their specific functions are only now beginning to be elucidated. In the present article, we discuss various aspects of our current knowledge concerning the involvement of sphingolipids and gangliosides in neuronal development, and then discuss some recent findings that shed light on the role of sphingolipids and gangliosides obtained with animal models of sphingolipid and other lysosomal storage diseases.
Collapse
Affiliation(s)
- Rosaria Buccoliero
- Weizmann Institute of Science, Department of Biological Chemistry, Rehovot, Israel
| | | | | |
Collapse
|
17
|
Deng W, Li R, Guerrera M, Liu Y, Ladisch S. Transfection of glucosylceramide synthase antisense inhibits mouse melanoma formation. Glycobiology 2002; 12:145-52. [PMID: 11971858 DOI: 10.1093/glycob/12.3.145] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MEB4 murine melanoma cells synthesize G(M3) as the major ganglioside. Inhibition of G(M3) synthesis by a specific glucosylceramide synthase inhibitor resulted in reduced tumorigenicity and metastatic potential of these cells. We used a molecular approach--antisense transfection targeting the glucosylceramide synthase gene--to regulate glycosphingolipid synthesis by MEB4 cells and examine the influence on tumor formation. Antisense transfection inhibited the synthesis of the direct product of glucosylceramide synthase, glucosylceramide, and consequently G(M3) ganglioside, by MEB4 cells, reducing the concentration of G(M3) in the transfectants by up to 58%. Although neither morphology nor proliferation kinetics of the cultured cells was affected, the inhibition of glycosphingolipid synthesis and reduction of total ganglioside content caused a striking reduction in melanoma formation in mice. Only 1/60 (2%) of mice injected ID with 10(4) antisense-transfected MA173 cells formed a tumor, compared to 31/60 (52%) of mice receiving MEB4 cells and 7/15 (47%) of mice receiving the MS2 sense-transfected cells (p < 0.001 and p = 0.005, respectively). These findings demonstrate that stable transfection of glucosylceramide synthase antisense reduces cellular glycosphingolipid levels and reduces tumorigenicity, providing further experimental support for an enhancing role of gangliosides in tumor formation.
Collapse
Affiliation(s)
- Wen Deng
- Glycobiology Program, Center for Cancer and Transplantation Biology, Children's Research Institute and Department of Pediatrics and Biochemistry/Molecular Biology, George Washington University School of Medicine, Washington, DC 20010, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
In vitro studies that showed RA could cause growth arrest and differentiation of myelogenous leukemia and neuroblastoma led to clinical trials of retinoids in APL and neuroblastoma that increased survival for both of those diseases. In the case of APL, ATRA has been the drug of choice, and preclinical and clinical data support direct combinations of ATRA with cytotoxic chemotherapy. For neuroblastoma, a phase I study defined a dose of 13-cis-RA, which was tolerable in patients after myeloablative therapy, and a phase III trial that showed postconsolidation therapy with 13-cis-RA improved EFS for patients with high-risk neuroblastoma. Preclinical studies in neuroblastoma indicate that ATRA or 13-cis-RA can antagonize cytotoxic chemotherapy and radiation, so use of 13-cis-RA in neuroblastoma is limited to maintenance after completion of cytotoxic chemotherapy and radiation. A limitation on the antitumor benefit of ATRA in APL is the marked decrease in drug levels that occurs during therapy as a result of induction of drug metabolism, resulting in a shorter drug half-life and decreased plasma levels. Although early studies sought to overcome the pharmacologic limitations of ATRA therapy in APL, the demonstration that ATO is active against APL in RA-refractory patients has led to a focus on studies employing ATO. Use of 13-cis-RA in neuroblastoma has avoided the decreased plasma levels seen with ATRA. It is likely that recurrent disease seen during or after 13-cis-RA therapy in neuroblastoma is due to tumor cell resistance to retinoid-mediated differentiation induction. Studies in neuroblastoma cell lines resistant to 13-cis-RA and ATRA have shown that they can be sensitive, and in some cases collaterally hypersensitive, to the cytotoxic retinoid fenretinide. Fenretinide induces tumor cell cytotoxicity rather than differentiation, acts independently from RA receptors, and in initial phase I trials has been well tolerated. Clinical trials of fenretinide, alone and in combination with ceramide modulators, are in development.
Collapse
Affiliation(s)
- C P Reynolds
- Developmental Therapeutics Section, Division of Hematology-Oncology, Children's Hospital of Los Angeles, University of Southern California, Keck School of Medicine, Los Angeles, California, USA.
| | | |
Collapse
|
19
|
Marks DL, Dominguez M, Wu K, Pagano RE. Identification of active site residues in glucosylceramide synthase. A nucleotide-binding catalytic motif conserved with processive beta-glycosyltransferases. J Biol Chem 2001; 276:26492-8. [PMID: 11337504 DOI: 10.1074/jbc.m102612200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucosylceramide synthase (GCS) transfers glucose from UDP-Glc to ceramide, catalyzing the first glycosylation step in the formation of higher order glycosphingolipids. The amino acid sequence of GCS was reported to be dissimilar from other proteins, with no identifiable functional domains. We previously identified His-193 of rat GCS as an important residue in UDP-Glc and GCS inhibitor binding; however, little else is known about the GCS active site. Here, we identify key residues of the GCS active site by performing biochemical and site-directed mutagenesis studies of rat GCS expressed in bacteria. First, we found that Cys-207 was the primary residue involved in GCS N-ethylmaleimide sensitivity. Next, we showed by multiple alignment that the region of GCS flanking His-193 and Cys-207 (amino acids 89-278) contains a D1,D2,D3,(Q/R)XXRW motif found in the putative active site of processive beta-glycosyltransferases (e.g. cellulose, chitin, and hyaluronan synthases). Site-directed mutagenesis studies demonstrated that most of the highly conserved residues were essential for GCS activity. We also note that GCS and processive beta-glycosyltransferases are topologically similar, possessing cytosolic active sites, with putative transmembrane domains immediately N-terminal to the conserved domain. These results provide the first extensive information on the GCS active site and show that GCS and processive beta-glycosyltransferases possess a conserved substrate-binding/catalytic domain.
Collapse
Affiliation(s)
- D L Marks
- Thoracic Diseases Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
20
|
Senchenkov A, Litvak DA, Cabot MC. Targeting ceramide metabolism--a strategy for overcoming drug resistance. J Natl Cancer Inst 2001; 93:347-57. [PMID: 11238696 DOI: 10.1093/jnci/93.5.347] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Inherent or acquired drug resistance, which frequently characterizes cancer cells, is caused by multiple mechanisms, including dysfunctional metabolism of the lipid second messenger ceramide. Ceramide, the basic structural unit of the sphingolipids, plays a role in activating cell death signals initiated by cytokines, chemotherapeutic agents, and ionizing radiation. Recent discoveries about the metabolism of ceramide suggest that this agent may have an important influence on the effectiveness of various cancer therapeutics. In particular, the cytotoxic effect of chemotherapy is decreased when generation of ceramide is impaired but is increased when the degradation of ceramide is blocked. Herein, we review the mechanisms of resistance to chemotherapeutic agents in terms of ceramide metabolism.
Collapse
Affiliation(s)
- A Senchenkov
- Breast Cancer Research Program and Chemotherapeutics, John Wayne Cancer Institute at Saint John's Health Center, Santa Monica, CA 90404, USA
| | | | | |
Collapse
|
21
|
Huwiler A, Kolter T, Pfeilschifter J, Sandhoff K. Physiology and pathophysiology of sphingolipid metabolism and signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1485:63-99. [PMID: 10832090 DOI: 10.1016/s1388-1981(00)00042-1] [Citation(s) in RCA: 308] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- A Huwiler
- Zentrum der Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt, Germany.
| | | | | | | |
Collapse
|
22
|
Manning LS, Radin NS. Effects of the glucolipid synthase inhibitor, P4, on functional and phenotypic parameters of murine myeloma cells. Br J Cancer 1999; 81:952-8. [PMID: 10576650 PMCID: PMC2362950 DOI: 10.1038/sj.bjc.6690792] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This study describes the effects of the glucolipid synthase inhibitor P4, (DL-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol ), on various functional and phenotypic parameters of 5T33 murine myeloma cells. Cell recovery was reduced by >85% following incubation of the cells for 3 days in the presence of 4 microM P4 (the IC50 concentration). Both cytostatic and cytotoxic inhibition was observed with tumour cell metabolic activity and clonogenic potential reduced to 42% and 14% of controls, respectively, and viability reduced to 52%. A dose-dependent increase in cells undergoing apoptosis (from 7% to 26%) was also found. P4 induced a decrease in the number of cells expressing H-2 Class I and CD44, and a large increase in cells expressing H-2 Class II and the IgG2b paraprotein. It did not affect surface expression of CD45 or CD54 (ICAM-1). Based on these alterations in tumour cell growth, adhesion molecule expression and potential immunogenicity, it is anticipated that P4 will provide a novel therapeutic approach for the treatment of multiple myeloma. In addition, given that essentially all tumours rely heavily on overexpressed or abnormal glucosphingolipids for growth, development and metastasis, glucolipid synthase inhibitors may prove to be universally effective anti-cancer agents.
Collapse
Affiliation(s)
- L S Manning
- Research Centre, Royal Perth Hospital, Western Australia, Australia
| | | |
Collapse
|
23
|
Nicholson KM, Quinn DM, Kellett GL, Warr JR. Preferential killing of multidrug-resistant KB cells by inhibitors of glucosylceramide synthase. Br J Cancer 1999; 81:423-30. [PMID: 10507766 PMCID: PMC2362922 DOI: 10.1038/sj.bjc.6690711] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This study has compared the preferential killing of three multidrug-resistant (MDR) KB cell lines, KB-C1, KB-A1 and KB-V1 by two inhibitors of glucosylceramide synthase, 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and 1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (PPPP), to the killing produced by these compounds in the drug-sensitive cell line, KB-3-1. Both of the inhibitors caused much greater induction of apoptosis in each of the three MDR cell lines than in the drug-sensitive cell line, as judged by morphological assay and confirmed by poly-(ADP-ribose)-polymerase cleavage. The highest level of apoptosis was produced following 24-h exposure to 5 microM PPPP. This treatment produced 75.8 (+/- 7.1)%, 73.6 (+/- 9.8)% and 75.3 (+/- 6.4)% apoptotic cells in the three MDR cell lines respectively, compared to 19.0 (+/- 9.8)% in the drug-sensitive cell line. A reduction in glucosylceramide level following inhibitor treatment occurred in KB-3-1 cells as well as in the MDR cell lines, suggesting that the increased apoptotic response in the MDR cells reflected a different downstream response to changes in the levels of this lipid in these cells compared to that in the drug-sensitive cells. These results suggest that the manipulation of glucosylceramide levels may be a fruitful way of causing the preferential killing of MDR cells in vitro and possibly in vivo.
Collapse
|
24
|
|
25
|
Lombardi V, Valko L, Valko M, Scozzafava A, Morris H, Melnik M, Svitel J, Budesinský M, Pelnár J, Steno J, Liptaj T, Zalibera L, Budinská J, Zlatos J, Giuliani A, Mascolo L, Leibfritz D, Troncone A, Marzullo F, Mazur M, Klener J, Zverina E. 1H NMR ganglioside ceramide resonance region on the differential diagnosis of low and high malignancy of brain gliomas. Cell Mol Neurobiol 1997; 17:521-35. [PMID: 9353593 DOI: 10.1023/a:1026362922549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. The high-resolution 1H NMR (MRS) spectra of human brain tumor homogenates revealed a broad resonance at 5.3-5.4 ppm in glioblastoma multiforme (N = 16) and brain metastases (N = 3). The broad resonance was identified as ceramide, a sphingosine-fatty acid combination portion of ganglioside, indicating an elevated abundance of monounsaturated fatty acids. GLC analysis of gangliosides in the highly malignant glioblastoma multiforme revealed that the elevated monounsaturated fatty acid is oleic acid (C18:1). The resonance at 5.3-5.4 ppm region was not detectable in normal human brain (N = 2), in meningiomas (N = 2), or in low-grade astrocytomas (N = 12). In normal human brain the abundance of monounsaturated fatty acid is minimal. 2. This investigation was made possible because the method of producing homogenate resulted in (i) no loss of lipids during the process and (ii) a well-homogenised sample, with (iii) no loss in chemical integrity. 3. The properties of tumor gangliosides include antigenic specificity and immunosuppressive activity and the ceramide, a sphingosine-fatty acid combination, noticeably influences the ganglioside immunosuppressive activity. 4. The observation of 1H NMR ceramide resonance in high-malignant brain tumors emphasizes the dramatic role of aberant gangliosides and ceramide precursors on the grade of malignancy and invasiveness. 5. Further insight into the specific nature of the ceramide portion of gangliosides in grading the malignancy of brain tumors should be investigated further.
Collapse
Affiliation(s)
- V Lombardi
- Department of Pathological Anatomy, Oncology Center of Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abe A, Radin NS, Shayman JA. Induction of glucosylceramide synthase by synthase inhibitors and ceramide. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1299:333-41. [PMID: 8597588 DOI: 10.1016/0005-2760(95)00217-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucosylceramide (GlcCer) synthase acts on the sphingolipid, ceramide, to transer a glucose moiety from UDP-glc, thus forming the first member of a large family of glucosphingolipids. Two inhibitors of the enzyme, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-threo-PDMP) and N-butyldeoxynojirimycin (NBDN), have been found to induce an elevated level of the synthase in MDCK cells. In cells treated with 20 muM PDMP, then assayed for synthase activity under conditions in which the absorbed PDMP was partially diluted out, the assay showed that the enzyme's specific activity had risen considerably in only 1 h and reached a maximum of about three times the control activity within 6 h. Both cycloheximide and actinomycin D, inhibitors of translational and transcriptional protein synthesis, caused much of the synthase activity to disappear in 6 h, presumably because of normal catabolic destruction. However, simultaneous inclusion of PDMP or NBDN in the cell medium slowed the rate of synthase disappearance. L-Cycloserine, which blocked the synthesis of ceramide, nevertheless allowed PDMP to elevate the synthase activity. Thus the inductive effect appears to be due, in part at least, to resistance of the enzyme-inhibitor complex to the normal process of enzyme degradation. Two other inhibitors of GlcCer synthase, more active than PDMP, did not produce detectable induction because they could not be dissociated from the enzyme during the cell washing and diluting steps. Agents that produced a large increase in endogenous cell ceramide level (DL-erythro-PDMP,N-acetylsphingosine, and bacterial sphingomyelinase) also induced an elevated level of GlcCer synthase. The latter two agents did not protect the synthase from catabolism in the presence of cycloheximide. These findings suggest the existence of a second mechanism of enzyme induction, enhanced synthesis of the enzyme due to the increased availability of the enzyme's lipoidal substrate. The possibility is raised that events involving ceramide in cell signalling may be mediated in part by changes in glucosphingolipid levels.
Collapse
Affiliation(s)
- A Abe
- Department of Internal Medicine, University of Michigan, Ann Arbor, 48109-0676, USA
| | | | | |
Collapse
|