1
|
Relationship between Prognosis, Immune Infiltration Level, and Differential Expression of PARVG Gene in Uterine Corpus Endometrial Carcinoma. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7376588. [PMID: 35655721 PMCID: PMC9135557 DOI: 10.1155/2022/7376588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Endometrial cancer (UCEC) is very common in gynecological diseases and ranks second in the death cause of gynecological cancer in developed countries. The connection between the overall survival of UCEC patients and immune invasion of the tumor microenvironment is positive. The PARVG gene has not been given notice in cancer, and its mechanism is unknown. The research utilized TCGA data to test the function of PARVG in UCEC. The manifestation of PARVG in UCEC was studied by GEPIA. By assessing the survival module, the authors learned the impact of PARVG on the survival of people with UCEC and then obtained UCEC information from TCGA. This study uses logistic regression to prove the possible relationship between PARVG expression and clinical information. From the research of Cox regression, clinicopathological characteristics of people with TCGA were connected with overall survival. Furthermore, the “correlation” module of GEPIA and CIBERSORT was used to study the association between cancer immune invasion and PARVG. Using univariate logistic regression analysis with PARVG expression as a categorical variable (median expression value of 2.5), the result suggested that raised PARVG expression was considerably connected with tumor status, pathological stage, and lymph nodes. Multiple factor studies have shown that upregulation of PARVG, distant metastasis, and negative pathological stage are absolute elements of excellent prognosis. In addition, CIBERSORT analysis was utilized to determine that raised PARVG expression has a positive connection with immune infiltration by T cells, mast cells, neutrophils, and B cells. This is recognized in GEPIA's “correlation” module. The above outcomes show us that the raised expression of PARVG is associated with a good prognosis and it raises the proportion of immune cells (such as T cells, mast cells, neutrophils, and B cells) in UCEC. These outcomes tell us that PARVG can be utilized as a possible biomarker to evaluate UCEC's immune infiltration levels and prognosis.
Collapse
|
2
|
Han L, Shi H, Luo Y, Sun W, Li S, Zhang N, Jiang X, Gong Y, Xie C. Gene signature based on B cell predicts clinical outcome of radiotherapy and immunotherapy for patients with lung adenocarcinoma. Cancer Med 2020; 9:9581-9594. [PMID: 33098370 PMCID: PMC7774727 DOI: 10.1002/cam4.3561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 12/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common and lethal cancer worldwide. Radiotherapy (RT) is widely used at all stages of LUAD, and the development of immunotherapy substantially enhances the survival of LUAD patients. Although the emerging treatments for LUAD have improved prognosis, only a small fraction of patients can benefit from clinical therapies. Thereby, approaches assessing responses to RT and immunotherapy in LUAD patients are essential. After integrating the analysis of RT, immunization, mRNA, and clinical information, we constructed a signature based on 308 tumor‐infiltrating B lymphocyte‐specific genes (TILBSig) using a machine learning method. TILBSig was composed of 6 B cell‐specific genes (PARP15, BIRC3, RUBCNL, SP110, TLE1, and FADS3), which were highly associated with the overall survival as independent factors. TILBSig was able to differentiate better survival compared with worse survival among different patients, and served as an independent factor for clinical characteristics. The low‐risk TILBSig group was correlated with more immune cell infiltration (especially B lineages) and lower cancer stem cell characteristics than the high‐risk group. The patients with lower risk scores were more likely to respond to RT and immunotherapy. TILBSig served as an excellent predicator for prognosis and response to immunotherapy and RT in LUAD patients.
Collapse
Affiliation(s)
- Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hongjie Shi
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Nannan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Human Genetics Resource Preservation Center of Hubei Province, Human Genetics Resource Preservation Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Han J, Lotze MT. The Adaptome as Biomarker for Assessing Cancer Immunity and Immunotherapy. Methods Mol Biol 2020; 2055:369-397. [PMID: 31502161 DOI: 10.1007/978-1-4939-9773-2_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In terms of diagnosing and treating diseases, our adaptive immune system is the "best doctor." It carries out these tasks with unmatched precision, with the help of both T and B cell receptors, our most diverse set of genes, distinguishing one individual from another. It does this by generating autologous extraordinary diversity in the receptors, ranging from 1015 to 1025 for each chain of the rearranged receptors. By combining multiplex PCR and next-generation sequencing (NGS), we have developed high throughput methods to study adaptive immunity. The adaptome is the sum-total of expressed T and B cell receptor genes in a sample, composed of seven chains, including the alpha/beta and gamma/delta chains for T cells, and heavy/lambda or kappa chains for B cells. Immune repertoire is the sum-total of the individual clonotypes within one chain, including individual complementarity-determining regions (CDR) 3 sequences. In order to reflect the breadth and depth of the true adaptome, the following criteria assessing any method needs to be ascertained: (1) Methods need to be inclusive and quantitative; (2) Analysis should consider what questions need to be addressed and whether bulk or single cell sequencing provide the best tools for assessing the underlying biology and addressing important questions; (3) Measures of clonal diversity are key to understand the underlying structure and providence of the repertoire; and (4) Convergent evolution may allow a surprising degree of homologous or identical CDR3s associated with individual disease entities, creating hope for novel diagnostics and/or disease burden assessments. Integrating studies of the peripheral blood, lymph nodes, and tumor allows dynamic interrogation of the alterations occurring with age, treatment, and response to emergent and established therapies.
Collapse
Affiliation(s)
- Jian Han
- iRepertoire, Inc., Huntsville, AL, USA.,Hudson Alpha Institute, Huntsville, AL, USA
| | - Michael T Lotze
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Zhuang Y, Zhang C, Wu Q, Zhang J, Ye Z, Qian Q. Application of immune repertoire sequencing in cancer immunotherapy. Int Immunopharmacol 2019; 74:105688. [PMID: 31276974 DOI: 10.1016/j.intimp.2019.105688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 05/05/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
With the prominent breakthrough in the field of tumor immunology, diverse cancer immunotherapies have attracted great attention in the last decade. The immune checkpoint inhibitors, adoptive cell therapies, and therapeutic cancer vaccines have already achieved impressive clinical success. However, the fact that only a small subset of patients with specific tumor types can benefit from these treatments limits the application of cancer immunotherapy. To seek out the molecular mechanisms behind this challenge and to select cancer precision medicine for different individuals, researchers apply the immune repertoire sequencing (IRS) to evaluate genetic responses of each patient to current immunotherapies. This review summarizes the technical advances and recent applications of IRS in cancer immunotherapy, indicates the limitations of this technique, and predicts future perspectives both in basic studies and clinical trials.
Collapse
Affiliation(s)
- Yuan Zhuang
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Changzheng Zhang
- Shanghai Baize Medical Laboratory, Shanghai, China; Shanghai Engineering Research Center for Cell Therapy, Shanghai, China
| | - Qiong Wu
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Jing Zhang
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Zhenlong Ye
- Shanghai Baize Medical Laboratory, Shanghai, China; Shanghai Cell Therapy Research Institute, Shanghai, China; Shanghai Engineering Research Center for Cell Therapy, Shanghai, China.
| | - Qijun Qian
- Shanghai Baize Medical Laboratory, Shanghai, China; Shanghai Cell Therapy Research Institute, Shanghai, China; Shanghai Engineering Research Center for Cell Therapy, Shanghai, China.
| |
Collapse
|
5
|
Lindquist ME, Hicar MD. B Cells and Antibodies in Kawasaki Disease. Int J Mol Sci 2019; 20:ijms20081834. [PMID: 31013925 PMCID: PMC6514959 DOI: 10.3390/ijms20081834] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
The etiology of Kawasaki disease (KD), the leading cause of acquired heart disease in children, is currently unknown. Epidemiology supports a relationship of KD to an infectious disease. Several pathological mechanisms are being considered, including a superantigen response, direct invasion by an infectious etiology or an autoimmune phenomenon. Treating affected patients with intravenous immunoglobulin is effective at reducing the rates of coronary aneurysms. However, the role of B cells and antibodies in KD pathogenesis remains unclear. Murine models are not clear on the role for B cells and antibodies in pathogenesis. Studies on rare aneurysm specimens reveal plasma cell infiltrates. Antibodies generated from these aneurysmal plasma cell infiltrates showed cross-reaction to intracellular inclusions in the bronchial epithelium of a number of pathologic specimens from children with KD. These antibodies have not defined an etiology. Notably, a number of autoantibody responses have been reported in children with KD. Recent studies show acute B cell responses are similar in children with KD compared to children with infections, lending further support of an infectious disease cause of KD. Here, we will review and discuss the inconsistencies in the literature in relation to B cell responses, specific antibodies, and a potential role for humoral immunity in KD pathogenesis or diagnosis.
Collapse
Affiliation(s)
- Michael E Lindquist
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Mark D Hicar
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14222, USA.
| |
Collapse
|
6
|
Challenging tumour immunological techniques that help to track cancer stem cells in malignant melanomas and other solid tumours. Contemp Oncol (Pozn) 2018; 22:41-47. [PMID: 29628793 PMCID: PMC5885074 DOI: 10.5114/wo.2018.73884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim of the study The arsenal of questions and answers about the minor cancer initiating cancer stem cell (CSC) population put responsible for cancer invasiveness and metastases, has left with an unsolved puzzle. Specific aims of a complex project were partly focused on revealing new biomarkers of cancer. We designed and set up novel techniques to facilitate the detection of cancerous cells. Materials and methods As a novel approach, we investigated B cells infiltrating breast carcinomas and melanomas (TIL-B) in terms of their tumour antigen binding potential. By developing the TIL-B phage display technology we provide here a new technology for the specific detection of highly tumour-associated antigens. Single chain Fv (scFv) antibody fragment phage ELISA, immunofluorescence (IF) FACS analysis, chamber slide technique with IF confocal laser microscopy and immunohistochemistry (IHC) in paraffin-embedded tissue sections were set up and standardized. Results We showed strong tumour-associated disialylated glycosphingolipid expression levels on various cancer cells using scFv antibody fragments, generated previously by uniquely invasive breast carcinoma TIL-B phage display library technology. Conclusions We report herein a novel strategy to obtain antibody fragments of human origin that recognise tumour-associated ganglioside antigens. Our investigations have the power to detect privileged molecules in cancer progression, invasiveness, and metastases. The technical achievements of this study are being harnessed for early diagnostics and effective cancer therapeutics.
Collapse
|
7
|
Affiliation(s)
- Grace J Yuen
- Ragon Institute of MGH, MIT and Harvard, Harvard Medical School, Cambridge MA 02139
| | - Ezana Demissie
- Ragon Institute of MGH, MIT and Harvard, Harvard Medical School, Cambridge MA 02139
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Harvard Medical School, Cambridge MA 02139
| |
Collapse
|
8
|
Nakasone ES, Hurvitz SA, McCann KE. Harnessing the immune system in the battle against breast cancer. Drugs Context 2018; 7:212520. [PMID: 29456568 PMCID: PMC5810622 DOI: 10.7573/dic.212520] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most prevalent malignancy in women and the second most common cause of cancer-related death worldwide. Despite major innovations in early detection and advanced therapeutics, up to 30% of women with node-negative breast cancer and 70% of women with node-positive breast cancer will develop recurrence. The recognition that breast tumors are infiltrated by a complex array of immune cells that influence their development, progression, and metastasis, as well as their responsiveness to systemic therapies has sparked major interest in the development of immunotherapies. In fact, not only the native host immune system can be altered to promote potent antitumor response, but also its components can be manipulated to generate effective therapeutic strategies. We present here a review of the major approaches to immunotherapy in breast cancers, both successes and failures, as well as new therapies on the horizon.
Collapse
Affiliation(s)
- Elizabeth S Nakasone
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sara A Hurvitz
- Division of Hematology/Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kelly E McCann
- Division of Hematology/Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
9
|
Becht E, Giraldo NA, Germain C, de Reyniès A, Laurent-Puig P, Zucman-Rossi J, Dieu-Nosjean MC, Sautès-Fridman C, Fridman WH. Immune Contexture, Immunoscore, and Malignant Cell Molecular Subgroups for Prognostic and Theranostic Classifications of Cancers. Adv Immunol 2016; 130:95-190. [DOI: 10.1016/bs.ai.2015.12.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Germain C, Gnjatic S, Dieu-Nosjean MC. Tertiary Lymphoid Structure-Associated B Cells are Key Players in Anti-Tumor Immunity. Front Immunol 2015; 6:67. [PMID: 25755654 PMCID: PMC4337382 DOI: 10.3389/fimmu.2015.00067] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/02/2015] [Indexed: 12/25/2022] Open
Abstract
It is now admitted that the immune system plays a major role in tumor control. Besides the existence of tumor-specific T cells and B cells, many studies have demonstrated that high numbers of tumor-infiltrating lymphocytes are associated with good clinical outcome. In addition, not only the density but also the organization of tumor-infiltrating immune cells has been shown to determine patient survival. Indeed, more and more studies describe the development within the tumor microenvironment of tertiary lymphoid structures (TLS), whose presence has a positive impact on tumor prognosis. TLS are transient ectopic lymphoid aggregates displaying the same organization and functionality as canonical secondary lymphoid organs, with T-cell-rich and B-cell-rich areas that are sites for the differentiation of effector and memory T cells and B cells. However, factors favoring the emergence of such structures within tumors still need to be fully characterized. In this review, we survey the state of the art of what is known about the general organization, induction, and functionality of TLS during chronic inflammation, and more especially in cancer, with a particular focus on the B-cell compartment. We detail the role played by TLS B cells in anti-tumor immunity, both as antigen-presenting cells and tumor antigen-specific antibody-secreting cells, and raise the question of the capacity of chemotherapeutic and immunotherapeutic agents to induce the development of TLS within tumors. Finally, we explore how to take advantage of our knowledge on TLS B cells to develop new therapeutic tools.
Collapse
Affiliation(s)
- Claire Germain
- Laboratory Cancer, Immune Control and Escape, Cordeliers Research Center, INSERM UMRS1138 , Paris , France ; UMRS1138, University Pierre and Marie Curie , Paris , France ; UMRS1138, University Paris Descartes , Paris , France
| | - Sacha Gnjatic
- Division of Hematology, Oncology and Immunology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Marie-Caroline Dieu-Nosjean
- Laboratory Cancer, Immune Control and Escape, Cordeliers Research Center, INSERM UMRS1138 , Paris , France ; UMRS1138, University Pierre and Marie Curie , Paris , France ; UMRS1138, University Paris Descartes , Paris , France
| |
Collapse
|
11
|
Novinger LJ, Ashikaga T, Krag DN. Identification of tumor-binding scFv derived from clonally related B cells in tumor and lymph node of a patient with breast cancer. Cancer Immunol Immunother 2015; 64:29-39. [PMID: 25261355 PMCID: PMC11028979 DOI: 10.1007/s00262-014-1612-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/16/2014] [Indexed: 01/28/2023]
Abstract
The purpose of this study was to determine the clonal relationship between B cells within a breast cancer and the B cells in the tumor-draining lymph node (TDLN). We also determined the binding capacity of antibodies derived from these sources to autologous cancer and autologous noncancer breast tissue. Antibody clonality of B cells derived from tumor and lymph node was determined by analyzing heavy and light chain immunoglobulin sequences. The number of shared clonal groups observed between tumor and lymph node antibodies was significant for both heavy (p = 0.004) and light chain (p = 0.012) populations. Panning with phage-displayed single-chain variable fragment libraries derived from the tumor and lymph node B cells resulted in multiple antibodies that bound autologous tumor. Sequence analysis of enriched antibodies recovered after the third round of panning the tumor and TDLN libraries against autologous tumor lysates had a genetic relationship. These results indicate that B cells infiltrating a patient's breast cancer and B cells present in the tumor-draining lymph node are clonally and functionally related.
Collapse
Affiliation(s)
- Leah J. Novinger
- Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Given Building Room E309, Burlington, VT 05405 USA
- Department of Surgery, University of Vermont College of Medicine, Burlington, VT 05405 USA
| | - Takamaru Ashikaga
- Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Given Building Room E309, Burlington, VT 05405 USA
- Department of Medical Biostatistics, University of Vermont College of Medicine, Burlington, VT 05405 USA
| | - David N. Krag
- Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Given Building Room E309, Burlington, VT 05405 USA
- Department of Surgery, University of Vermont College of Medicine, Burlington, VT 05405 USA
| |
Collapse
|
12
|
Siliņa K, Rulle U, Kalniņa Z, Linē A. Manipulation of tumour-infiltrating B cells and tertiary lymphoid structures: a novel anti-cancer treatment avenue? Cancer Immunol Immunother 2014; 63:643-62. [PMID: 24695950 PMCID: PMC11029173 DOI: 10.1007/s00262-014-1544-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/19/2014] [Indexed: 12/18/2022]
Abstract
Combining different standard therapies with immunotherapy for the treatment of solid tumours has proven to yield a greater clinical benefit than when each is applied separately; however, the percentage of complete responses is still far from optimal, and there is an urgent need for improved treatment modalities. The latest literature data suggest that tertiary lymphoid structures (TLS), previously shown to correlate with the severity of autoimmune diseases or transplant rejection, are also formed in tumours, have a significant beneficial effect on survival and might reflect the generation of an effective immune response in close proximity to the tumour. Thus, the facilitation of TLS formation in tumour stroma could provide novel means to improve the efficiency of immunotherapy and other standard therapies. However, little is known about the mechanisms regulating the formation of tumour-associated TLS. Studies of chronic inflammatory diseases and transplant rejection have demonstrated that TLS formation and/or function requires the presence of B cells. Additionally, the infiltration of B cells into the tumour stroma has been demonstrated to be a significant prognostic factor for improved survival in different human tumours. This suggests that B cells could play a beneficial role in anti-tumour immune response not only in the context of antibody production, antigen presentation and Th1-promoting cytokine production, but also TLS formation. This review focuses on the latest discoveries in tumour-infiltrating B cell functions, their role in TLS formation and relevance in human tumour control, revealing novel opportunities to improve cancer therapies.
Collapse
Affiliation(s)
- Karīna Siliņa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia,
| | | | | | | |
Collapse
|
13
|
Germain C, Gnjatic S, Tamzalit F, Knockaert S, Remark R, Goc J, Lepelley A, Becht E, Katsahian S, Bizouard G, Validire P, Damotte D, Alifano M, Magdeleinat P, Cremer I, Teillaud JL, Fridman WH, Sautès-Fridman C, Dieu-Nosjean MC. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med 2014; 189:832-44. [PMID: 24484236 DOI: 10.1164/rccm.201309-1611oc] [Citation(s) in RCA: 531] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RATIONALE It is now well established that immune responses can take place outside of primary and secondary lymphoid organs. We previously described the presence of tertiary lymphoid structures (TLS) in patients with non-small cell lung cancer (NSCLC) characterized by clusters of mature dendritic cells (DCs) and T cells surrounded by B-cell follicles. We demonstrated that the density of these mature DCs was associated with favorable clinical outcome. OBJECTIVES To study the role of follicular B cells in TLS and the potential link with a local humoral immune response in patients with NSCLC. METHODS The cellular composition of TLS was investigated by immunohistochemistry. Characterization of B-cell subsets was performed by flow cytometry. A retrospective study was conducted in two independent cohorts of patients. Antibody specificity was analyzed by ELISA. MEASUREMENTS AND MAIN RESULTS Consistent with TLS organization, all stages of B-cell differentiation were detectable in most tumors. Germinal center somatic hypermutation and class switch recombination machineries were activated, associated with the generation of plasma cells. Approximately half of the patients showed antibody reactivity against up to 7 out of the 33 tumor antigens tested. A high density of follicular B cells correlated with long-term survival, both in patients with early-stage NSCLC and with advanced-stage NSCLC treated with chemotherapy. The combination of follicular B cell and mature DC densities allowed the identification of patients with the best clinical outcome. CONCLUSIONS B-cell density represents a new prognostic biomarker for NSCLC patient survival, and makes the link between TLS and a protective B cell-mediated immunity.
Collapse
|
14
|
The immune microenvironment of human tumors: general significance and clinical impact. CANCER MICROENVIRONMENT 2012; 6:117-22. [PMID: 23108700 DOI: 10.1007/s12307-012-0124-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/18/2012] [Indexed: 12/12/2022]
Abstract
Human cancers grow in a microenvironment of stromal, inflammatory and immunocompetent cells which is variable from tumor to tumor. The characterization of the immune contexture, i.e. the type, density and functional orientation of immunocompetent cells, the presence or absence of tertiary lymphoid structures is a major prognostic factor for patients survival and represent a guide and a target for innovative cancer therapies.
Collapse
|
15
|
Nielsen JS, Sahota RA, Milne K, Kost SE, Nesslinger NJ, Watson PH, Nelson BH. CD20+ tumor-infiltrating lymphocytes have an atypical CD27- memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin Cancer Res 2012; 18:3281-92. [PMID: 22553348 DOI: 10.1158/1078-0432.ccr-12-0234] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Tumor-infiltrating lymphocytes (TIL), in particular CD8(+) T cells and CD20(+) B cells, are strongly associated with survival in ovarian cancer and other carcinomas. Although CD8(+) TIL can mediate direct cytolytic activity against tumors, the role of CD20(+) TIL is poorly understood. Here, we investigate the possible contributions of CD20(+) TIL to humoral and cellular tumor immunity. EXPERIMENTAL DESIGN Tumor and serum specimens were obtained from patients with high-grade serous ovarian cancer. CD8(+) and CD20(+) TIL were analyzed by immunohistochemistry and flow cytometry. Immunoglobulin molecules were evaluated by DNA sequencing. Serum autoantibody responses to the tumor antigens p53 and NY-ESO-1 were measured by ELISA. RESULTS The vast majority of CD20(+) TIL were antigen experienced, as evidenced by class-switching, somatic hypermutation, and oligoclonality, yet they failed to express the canonical memory marker CD27. CD20(+) TIL showed no correlation with serum autoantibodies to p53 or NY-ESO-1. Instead, they colocalized with activated CD8(+) TIL and expressed markers of antigen presentation, including MHC class I, MHC class II, CD40, CD80, and CD86. The presence of both CD20(+) and CD8(+) TIL correlated with increased patient survival compared with CD8(+) TIL alone. CONCLUSIONS In high-grade serous ovarian tumors, CD20(+) TIL have an antigen-experienced but atypical CD27(-) memory B-cell phenotype. They are uncoupled from serum autoantibodies, express markers of antigen-presenting cells, and colocalize with CD8(+) T cells. We propose that the association between CD20(+) TIL and patient survival may reflect a supportive role in cytolytic immune responses.
Collapse
Affiliation(s)
- Julie S Nielsen
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| | | | | | | | | | | | | |
Collapse
|
16
|
Sasada T, Suekane S. Variation of tumor-infiltrating lymphocytes in human cancers: controversy on clinical significance. Immunotherapy 2012; 3:1235-51. [PMID: 21995574 DOI: 10.2217/imt.11.106] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumors develop and progress under the influence of a microenvironment comprising a variety of immune cell subsets and their products. Recent studies have shown that tumor-infiltrating lymphocytes (TILs) are not randomly distributed, but organized to accumulate more or less densely in different regions within tumors, and interact with each other. Substantial evidence has suggested that not only CD8(+) and/or CD4(+) αβ T cells but also other lymphocyte subsets, including γδ T cells, B cells, NK cells, and NKT cells, infiltrate tumor tissues in variable quantities and play a key role in the regulation of antitumor immunity. In this article, we summarize available information regarding the diversity and composition of TILs, which may positively or negatively affect tumor growth and patient clinical outcomes. The clinical significance of TILs in human cancers remains unclear and is a subject of considerable controversy; largely due to the lack of functional data for TILs, as well as due to enormous variability of TILs in different tumors. A great deal more functional data about TILs needs to be obtained for individual tumors before TILs can be considered as a prognostic parameter in human cancers.
Collapse
Affiliation(s)
- Tetsuro Sasada
- Department of Immunology & Immunotherapy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan.
| | | |
Collapse
|
17
|
Kotlan B, Stroncek DF, Marincola FM. Intravenous immunoglobulin-based immunotherapy: an arsenal of possibilities for patients and science. Immunotherapy 2011; 1:995-1015. [PMID: 20635915 DOI: 10.2217/imt.09.67] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The use of intravenous immunoglobulin (IVIG) concentrated from pooled healthy donors' plasma has gained increasing popularity. IVIG therapy has become important as a replacement therapy in primary and acquired humoral immunodeficiencies, and it has been extended to autoimmune, neurodegenerative and inflammatory conditions and transplantation therapy. Recurrent pregnancy failure and cancer are rather new platforms, where IVIG has shown its beneficial effects. This manuscript is focused on these two off-labelled usages. The immunomodulatory mechanisms of IVIG therapy appear as a coordinated orchestration of different functions, resulting in a synergistic effect. Treatment monitoring and detailed molecular analyses reveal how such treatments may interfere with disease pathogenesis. These finding may foster the development of novel therapeutic and/or preventive strategies. Studying this field with bidirectional bench-to-bedside and bedside-to-bench approaches fit well into 'the two-way road' paradigm of translational medicine.
Collapse
Affiliation(s)
- Beatrix Kotlan
- Center of Surgical & Molecular Tumorpathology National Institute of Oncology, Rath Gy street 7-9, Budapest 1122, Hungary.
| | | | | |
Collapse
|
18
|
Nelson BH. CD20+ B cells: the other tumor-infiltrating lymphocytes. THE JOURNAL OF IMMUNOLOGY 2010; 185:4977-82. [PMID: 20962266 DOI: 10.4049/jimmunol.1001323] [Citation(s) in RCA: 305] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumor-infiltrating CD8(+) T cells are strongly associated with patient survival in a wide variety of human cancers. Less is known about tumor-infiltrating CD20(+) B cells, which often colocalize with T cells, sometimes forming organized lymphoid structures. In autoimmunity and organ transplantation, T cells and B cells collaborate to generate potent, unrelenting immune responses that can result in extensive tissue damage and organ rejection. In these settings, B cells enhance T cell responses by producing Abs, stimulatory cytokines, and chemokines, serving as local APCs, and organizing the formation of tertiary lymphoid structures that sustain long-term immunity. Thus, B cells are an important component of immunological circuits associated with persistent, rampant tissue destruction. Engagement of tumor-reactive B cells may be an important condition for generating potent, long-term T cell responses against cancer.
Collapse
Affiliation(s)
- Brad H Nelson
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada.
| |
Collapse
|
19
|
Identification of novel tumor antigens with patient-derived immune-selected antibodies. Cancer Immunol Immunother 2008; 58:221-34. [PMID: 18568347 DOI: 10.1007/s00262-008-0543-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 05/30/2008] [Indexed: 12/28/2022]
Abstract
The identification of tumor antigens capable of eliciting an immune response in vivo may be an effective method to identify therapeutic cancer targets. We have developed a method to identify such antigens using frozen tumor-draining lymph node samples from breast cancer patients. Immune responses in tumor-draining lymph nodes were identified by immunostaining lymph node sections for B-cell markers (CD20&CD23) and Ki67 which revealed cell proliferation in germinal center zones. Antigen-dependent somatic hypermutation (SH) and clonal expansion (CE) were present in heavy chain variable (VH) domain cDNA clones obtained from these germinal centers, but not from Ki67 negative germinal centers. Recombinant VH single-domain antibodies were used to screen tumor proteins and affinity select potential tumor antigens. Neuroplastin (NPTN) was identified as a candidate breast tumor antigen using proteomic identification of affinity selected tumor proteins with a recombinant VH single chain antibody. NPTN was found to be highly expressed in approximately 20% of invasive breast carcinomas and 50% of breast carcinomas with distal metastasis using a breast cancer tissue array. Additionally, NPTN over-expression in a breast cancer cell line resulted in a significant increase in tumor growth and angiogenesis in vivo which was related to increased VEGF production in the transfected cells. These results validate NPTN as a tumor-associated antigen which could promote breast tumor growth and metastasis if aberrantly expressed. These studies also demonstrate that humoral immune responses in tumor-draining lymph nodes can provide antibody reagents useful in identifying tumor antigens with applications for biomarker screening, diagnostics and therapeutic interventions.
Collapse
|
20
|
Wang Y, Ylera F, Boston M, Kang SG, Kutok JL, Klein-Szanto AJP, Junghans RP. Focused antibody response in plasma cell-infiltrated non-medullary (NOS) breast cancers. Breast Cancer Res Treat 2007; 104:129-44. [PMID: 17393302 DOI: 10.1007/s10549-006-9409-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Indexed: 11/26/2022]
Abstract
Breast tumors with prominent plasma cell (PC) infiltrates often have a more favorable natural course that may plausibly be mediated by anti-tumor activity of the elicited antibodies. These breast tumor-associated PCs are typically IgG dominant in contrast to normal breast PCs, which are mainly IgA. It is our hypothesis that this PC infiltration represents a host immune response that is driven by one or more tumor antigens. Previously, we and others showed that medullary carcinoma (MC) had a focused repertoire and features suggestive of a protein antigen driven response. Infrequently, non-MC, not otherwise specified (NOS) breast tumors may exhibit heavy PC infiltrations, also of IgG isotype. In this first characterization of this favorable prognosis NOS subgroup, IgG heavy chain (Hc) and light chain (Lc) variable (V) regions from three PC-infiltrated NOS tumors were randomly cloned and sequenced. We found biased (V) gene usage by the infiltrating PCs and somatic hypermutation in the rearranged Ig Hc and Lc V regions that were compatible with antigenic selection of the progenitor B cells. The antibody response of NOS infiltrated breast cancer is repertoire-focused, with 13-68% of isolates being clonally reiterated in the samples. Each NOS patient used distinct Hc V-D-J and Lc V-J rearrangements, with her own immune response "footprint," but the overall pattern of gene usage followed that typical of exogenous antigen-induced immune responses. The data are consistent with the hypothesis that PC infiltrates infrequently arising in NOS tumors, as previously inferred for MC, are in response to one or more breast cancer-associated protein tumor antigens.
Collapse
Affiliation(s)
- Y Wang
- Biotherapeutics Development Lab, Harvard Institute of Human Genetics, Harvard Medical School and Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|