1
|
Protein kinases orchestrate cell cycle regulators in differentiating BeWo choriocarcinoma cells. Mol Cell Biochem 2018; 452:1-15. [PMID: 30051305 DOI: 10.1007/s11010-018-3407-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/13/2018] [Indexed: 01/17/2023]
Abstract
Choriocarcinoma, a trophoblastic neoplasia, occurs in women as an incidence of abnormal pregnancy. BeWo choriocarcinoma cells derived from the abnormal placentation are a suitable model system to study the factors associated with differentiation, invasion and other cellular events as an alternative to clinical samples. Many protein kinases orchestrate the complex events of cell cycle and in case of malignancy such regulators are found to be mutated. In the present study, BeWo cells treated with forskolin (Fo) and phorbol 12-myristate 13-acetate (PMA) were used to study the role of PKA (protein kinase A) and PKC (protein kinase C), respectively, on the expression pattern of differentiation-related genes, membrane markers, PKC isoforms and cell cycle regulators. The effect of Fo and PMA on the cell proliferation was assessed. Progressive induction of alkaline phosphatase level and formation of multinucleated differentiated cells were observed in the cells treated with Fo. Exposure of cells to Fo and PMA induced the mRNA transcripts of α-hCG, β-hCG and endoglin and down-regulates E-cadherin at mRNA and protein levels. Synergistic levels of both up- and down-regulated genes/proteins were observed when cells were treated with the combination of Fo and PMA. The mRNA levels of cyclin D1, cyclin E1, p21, Rb, p53, caspase-3 and caspase-8 decreased gradually during differentiation. Fo significantly inhibited the protein levels of PCNA, Rb, PKC-α and PMA stimulated mRNA expression of PKC-ε and PKC-δ. Further, failure in the activation of essential components of the cell cycle machinery caused G2/M phase arrest in differentiating BeWo cells.
Collapse
|
2
|
Lee TM, Lin SZ, Chang NC. Differential effect of phosphodiesterase-3 inhibitors on sympathetic hyperinnervation in healed rat infarcts. Circ J 2013; 78:366-76. [PMID: 24304537 DOI: 10.1253/circj.cj-13-0749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The effect of phosphodiesterase-3 (PDE-3) inhibitors on arrhythmia remains controversial, so the purpose of this study was to determine their differential effects on sympathetic hyperinnervation and the involved mechanisms in a rat model of myocardial infarction. METHODS AND RESULTS After ligating the coronary artery, male Wistar rats were randomized to cilostazol or milrinone, chemically unrelated inhibitors of PDE-3, or vehicle for 4 weeks. The postinfarction period was associated with increased myocardial norepinephrine levels and oxidant release, as measured by myocardial superoxide level and dihydroethidine fluorescence staining. Infarcted rats in the milrinone- and cilostazol-treated groups had favorable ventricular remodeling with similar potency. Compared with milrinone, cilostazol significantly increased interstitial adenosine levels and reduced the production of myocardial cAMP and superoxide. Cilostazol significantly blunted sympathetic hyperinnervation, as assessed by immunofluorescent analysis of sympathetic innervation, and western blotting and real-time quantitative RT-PCR of nerve growth factor. Furthermore, the inhibitory effect of cilostazol on nerve growth factor was reversed by 8-cyclopentyl-1,3-dipropylxanthine, a selective A1 receptor antagonist, and enhanced by tempol administration. In spite of similar arrhythmic vulnerability during programmed stimulation in both the vehicle-and cilostazol-treated groups, cilostazol did not have proarrhythmic effects compared with milrinone. CONCLUSIONS Unlike milrinone, cilostazol has therapeutic neutrality in arrhythmias because of adenosine uptake inhibition, which antagonizes the PDE-3-induced increase of sympathetic reinnervation via mediation of an adenosine A1 receptor-mediated antioxidation.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, Tainan Municipal An-Nan Hospital-China Medical University
| | | | | |
Collapse
|
3
|
Goto J, Otsuka F, Yamashita M, Suzuki J, Otani H, Takahashi H, Miyoshi T, Mimura Y, Ogura T, Makino H. Enhancement of aldosterone-induced catecholamine production by bone morphogenetic protein-4 through activating Rho and SAPK/JNK pathway in adrenomedullar cells. Am J Physiol Endocrinol Metab 2009; 296:E904-16. [PMID: 19190257 DOI: 10.1152/ajpendo.90840.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we investigated the effects of mineralocorticoid in the regulation of catecholamine biosynthesis using rat pheochromocytoma PC12 cells. Expression of mineralocorticoid receptor (MR) was confirmed in undifferentiated PC12 cells. Aldosterone stimulated dopamine production by PC12 cells without any increase in cAMP activity. Aldosterone-induced dopamine accumulation was enhanced in accordance with the increase in the rate-limiting enzyme tyrosine hydroxylase (TH). Blocking MR with eplerenone suppressed aldosterone-induced increases of TH mRNA and dopamine production. A glucocorticoid receptor (GR) antagonist, RU-486, attenuated dexamethasone- but not aldosterone-induced TH expression. Cycloheximide reduced both aldosterone- and dexamethasone-induced TH mRNA. A SAPK/JNK inhibitor, SP600125, suppressed aldosterone-induced TH mRNA expression; however, the aldosterone-induced TH expression was not affected by inhibition of ERK1/2, p38-MAPK, Rho-kinase, PI 3-kinase, and PKC. It was of note that cotreatment with eplerenone and SP600125 restored aldosterone-induced TH mRNA expression to basal levels. To investigate the involvement of bone morphogenetic protein (BMP) actions in aldosterone-induced catecholamine production, we examined the effects of BMP-4 and BMP-7, which are expressed in the adrenal medulla, on catecholamine biosynthesis. BMP-4 preferentially enhanced aldosterone-induced TH mRNA and dopamine production, although BMP-4 alone did not affect TH expression. The BMP-4 enhancement of aldosterone-induced TH expression was not observed in cells treated with eplerenone. BMP-4 did not affect MR expression of PC12 cells; however, it did enhance aldosterone-induced SAPK/JNK phosphorylation. Inhibition of SAPK/JNK or Rho suppressed BMP-4 enhancement of aldosterone-induced TH expression. Collectively, our findings demonstrate that aldosterone stimulates catecholamine biosynthesis in adrenomedullar cells via MR through genomic action and partly through nongenomic action by Rho-SAPK/JNK signaling, the latter of which is facilitated by BMP-4. A functional link between MR actions and endogenous BMP may be involved in the catecholamine production.
Collapse
Affiliation(s)
- Junko Goto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama City, 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sazonova OV, Blishchenko EY, Tolmazova AG, Khachin DP, Leontiev KV, Karelin AA, Ivanov VT. Stimulation of fibroblast proliferation by neokyotorphin requires Ca2+ influx and activation of PKA, CaMK II and MAPK/ERK. FEBS J 2006; 274:474-84. [PMID: 17229152 DOI: 10.1111/j.1742-4658.2006.05594.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neokyotorphin [TSKYR, hemoglobin alpha-chain fragment (137-141)] has previously been shown to enhance fibroblast proliferation, its effect depending on cell density and serum level. Here we show the dependence of the effect of neokyotorphin on cell type and its correlation with the effect of protein kinase A (PKA) activator 8-Br-cAMP, but not the PKC activator 4beta-phorbol 12-myristate, 13-acetate (PMA). In L929 fibroblasts, the proliferative effect of neokyotorphin was suppressed by the Ca2+ L-type channel inhibitors verapamil or nifedipine, the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester, kinase inhibitors H-89 (PKA), KN-62 (Ca2+/calmodulin-dependent kinase II) and PD98059 (mitogen-activated protein kinase). The proliferative effect of 8-Br-cAMP was also suppressed by KN-62 and PD98059. PKC suppression (downregulation with PMA or inhibition with bisindolylmaleimide XI) did not affect neokyotorphin action. The results obtained point to a cAMP-like action for neokyotorphin.
Collapse
Affiliation(s)
- Olga V Sazonova
- Regulatory Peptides Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
5
|
Ziółkowska B, Urbański MJ, Wawrzczak-Bargieła A, Bilecki W, Przewłocki R. Morphine activates Arc expression in the mouse striatum and in mouse neuroblastoma Neuro2A MOR1A cells expressing mu-opioid receptors. J Neurosci Res 2006; 82:563-70. [PMID: 16211563 DOI: 10.1002/jnr.20661] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is an effector immediate early gene product implicated in long-term potentiation and other forms of neuroplasticity. Earlier studies demonstrated Arc induction in discrete brain regions by several psychoactive substances, including drugs of abuse. In the present experiments, the influence of morphine on Arc expression was assessed by quantitative reverse transcription real-time PCR and Western blotting in vivo in the mouse striatum/nucleus accumbens and, in vitro, in the mouse Neuro2A MOR1A cell line, expressing mu-opioid receptor. An acute administration of morphine produced a marked increase in Arc mRNA and protein level in the mouse striatum/nucleus accumbens complex. After prolonged opiate treatment, tolerance to the stimulatory effect of morphine on Arc expression developed. No changes in the striatal Arc mRNA levels were observed during spontaneous or opioid antagonist-precipitated morphine withdrawal. In Neuro2A MOR1A cells, acute, but not prolonged, morphine treatment elevated Arc mRNA level by activation of mu-opioid receptor. This was accompanied by a corresponding increase in Arc protein level. Inhibition experiments revealed that morphine induced Arc expression in Neuro2A MOR1A cells via intracellular signaling pathways involving mitogen-activated protein (MAP) kinases and protein kinase C. These results lend further support to the notion that stimulation of opioid receptors may exert an activating influence on some intracellular pathways and leads to induction of immediate early genes. They also demonstrate that Arc is induced in the brain in vivo after morphine administration and thus may play a role in neuroadaptations produced by the drug.
Collapse
MESH Headings
- AIDS-Related Complex/genetics
- AIDS-Related Complex/metabolism
- Analysis of Variance
- Animals
- Blotting, Western/methods
- Cell Line, Tumor
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drug Interactions
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Gene Expression/drug effects
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Indoles/pharmacology
- Male
- Maleimides/pharmacology
- Mice
- Mice, Inbred C57BL
- Morphine/administration & dosage
- Narcotics/administration & dosage
- Neuroblastoma/metabolism
- RNA, Messenger/biosynthesis
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Barbara Ziółkowska
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków
| | | | | | | | | |
Collapse
|
6
|
Kano Y, Otsuka F, Takeda M, Suzuki J, Inagaki K, Miyoshi T, Miyamoto M, Otani H, Ogura T, Makino H. Regulatory roles of bone morphogenetic proteins and glucocorticoids in catecholamine production by rat pheochromocytoma cells. Endocrinology 2005; 146:5332-40. [PMID: 16150914 DOI: 10.1210/en.2005-0474] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We here report a new physiological system that governs catecholamine synthesis involving bone morphogenetic proteins (BMPs) and activin in the rat pheochromocytoma cell line, PC12. BMP type I receptors, including activin receptor-like kinase-2 (ALK-2) (also referred to as ActRIA) and ALK-3 (BMPRIA), both type II receptors, ActRII and BMPRII, as well as the ligands BMP-2, -4, and -7 and inhibin/activin subunits were expressed in PC12 cells. PC12 cells predominantly secrete dopamine, whereas noradrenaline and adrenaline production is negligible. BMP-2, -4, -6, and -7 and activin A each suppressed dopamine and cAMP synthesis in a dose-dependent fashion. The BMP ligands also decreased 3,4-dihydroxyphenylalanine decarboxylase mRNA expression, whereas activin suppressed tyrosine hydroxylase expression. BMPs induced both Smad1/5/8 phosphorylation and Tlx2-Luc activation, whereas activin stimulated 3TP-Luc activity and p38 MAPK phosphorylation. ERK signaling was not affected by BMPs or activin. Dexamethasone enhanced catecholamine synthesis, accompanying increases in tyrosine hydroxylase and 3,4-dihydroxyphenylalanine decarboxylase transcription without cAMP accumulation. In the presence of dexamethasone, BMPs and activin failed to reduce dopamine as well as cAMP production. In addition, dexamethasone modulated mitotic suppression of PC12 induced by BMPs in a ligand-dependent manner. Furthermore, intracellular BMP signaling was markedly suppressed by dexamethasone treatment and the expression of ALK-2, ALK-3, and BMPRII was significantly inhibited by dexamethasone. Collectively, the endogenous BMP/activin system plays a key role in the regulation of catecholamine production. Controlling activity of the BMP system may be critical for glucocorticoid-induced catecholamine synthesis by adrenomedullar cells.
Collapse
Affiliation(s)
- Yoshihiro Kano
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ahn YH, Jung JM, Hong SH. 8-Cl-cAMP and its metabolite, 8-Cl-adenosine induce growth inhibition in mouse fibroblast DT cells through the same pathways: protein kinase C activation and cyclin B down-regulation. J Cell Physiol 2004; 201:277-85. [PMID: 15334662 DOI: 10.1002/jcp.20047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
8-Chloro-cyclic AMP (8-Cl-cAMP) is known to be most effective in inducing growth inhibition and differentiation of a number of cancer cells. Also, its cellular metabolite, 8-Cl-adenosine was shown to induce growth inhibition in a variety of cell lines. However, the signaling mechanism that governs the effects of 8-Cl-cAMP and/or 8-Cl-adenosine is still uncertain and it is not even sure which of the two is the key molecule that induces growth inhibition. In this study using mouse fibroblast DT cells, it was found that adenosine kinase inhibitor and adenosine deaminase could reverse cellular growth inhibition induced by 8-Cl-cAMP and 8-Cl-adenosine. And 8-Cl-cAMP could not induce growth inhibition in the presence of phosphodiesterase (PDE) inhibitor, but 8-Cl-adenosine could. We also found that protein kinase C (PKC) inhibitor could restore this growth inhibition, and both the 8-Cl-cAMP and 8-Cl-adenosine could activate the enzymatic activity of PKC. Besides, after 8-Cl-cAMP and 8-Cl-adenosine treatment, cyclin B was down-regulated and a CDK inhibitor, p27 was up-regulated in a time-dependent manner. These results suggest that it is not 8-Cl-cAMP but 8-Cl-adenosine which induces growth inhibition, and 8-Cl-cAMP must be metabolized to exert this effect. Furthermore, there might exist signaling cascade such as PKC activation and cyclin B down-regulation after 8-Cl-cAMP and 8-Cl-adenosine treatment.
Collapse
Affiliation(s)
- Young-Ho Ahn
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
8
|
Das PC, McElroy WK, Cooper RL. Potential mechanisms responsible for chlorotriazine-induced alterations in catecholamines in pheochromocytoma (PC12) cells. Life Sci 2003; 73:3123-38. [PMID: 14550852 DOI: 10.1016/j.lfs.2003.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chlorotriazines interact with undifferentiated PC12 cells in vitro to modulate catecholamine synthesis and release, but the mechanism(s) responsible for this effect had not been determined. In this study we evaluated the effect of atrazine, simazine and cyanazine on the protein expression of the enzymes responsible for the synthesis of dopamine [tyrosine hydroxylase (TH)] and norepinephrine [dopamine-beta-hydroxylase (DbetaH)]. We also examined the possible intracellular pathway associated with chlorotriazine-induced changes in catecholamine synthesis and release. Incubating PC12 cells in the presence of 100 microM atrazine and simazine decreased intracellular dopamine (DA), norepinephrine (NE) concentration and NE release, and the protein expression of TH (approximately 20%) and DbetaH (approximately 50 and 25%, respectively) after 12-24 h exposure. In contrast, cyanazine (100 microM) stimulated intracellular and released NE concentration, and the protein expression of TH (approximately 20%) and DbetaH (approximately 225%) after 12-36 h exposure. Simultaneous exposure to the essential TH co-factors (iron and tetrahydrobiopterine) was ineffective in altering cellular DA. Agents known to enhance TH and DbetaH transcription, phosphorylation or activity (e.g., 8-bromo cAMP, forskolin or dexamethasone) reversed the inhibitory effects of atrazine and simazine on the NE. Again, in contrast to atrazine and simazine, cyanazine attenuated catecholamine-depleting effect of alpha-Methyl-p-tyrosine (alphaMpT) on NE. Both DA and NE synthesis can be altered by the chlorotriazines and suggest these occur via an alteration of the synthetic enzymes TH and DbetaH.
Collapse
Affiliation(s)
- Parikshit C Das
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
9
|
Séité P, Ruchaud S, Hillion J, Gendron MC, Bruland O, Ségal-Bendirdjian E, Doskeland SO, Lillehaug JR, Lanotte M. Ectopic expression of Bcl-2 switches over nuclear signalling for cAMP-induced apoptosis to granulocytic differentiation. Cell Death Differ 2000; 7:1081-9. [PMID: 11139282 DOI: 10.1038/sj.cdd.4400730] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The IPC-81 myeloid leukaemia cells undergo apoptosis rapidly after cAMP stimulation (6 h) and cell death is prevented by early over-expression of the cAMP-inducible transcription repressor ICER, that blocks cAMP-dependent nuclear signalling. Therefore, the expression of specific genes controlled by CRE-containing promoters is likely to determine cell fate. We now show that cAMP-induced cell death also is abrogated by the over-expression of the anti-apoptotic gene, Bcl-2. Contrary to ICER, Bcl-2 does not affect cAMP-signalling and allows the analysis of cAMP responses in death rescued cells. The Bcl-2 transfected cells treated with 8-CPT-cAMP were growth-arrested and thereafter cells embarked in granulocytic differentiation, with no additional stimulation. Neutrophilic polynuclear granulocytes benefited from a long life span in G0-G1 and remained functional (phagocytosis). This work demonstrates that, using anti-apoptosis regulators, 'death signals' could be exploited to trigger distinct biological responses. Indeed, cAMP signal can trigger several simultaneously developing biological programs, in the same cell, i.e., growth regulation, apoptosis and differentiation. This cell system should prove useful to determine how a tumour cell can be re-programmed for either apoptosis or functional maturation by physiological signals.
Collapse
Affiliation(s)
- P Séité
- INSERM U496, Institut d'Hématologie, Hôpital St Louis, 75010-Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Adenosine, an intercellular messenger that is a product of the metabolism of ATP, plays a major role in neuronal and vascular responses of the retina to alterations in oxygen delivery. Significant changes in adenosine concentration have been measured in the retina during both ischemia and during the subsequent reperfusion period which result in important, but complex, functional effects. Adenosine A1 receptor stimulation produces a protective effect during ischemia, whereas overstimulation of the A2a receptor has deleterious effects. The mechanisms underlying these findings have not been completely determined, but most likely are the result of alterations in excitotoxicity, gene expression, and blood flow. Paradoxically, prolonged increases in adenosine concentration may be injurious to the retina, a consequence of superoxide radical formation secondary to adenosine catabolism. Adenosine is a critical mediator of blood flow changes in response to ischemia. It is a significant component of the retina's compensatory hyperemic response to ischemia, hypoxia, and hypoglycemia. Increasing endogenous adenosine concentrations may be useful in ameliorating post-ischemic hypoperfusion. Overall, current evidence suggests that adenosine is a vital component of the endogenous retinal response to substrate deprivation. Additionally, in vitro studies provide strong evidence that adenosine is a mediator of the formation and effects of vascular endothelial growth factor, which in turn promotes neovascularization. Finally, the ability of the retina to develop an ischemia-tolerant state by ischemic preconditioning is an intriguing phenomenon that reveals yet another essential role for adenosine in the retina's endogenous response to ischemia. The experimental results described in this review suggest that continued investigation into the role of adenosine in the retina may lead to important clinical applications for adenosine-based therapies that could decrease the incidence of retinal damage in ischemic vasculopathies such as diabetes, glaucoma, and retinal vascular occlusion.
Collapse
Affiliation(s)
- G J Ghiardi
- Department of Anesthesia and Critical Care, University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
11
|
Du X, Iacovitti L. Multiple signaling pathways direct the initiation of tyrosine hydroxylase gene expression in cultured brain neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 50:1-8. [PMID: 9406911 DOI: 10.1016/s0169-328x(97)00149-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies have demonstrated that the synergistic interaction of acidic fibroblast growth factor (aFGF) and a second co-activator molecule can novelly induce expression of the CA biosynthetic enzyme tyrosine hydroxylase (TH) in non-TH expressing neurons of the striatum. Several co-activators have been identified, including substances present in L6 muscle cell extract (X. Du et al., J. Neurosci. 14 (1994) 7688-7694) catecholamines, such as dopamine (DA) (X. Du and L. Iacovitti, J. Neurosci. 15 (1995) 5420-5427; X. Du et al., Brain Res. 680 (1995) 229-233) and activators of protein kinase C (PKC) such as TPA (X. Du and L. Iacovitti, J. Neurochem. 68 (1997) 564-569). In the present study, we investigated whether activators of the protein kinase A (PKA) pathway also serve as effective co-activators of aFGF in the induction of TH gene expression. In addition, the combinatorial effects of the various TH-inducing agents were also evaluated. We found that, as with other co-activating molecules, the PKA stimulants IBMX and forskolin had no TH-inducing capacity when administered alone. However, co-treatment of 10 ng/ml aFGF with either (250 microM) IBMX or (10 microM) forskolin resulted in the novel expression of TH in 25% of plated neurons. The number of TH-expressing neurons was increased to 55% in aFGF-treated cultures co-incubated with aFGF and both (250 microM) IBMX and (10 microM) forskolin. Time course studies indicated that TH induction was rapid (peaking within 24 h) and enduring (lasting 4 days in culture). Induction of TH by aFGF and IBMX/forskolin was partially blocked by inhibitors of protein kinase, such as H7, H8 and H89, as well as pretreatment with protein (cyclohexamide) or RNA synthesis (amanitin and actinomycin D) inhibitors. The concomitant addition of combinations of co-activator molecules (DA, TPA and IBMX/forskolin) and aFGF resulted in the additive induction of TH. Maximal expression of TH (80% of striatal neurons) was accomplished when cultures were treated with aFGF and all co-activator molecules simultaneously. Our results suggest that there are multiple ways to signal the initiation of the TH gene, each of which requires the synergy of specific growth factors and either DA, PKA or PKC pathway activators. Since only the combination of growth factor and all co-activators together produces maximum TH induction, each molecule may signal a unique intracellular pathway which converges at targets on the TH gene.
Collapse
Affiliation(s)
- X Du
- Department of Neurobiology and Anatomy, Medical College of Pennsylvania and Hahnemann University, Philadelphia 19102, USA
| | | |
Collapse
|
12
|
Wang S, Desai D, Wright G, Niles RM, Wright GL. Effects of protein kinase C alpha overexpression on A7r5 smooth muscle cell proliferation and differentiation. Exp Cell Res 1997; 236:117-26. [PMID: 9344591 DOI: 10.1006/excr.1997.3714] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Smooth muscle cell differentiation and proliferation are increasingly seen to be intimately tied to the etiology of atherosclerosis and hypertension. To determine the role of PKC alpha in the regulation of smooth muscle cell differentiation and proliferation, the rat embryonic smooth muscle cell line A7r5 was transfected with an expression vector containing the full-length PKC alpha cDNA. Neomycin-resistant clones which exhibited increased PKC alpha levels compared to wild-type cells were selected. The A7r5 cells overexpressing PKC alpha had altered morphology and decreased growth rates compared to wild-type cells and cells transfected only with the neomycin resistance gene. Electrophoretic mobility shift assays showed that nuclear extracts from overexpressing clones gave a different pattern of protein-DNA binding to an AP-1 consensus oligonucleotide compared to wild-type cells. In contrast to the growth characteristics of these clones, their levels of cell differentiation marker proteins such as vinculin and desmin were not affected by PKC alpha overexpression. Moreover, the smooth muscle-specific differentiation marker alpha-actin was markedly reduced, while beta-actin levels were found to remain unchanged. Northern blot analysis confirmed that alpha-actin downregulation occurred at the RNA level. Western blot analysis revealed that A7r5 cells have five different PKC isoforms and that these isoform protein levels were not changed by PKC alpha overexpression. These findings suggest that PKC alpha regulates growth and differentiation of A7r5 smooth muscle cells and that these changes might result from altered expression/function of AP-1 transcription factors.
Collapse
Affiliation(s)
- S Wang
- Department of Physiology, Marshall University School of Medicine, Huntington, West Virginia 25755, USA
| | | | | | | | | |
Collapse
|
13
|
Jiang L, Foster FM, Ward P, Tasevski V, Luttrell BM, Conigrave AD. Extracellular ATP triggers cyclic AMP-dependent differentiation of HL-60 cells. Biochem Biophys Res Commun 1997; 232:626-30. [PMID: 9126325 DOI: 10.1006/bbrc.1997.6345] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Extracellular ATP and ATP gamma S (1-1000 microM) stimulated cyclic AMP (cAMP) production in undifferentiated HL-60 cells. The potency order for adenine nucleotides and adenosine was ATP gamma S > ATP > > ADP > 3 AMP = Adenosine. Indomethacin (50 microM) had no effect on ATP-induced cAMP production. ATP and ATP gamma S also suppressed cell growth and induced differentiation as revealed by fMLP-stimulated beta-glucuronidase release 48 h after exposure. The potency order for the induction of fMLP-stimulated beta-glucuronidase release by adenine nucleotides and adenosine was ATP gamma S > 3 ATP > ADP > AMP = Adenosine approximately 0. The protein kinase A inhibitor Rp-8-Br-cAMPS (10-200 mM) suppressed ATP-induced differentiation but had no effect on ATP-dependent growth suppression. UTP which, like ATP, activates P2U receptors on HL-60 cells, had no effect on cAMP production, cell growth, or differentiation. The data suggest the existence of a novel receptor for ATP on undifferentiated HL-60 cells that is coupled to the activation of adenylate cyclase and cAMP-dependent differentiation.
Collapse
Affiliation(s)
- L Jiang
- Department of Biochemistry, University of Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
14
|
Leprince P, Bonvoisin C, Rogister B, Mazy-Servais C, Moonen G. Protein kinase- and staurosporine-dependent induction of neurite outgrowth and plasminogen activator activity in PC12 cells. Biochem Pharmacol 1996; 52:1399-405. [PMID: 8937450 DOI: 10.1016/s0006-2952(96)00472-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We analysed how interactions between protein kinase-dependent intracellular signalling pathways were implicated in the control of the production of tissue-type plasminogen activator (tPA) and the generation of neurite outgrowth by PC12 cells. To that aim, cells were treated with agents that interact with the trk receptor and with protein kinases A and C. Nerve growth factor induced only the formation of large neurites. The release of the protease and the production of short neurite outgrowth were found to be protein-kinase-A-dependent events that could be enhanced by simultaneous activation of protein kinase C with phorbol ester. At high concentration, staurosporine, a nonselective inhibitor of protein kinases, induced the production of short neurites and mimicked the protein-kinase-A-dependent effect on tPA release. Such a response was not observed with K-252a, an analogue of staurosporine devoid of neurite-outgrowth-promoting activity. The responses to protein kinase A stimulation and the addition of staurosporine, although similar, seemed to occur through an activation of distinct, yet interacting, signalling pathways. In conclusion, tPA release and large neurite outgrowth from PC12 cells are controlled by parallel, albeit interacting, pathways, suggesting that these two potentially antagonistic events in PC12 cell differentiation can be modulated in a concerted way or independently of each other, depending on the activity of several protein kinases.
Collapse
Affiliation(s)
- P Leprince
- Department of Human Physiology and Pathophysiology, University of Liège, Belgium
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Abstract
The purine nucleoside adenosine and the purine nucleotide ATP play different roles in the nervous system. Adenosine acts on a family of G protein coupled receptors, collectively called adenosine receptors or P1 purinoceptors. Four members of this family have been cloned and pharmacologically characterized: A1, A2A, A2B and A3. Their distribution, pharmacology and biological roles are briefly discussed. In particular, the evidence that adenosine acting at A1 receptors regulates the release of several neurotransmitters and that adenosine acting at A2A receptors modulates dopaminergic transmission is summarized. ATP acts on receptors called P2 purinoceptors, which appear to fall into at least two main families--G protein coupled receptors and intrinsic ion channels. Their subclassification is becoming clearer as receptors are cloned and new selective agonists and/or antagonists are becoming available. There is an interesting potential for development of drugs targeted at purines or their receptors.
Collapse
Affiliation(s)
- B B Fredholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Schubert P, Rudolphi KA, Fredholm BB, Nakamura Y. Modulation of nerve and glial function by adenosine--role in the development of ischemic damage. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1994; 26:1227-36. [PMID: 7531656 DOI: 10.1016/0020-711x(94)90092-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Adenosine is released during brain ischemia and provides neuroprotection by actions on nerve and glial cells. Activation of the adenosine A1 receptor enhances the K+ and Cl- conductance in neurons, leading to membrane hyperpolarization and postsynaptic reduction of neuronal Ca2+ influx through voltage- and NMDA receptor-dependent channels. In addition adenosine A1 receptor activation decreases excitatory amino acid release, possibly via inhibition of N- and P-type Ca2+ channels. The A1 and A2 receptors, coupled to Gi/G(o) and Gs proteins respectively, often co-exist and interact with the phospholipase C-dependent activation of the protein kinase C and the adenylyl cyclase. Activation of the A1 receptor may mimic metabotropic receptor stimulation in activating intracellular Ca2+ mobilization and PKC. A2 receptor mediated cAMP formation is depressed by high intracellular Ca2+ but enhanced by PKC activation. By modulating these metabolic signaling events, adenosine may influence acute cell functions, gene transcription and sustained changes of nerve and glial cells relevant for the development of ischemic damage. The neuroprotective adenosine effect seems to be amplified by treatment with propentofylline, which enhances adenosine release, influences the balance between A1 and A2 receptor mediated actions, depresses the free radical formation in activated microglia and influences astrocyte reactions.
Collapse
Affiliation(s)
- P Schubert
- Max Planck Institute for Psychiatry, Department of Neuromorphology, Martinsried, Germany
| | | | | | | |
Collapse
|