1
|
Zhang XF, Li HF, Liu H, Wei FL, Du JX, Liu JK, He J, Feng T. Sesquiterpenoids from Carpesium abrotanoides and their anti-inflammatory activity both in vitro and in vivo. Bioorg Chem 2024; 151:107684. [PMID: 39094507 DOI: 10.1016/j.bioorg.2024.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Twenty-nine sesquiterpenoids, including pseudoguaiane-type (1-11), eudesmane-type (12-23), and carabrane-type (24-29), have been identified from the plant Carpesium abrotanoides. Of them, compounds 1-4, 12-15, and 24-27, namely carpabrotins A-L, are twelve previously undescribed ones. Compound 3 possessed a pseudoguaiane backbone with a rearrangement modification at C-11, C-12 and C-13, while compound 4 suffered a carbon bond break between the C-4 and C-5 to form a rare 4,5-seco-pseudoguaiane lactone. Compounds 1-3, 5, 13-16 and 25-27 exhibited anti-inflammatory activity by inhibiting NO production in LPS-induced RAW264.7 macrophages with IC50 values less than 40 μM, while compounds 1, 2, 5, 13, 14, 16, and 25-27 showed significant inhibitory activity comparable to that of dexamethasone. The anti-atopic dermatitis (AD) effects of compounds 5 and 16 were tested according to 2,4-dinitrochlorobenzene (DNCB)-induced AD-like skin lesions in KM mice, and the results revealed that the major products 5 and 16 improved the histological features of AD-like skin lesions and mast cell infiltration in mice. This study suggested that sesquiterpenoids in C. abrotanoides should play a key role in its anti-inflammatory use.
Collapse
Affiliation(s)
- Xiao-Fang Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Hong-Fei Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Hui Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Fang-Lu Wei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jiao-Xian Du
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Juan He
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
2
|
Meng X, Sun L, Meng X, Bi Q. The protective effect of Ergolide in osteoarthritis: In vitro and in vivo studies. Int Immunopharmacol 2024; 127:111355. [PMID: 38157693 DOI: 10.1016/j.intimp.2023.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Osteoarthritis (OA), a prevalent degenerative condition, occurs due to the deterioration of joint tissues and cells. Consequently, safeguarding chondrocytes against damage caused by inflammation is an area of future research emphasis. There is growing evidence that Ergolide (ERG) has multiple biological functions. Nevertheless, it is still uncertain whether it can hinder the advancement of OA. In this study, we investigate the ERG's potential to reduce inflammation and protect cartilage. ERG treatment in vitro effectively inhibited the excessive production of pro-inflammatory substances, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and tumor necrosis factor-α (TNF-α), leading to their complete suppression. Furthermore, ERG suppressed the production of matrix-degrading enzymes (ADAMTS-5) and matrix metalloproteinase 13 (MMP13), consequently impeding the breakdown of extracellular matrix (ECM) and restraining the synthesis of collagenase II and Aggrecan. Through the P38/MAPK pathway, we discovered that ERG hinders the activation of NF-κB in chondrocytes induced by IL-1β. The protective effect of ERG was enhanced by the p38 MAPK inhibitor SB203580. In vivo, ERG further demonstrated protective effects on cartilage in animal models of DMM. In conclusion, the study has discovered that ERG exhibits innovative therapeutic potential in the context of OA.
Collapse
Affiliation(s)
- Xiang Meng
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Sports Medicine, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liyang Sun
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiumei Meng
- The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Sports Medicine, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Anticancer Targets and Signaling Pathways Activated by Britannin and Related Pseudoguaianolide Sesquiterpene Lactones. Biomedicines 2021; 9:biomedicines9101325. [PMID: 34680439 PMCID: PMC8533303 DOI: 10.3390/biomedicines9101325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Sesquiterpene lactones (SLs) are abundant in plants and display a large spectrum of bioactivities. The compound britannin (BRT), found in different Inula species, is a pseudoguaianolide-type SL equipped with a typical and highly reactive α-methylene-γ-lactone moiety. The bioproperties of BRT and related pseudoguaianolide SLs, including helenalin, gaillardin, bigelovin and others, have been reviewed. Marked anticancer activities of BRT have been evidenced in vitro and in vivo with different tumor models. Three main mechanisms are implicated: (i) interference with the NFκB/ROS pathway, a mechanism common to many other SL monomers and dimers; (ii) blockade of the Keap1-Nrf2 pathway, with a covalent binding to a cysteine residue of Keap1 via the reactive α-methylene unit of BRT; (iii) a modulation of the c-Myc/HIF-1α signaling axis leading to a downregulation of the PD-1/PD-L1 immune checkpoint and activation of cytotoxic T lymphocytes. The non-specific reactivity of the α-methylene-γ-lactone moiety with the sulfhydryl groups of proteins is discussed. Options to reduce or abolish this reactivity have been proposed. Emphasis is placed on the capacity of BRT to modulate the tumor microenvironment and the immune-modulatory action of the natural product. The present review recapitulates the anticancer effects of BRT, some central concerns with SLs and discusses the implication of the PD1/PD-L1 checkpoint in its antitumor action.
Collapse
|
4
|
Kłeczek N, Malarz J, Gierlikowska B, Kiss AK, Stojakowska A. Constituents of Xerolekia speciosissima (L.) Anderb. (Inuleae), and Anti-Inflammatory Activity of 7,10-Diisobutyryloxy-8,9-epoxythymyl Isobutyrate. Molecules 2020; 25:E4913. [PMID: 33114240 PMCID: PMC7660698 DOI: 10.3390/molecules25214913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/23/2022] Open
Abstract
Xerolekia speciosissima (L.) Anderb., a rare plant from the north of Italy, is a member of the Inuleae-Inulinae subtribe of the Asteraceae. Despite its close taxonomic relationship with many species possessing medicinal properties, the chemical composition of the plant has remained unknown until now. A hydroalcoholic extract from the aerial parts of X. speciosissima was analyzed by HPLC-DAD-MSn, revealing the presence of caffeic acid derivatives and flavonoids. In all, 19 compounds, including commonly found chlorogenic acids and less frequently occurring butyryl and methylbutyryl conjugates of dicaffeoylquinic and tricaffeoylhexaric acids, plus two flavonoids, were tentatively identified. Chromatographic separation of a hydroalcoholic extract from the capitula of the plant led to the isolation of (+)-dehydrodiconiferyl alcohol 4-O-β-glucopyranoside, quercimeritrin, astragalin, isoquercitrin, 6-hydroxykaempferol-7-O-β-glucoside, quercetagitrin, methyl caffeate, caffeic acid, protocatechuic acid, chlorogenic acid and 1,5-dicaffeoylquinic acid. Composition of a nonpolar extract from the aerial parts of the plant was analyzed by chromatographic methods supported with 1H-NMR spectroscopy. The analysis revealed the presence of loliolide, reynosin, samtamarine, 2,3-dihydroaromaticin, 2-deoxy-4-epi-pulchellin and thymol derivatives as terpenoid constituents of the plant. One of the latter compounds-7,10-diisobutyryloxy-8,9-epoxythymyl isobutyrate-at concentrations 0.5, 1.0 and 2.5 μM, significantly reduced IL-8, IL-1β and CCL2 excretion by LPS-stimulated human neutrophils.
Collapse
Affiliation(s)
- Natalia Kłeczek
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (N.K.); (J.M.)
| | - Janusz Malarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (N.K.); (J.M.)
| | - Barbara Gierlikowska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland; (B.G.); (A.K.K.)
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, 63a Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Anna K. Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland; (B.G.); (A.K.K.)
| | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (N.K.); (J.M.)
| |
Collapse
|
5
|
Lineariifolianoids M-O, three rare sesquiterpene lactone dimers inhibiting NO production from Inula lineariifolia. Fitoterapia 2020; 141:104454. [DOI: 10.1016/j.fitote.2019.104454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/18/2022]
|
6
|
Yu ZP, Zhang JS, Zhang Q, Yu SJ, Zhang Y, Yu JH, Zhang H. Bioactive sesquiterpenoids and sesquiterpenoid glucosides from the flowers of Inula japonica. Fitoterapia 2019; 138:104292. [DOI: 10.1016/j.fitote.2019.104292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
|
7
|
Seca AML, Grigore A, Pinto DCGA, Silva AMS. The genus Inula and their metabolites: from ethnopharmacological to medicinal uses. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:286-310. [PMID: 24754913 DOI: 10.1016/j.jep.2014.04.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Inula comprises more than one hundred species widespread in temperate regions of Europe and Asia. Uses of this genus as herbal medicines have been first recorded by the Greek and Roman ancient physicians. In the Chinese Pharmacopoeia, from the 20 Inula spp. distributed in China, three are used as Traditional Chinese medicines, named Tumuxiang, Xuanfuhua and Jinfeicao. These medicines are used as expectorants, antitussives, diaphoretics, antiemetics, and bactericides. Moreover, Inula helenium L. which is mentioned in Minoan, Mycenaean, Egyptian/Assyrian pharmacotherapy and Chilandar Medical Codex, is good to treat neoplasm, wound, freckles and dandruff. Many other Inula spp. are used in Ayurvedic and Tibetan traditional medicinal systems for the treatment of diseases such as bronchitis, diabetes, fever, hypertension and several types of inflammation. This review is a critical evaluation of the published data on the more relevant ethnopharmacological and medicinal uses of Inula spp. and on their metabolites biological activities. This study allows the identification of the ethnopharmacological knowledge of this genus and will provide insight into the emerging pharmacological applications of Inula spp. facilitating the prioritirization of future investigations. The corroboration of the ethnopharmacological applications described in the literature with proved biological activities of Inula spp. secondary metabolites will also be explored. MATERIALS AND METHODS The major scientific databases including ScienceDirect, Medline, Scopus and Web of Science were queried for information on the genus Inula using various keyword combinations, more than 180 papers and patents related to the genus Inula were consulted. The International Plant Name Index was also used to confirm the species names. RESULTS Although the benefits of Inula spp. are known for centuries, there are insufficient scientific studies to certify it. Most of the patents are registered by Chinese researchers, proving the traditional use of these plants in their country. Although a total of sixteen Inula species were reported in the literature to have ethnopharmacological applications, the species Inula cappa (Buch.-Ham. ex D.Don) DC., Inula racemosa Hook.f., Inula viscosa (L.) Aiton [actually the accepted name is Dittrichia viscosa (L.) Greuter], Inula helenium, Inula britannica L. and Inula japonica Thunb. are the most frequently cited ones since their ethnopharmacological applications are vast. They are used to treat a large spectrum of disorders, mainly respiratory, digestive, inflammatory, dermatological, cancer and microbial diseases. Fifteen Inula spp. crude extracts were investigated and showed interesting biological activities. From these, only 7 involved extracts of the reported spp. used in traditional medicine and 6 of these were studied to isolate the bioactive compounds. Furthermore, 90 bioactive compounds were isolated from 16 Inula spp. The characteristic compounds of the genus, sesquiterpene lactones, are involved in a network of biological effects, and in consequence, the majority of the experimental studies are focused on these products, especially on their cytotoxic and anti-inflammatory activities. The review shows the chemical composition of the genus Inula and presents the pharmacological effects proved by in vitro and in vivo experiments, namely the cytotoxic, anti-inflammatory (with focus on nitric oxide, arachidonic acid and NF-κB pathways), antimicrobial, antidiabetic and insecticidal activities. CONCLUSIONS Although there are ca. 100 species in the genus Inula, only a few species have been investigated so far. Eight of the sixteen Inula spp. with ethnopharmacological application had been subjected to biological evaluations and/or phytochemical studies. Despite Inula royleana DC. and Inula obtusifolia A. Kerner are being used in traditional medicine, as far as we are aware, these species were not subjected to phytochemical or pharmacological studies. The biological activities exhibited by the compounds isolated from Inula spp., mainly anti-inflammatory and cytotoxic, support some of the described ethnopharmacological applications. Sesquiterpene lactone derivatives were identified as the most studied class, being britannilactone derivatives the most active ones and present high potential as anti-inflammatory drugs, although, their pharmacological effects, dose-response relationship and toxicological investigations to assess potential for acute or chronic adverse effects should be further investigated. The experimental results are promising, but the precise mechanism of action, the compound or extract toxicity, and the dose to be administrated for an optimal effect need to be investigated. Also human trials (some preclinical studies proved to be remarkable) should be further investigated. The genus Inula comprises species useful not only in medicine but also in other domains which makes it a high value-added plant.
Collapse
Affiliation(s)
- Ana M L Seca
- DCTD, University of Azores, 9501-801 Ponta Delgada, Portugal; Chemistry Department & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Alice Grigore
- Department of Pharmaceutical Biotechnologies, National Institute of Chemical-Pharmaceutical R&D, 112 Vitan Av., Bucharest, Romania.
| | - Diana C G A Pinto
- Chemistry Department & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Artur M S Silva
- Chemistry Department & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
8
|
Wang GW, Qin JJ, Cheng XR, Shen YH, Shan L, Jin HZ, Zhang WD. Inula sesquiterpenoids: structural diversity, cytotoxicity and anti-tumor activity. Expert Opin Investig Drugs 2014; 23:317-45. [PMID: 24387187 DOI: 10.1517/13543784.2014.868882] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The plants of the genus Inula (Asteraceae) are widely distributed throughout Europe, Africa and Asia, and many of these plants have long been used in folk medicine. This genus is a rich source of sesquiterpenoids, which exhibit a wide range of biological activities. Recently, a series of bioactive sesquiterpenoid dimers, with unusual carbon skeletons, have been reported and these have gathered considerable interest. AREAS COVERED This article systematically reviews sesquiterpenoids isolated from the genus Inula that have appeared in literature up to August 2013, critically highlighting their anti-tumoral activities and relevant mechanistic insights. The authors also discuss the initial structure-activity relationships for the cytotoxic and anti-tumoral activities of the Inula sesquiterpenoids. Finally, the authors discuss the challenges and potential applications of these sesquiterpenoids in the future. EXPERT OPINION Cytotoxic and anti-tumor activities of Inula sesquiterpenoids have been extensively studied since the 1970s. One promising compound, Japonicone A, a dimeric sesquiterpene lactone from traditional herb Inula japonica, has displayed potent in vitro and in vivo anti-tumor activity against Burkitt's lymphoma. Additionally, acetylbritannilactone is thought to be capable of suppressing the abnormal vascular smooth muscle cell proliferation, with the induction of apoptosis in vivo and in vitro. In this regard, it may be worthwhile further investigating acetylbritannilactone in patients with vascular restenosis. Furthermore, given the anti-inflammatory property of britanin, clinical studies on chronic bronchitis and asthma, using the ethanol extract of I. japonica, are currently underway in South Korea. However, despite demonstrating good therapeutic effects, additional pharmacological and toxicological studies are still needed.
Collapse
Affiliation(s)
- Guo-Wei Wang
- Shanghai Jiao Tong University, School of Pharmacy , Shanghai , China +86 21 81871244 ; +86 21 81871244 ;
| | | | | | | | | | | | | |
Collapse
|
9
|
Cheng XR, Ye J, Ren J, Zeng Q, Zhang F, Qin JJ, Shen YH, Zhang WD, Jin HZ. Terpenoids from Inula sericophylla Franch. and their chemotaxonomic significance. BIOCHEM SYST ECOL 2012. [DOI: 10.1016/j.bse.2012.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Wajs-Bonikowska A, Stojakowska A, Kalemba D. Chemical Composition of Essential Oils from a Multiple Shoot Culture of Telekia speciosa and Different Plant Organs. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The composition of essential oil from Telekia speciosa leaves, flowers, roots, stems and in vitro regenerated shoots was studied by GC-MS-FID leading to the determination of 112 compounds. The qualitative composition of the essential oil from the examined plant material was similar, whereas quantities of individual components of the oils varied widely depending on the kind of plant material. The most striking differences were observed between the oils produced by aerial and underground parts of the intact plant, as well as between oils produced by in vitro grown shoots and leaves of the intact plant. The main volatiles of leaf essential oil were: ( E, E)-farnesol (21.2%) and ( E)-nerolidol (17.9%), while isoalantolactone was the predominant component of the root (62.3%) and flower oils (23.0%). Numerous thymol derivatives were also found, among them 10-isobutyryloxy-8,9-epoxythymol isobutyrate, which was one of the main components found in the flower oil (20.5%) and that from the in vitro cultures (20.2%).
Collapse
Affiliation(s)
- Anna Wajs-Bonikowska
- Institute of General Food Chemistry, Technical University of Lodz, 90-924 Lodz, Poland
| | - Anna Stojakowska
- Department of Phytochemistry, Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Danuta Kalemba
- Institute of General Food Chemistry, Technical University of Lodz, 90-924 Lodz, Poland
| |
Collapse
|
11
|
Cheng X, Zeng Q, Ren J, Qin J, Zhang S, Shen Y, Zhu J, Zhang F, Chang R, Zhu Y, Zhang W, Jin H. Sesquiterpene lactones from Inula falconeri, a plant endemic to the Himalayas, as potential anti-inflammatory agents. Eur J Med Chem 2011; 46:5408-15. [DOI: 10.1016/j.ejmech.2011.08.047] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/27/2011] [Accepted: 08/31/2011] [Indexed: 11/28/2022]
|
12
|
Shah B, Seth A, Maheshwari K. A Review on Medicinal Plants as a Source of Anti-inflammatory Agents. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/rjmp.2011.101.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Song YJ, Lee DY, Kim SN, Lee KR, Lee HW, Han JW, Kang DW, Lee HY, Kim YK. Apoptotic potential of sesquiterpene lactone ergolide through the inhibition of NF-κB signaling pathway. J Pharm Pharmacol 2010; 57:1591-7. [PMID: 16354403 DOI: 10.1211/jpp.57.12.0009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Treatment with ergolide, a sesquiterpene lactone from Inula britannica var chinensis, caused the induction of apoptosis in Jurkat T cells, which was confirmed by DNA fragmentation, caspase-3 activation and cleavage of poly(ADP-ribose) polymerase in response to ergolide. Furthermore, mitochondrial dysfunction appeared to be associated with ergolide-induced apoptosis, because Bax translocation and cytochrome c release were stimulated by ergolide. In parallel, the nuclear factor-κB (NF-κB) signaling pathway was significantly inhibited by ergolide, which was accompanied by down-regulation of cell survival molecules, such as X-chromosome-linked inhibitor of apoptosis and Bcl-2. In addition, the JNK signaling pathway was involved in ergolide-induced apoptosis. Collectively, our results identified a new mechanism for the anti-cancer property of ergolide, attributable to the induction of apoptosis through down-regulation of cell survival signal molecules resulting from inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yong Jin Song
- College of Medicine, Kwandong University, Gangneung 210-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nam KW, Oh GT, Seo EK, Kim KH, Koo U, Lee SJ, Mar W. Nuclear factor kappaB-mediated down-regulation of adhesion molecules: possible mechanism for inhibitory activity of bigelovin against inflammatory monocytes adhesion to endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2009; 123:250-256. [PMID: 19429369 DOI: 10.1016/j.jep.2009.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 02/25/2009] [Accepted: 03/11/2009] [Indexed: 05/27/2023]
Abstract
The flowers of Inula britannica L. var. chinensis (Rupr.) Reg. (Compositae) are used in traditional medicine to treat asthma, chronic bronchitis, and acute pleurisy in China and Korea. However, the pharmacological actions of Inula britannica L. var. chinensis on endothelial cells and inflammatory monocytes are not clear. In this study, we investigated whether bigelovin, a sesquiterpene lactone isolated from the flowers of Inula britannica L. var. chinensis, inhibits monocyte adhesion and adhesion molecule expression in brain endothelial cells. We measured tumor necrosis factor-alpha (TNF-alpha)-enhanced Raw264.7 monocyte binding to brain endothelial cells and the levels of cell adhesion molecules, including vascular adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and endothelial-selectin (E-selectin) on the surface of brain endothelial cells. Bigelovin significantly inhibited these in a dose-dependent manner without affecting cell viability. Furthermore, bigelovin suppressed the nuclear factor kappaB (NF-kappaB) promoter-driven luciferase activity, NF-kappaB activation, and degradation of NF-kappaB inhibitor protein alpha (IkappaBalpha). These results indicate that bigelovin inhibits inflammatory monocyte adhesion to endothelial cells and the expression of VCAM-1, ICAM-1, and E-selectin by blocking IkappaBalpha degradation and NF-kappaB activation.
Collapse
Affiliation(s)
- Kung-Woo Nam
- Department of Manufacturing Pharmacy & Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Jang DS, Min HY, Jeong YH, Lee SK, Seo EK. Di- and sesqui-terpenoids isolated from the pods of Sindora sumatrana and their potential to inhibit lipopolysaccharide-induced nitric oxide production. Arch Pharm Res 2004; 27:291-4. [PMID: 15089033 DOI: 10.1007/bf02980062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Activity-guided fractionation of the n-hexane and CHCl3-soluble fractions of Sindora sumatrana using a bioassay based on the inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production by inducible nitric oxide synthase (iNOS) in murine macrophage RAW 264.7 cells led to the isolation of the known compound, (+)-7beta-acetoxy-15,16-epoxy-3,13(16),14-clerodatriene-18-oic acid (2) as an active constituent. In addition, a new trans-clerodane diterpenoid, (+)-2-oxokolavenic acid (1), together with six known compounds, (+)-3,13-clerodadiene-16,15-olide-18-oic acid (3), (+)-7beta-acetoxy-3,13-clerodadiene-16,15-olide-18-oic acid (4), (+)-7beta-acetoxy-16-hydroxy-3,13-clerodadiene-16,15-olide-18-oic acid (5), beta-caryophyllene oxide (6), clovane-2beta,9beta-diol (7), and caryolane-1,9beta-diol (8) were isolated and found to be inactive. The structure of compound 1 was determined using physical and spectroscopic methods such as 1D and 2D-NMR experiments. The known compounds 2-8 were identified by the spectroscopic data and by comparison with the published values. Of eight isolates (1-8), only compound 2 exhibited an iNOS inhibitory activity with IC50 value of 51.6 microM.
Collapse
Affiliation(s)
- Dae Sik Jang
- Division of Molecular Life Sciences, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | |
Collapse
|
16
|
Je KH, Han AR, Lee HT, Mar W, Seo EK. The inhibitory principle of lipopolysaccharide-induced nitric oxide production frominula britannica var.chinensis. Arch Pharm Res 2004; 27:83-5. [PMID: 14969344 DOI: 10.1007/bf02980051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A sesquiterpene lactone, 1-O-acetyl-4R,6S-britannilactone (1) isolated from the flowers of Inula britannica L. var. chinensis (Rupr.) Reg. (Compositae), was found as an iNOS inhibitory constituent for the first time with an IC50 value of 22.1 microM which is more potent than the positive control, L-N6-(1-iminoethyl)lysine (IC50 = 33.7 microM). Structure of compound 1 was identified by 1D and 2D NMR experiments and by comparison with the reference standard.
Collapse
Affiliation(s)
- Kang-Hoon Je
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 110-460, Korea
| | | | | | | | | |
Collapse
|