1
|
Huang K, Zhang B, Feng Y, Ma H. Magnolol promotes the autophagy of esophageal carcinoma cells by upregulating HACE1 gene expression. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1044-1054. [PMID: 38660717 PMCID: PMC11322865 DOI: 10.3724/abbs.2024044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/02/2024] [Indexed: 04/26/2024] Open
Abstract
Esophagus cancer (EC) is one of the most aggressive malignant digestive system tumors and has a high clinical incidence worldwide. Magnolol, a natural compound, has anticancer effects on many cancers, including esophageal carcinoma, but the underlying mechanism has not been fully elucidated. Here, we first find that magnolol inhibits the proliferation of esophageal carcinoma cells and enhances their autophagy activity in a dose- and time-dependent manner. This study demonstrates that magnolol increases the protein levels of LC3 II, accompanied by increased HACE1 protein levels in both esophageal carcinoma cells and xenograft tumors. HACE1-knockout (KO) cell lines are generated, and the ablation of HACE1 eliminates the anti-proliferative and autophagy-inducing effects of magnolol on esophageal carcinoma cells. Additionally, our results show that magnolol primarily promotes HACE1 expression at the transcriptional level. Therefore, this study shows that magnolol primarily exerts its antitumor effect by activating HACE1-OPTN axis-mediated autophagy. It can be considered a promising therapeutic drug for esophageal carcinoma.
Collapse
Affiliation(s)
- Kenan Huang
- Department of Thoracic SurgeryDushu Lake Hospital Affiliated to Soochow UniversitySuzhou215000China
- Department of Thoracic SurgeryShanghai Changzheng HospitalNavy Military Medical UniversityShanghai200003China
| | - Biao Zhang
- Department of Thoracic SurgeryDushu Lake Hospital Affiliated to Soochow UniversitySuzhou215000China
| | - Yu Feng
- Department of Thoracic SurgeryDushu Lake Hospital Affiliated to Soochow UniversitySuzhou215000China
| | - Haitao Ma
- Department of Thoracic SurgeryDushu Lake Hospital Affiliated to Soochow UniversitySuzhou215000China
| |
Collapse
|
2
|
Najafi Z, Rahmanian-Devin P, Baradaran Rahimi V, Nokhodchi A, Askari VR. Challenges and opportunities of medicines for treating tendon inflammation and fibrosis: A comprehensive and mechanistic review. Fundam Clin Pharmacol 2024:e12999. [PMID: 38468183 DOI: 10.1111/fcp.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/20/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Tendinopathy refers to conditions characterized by collagen degeneration within tendon tissue, accompanied by the proliferation of capillaries and arteries, resulting in reduced mechanical function, pain, and swelling. While inflammation in tendinopathy can play a role in preventing infection, uncontrolled inflammation can hinder tissue regeneration and lead to fibrosis and impaired movement. OBJECTIVES The inability to regulate inflammation poses a significant limitation in tendinopathy treatment. Therefore, an ideal treatment strategy should involve modulation of the inflammatory process while promoting tissue regeneration. METHODS The current review article was prepared by searching PubMed, Scopus, Web of Science, and Google Scholar databases. Several treatment approaches based on biomaterials have been developed. RESULTS This review examines various treatment methods utilizing small molecules, biological compounds, herbal medicine-inspired approaches, immunotherapy, gene therapy, cell-based therapy, tissue engineering, nanotechnology, and phototherapy. CONCLUSION These treatments work through mechanisms of action involving signaling pathways such as transforming growth factor-beta (TGF-β), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), all of which contribute to the repair of injured tendons.
Collapse
Affiliation(s)
- Zohreh Najafi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, Florida, 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Lu SY, Wang HM, Feng N, Ma AJ. Total synthesis of bi-magnolignan. RSC Adv 2023; 13:8844-8846. [PMID: 36936845 PMCID: PMC10018648 DOI: 10.1039/d3ra01121f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Bi-magnolignan, isolated from the leaves of Magnolia officinalis, has shown excellent physiological activity against tumor cells. An efficient strategy for the first total synthesis of bi-magnolignan is reported. The bi-dibenzofuran skeleton was constructed via functional group interconversions of commercially available materials 1,2,4-trimethoxybenzene and 4-allylanisole. Then, the dibenzofuran skeleton was afforded by subsequent Suzuki coupling and intramolecular dehydration. The total synthesis of natural product was accomplished through FeCl3 catalyzed oxidative coupling.
Collapse
Affiliation(s)
- Si-Yuan Lu
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Hong-Mei Wang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| |
Collapse
|
4
|
Kundu M, Das S, Das CK, Kulkarni G, Das S, Dhara D, Mandal M. Magnolol induces cytotoxic autophagy in glioma by inhibiting PI3K/AKT/mTOR signaling. Exp Cell Res 2023; 424:113488. [PMID: 36736226 DOI: 10.1016/j.yexcr.2023.113488] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/18/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Glioma is difficult-to-treat because of its infiltrative nature and the presence of the blood-brain barrier. Temozolomide is the only FDA-approved drug for its management. Therefore, finding a novel chemotherapeutic agent for glioma is of utmost importance. Magnolol, a neolignan, has been known for its apoptotic role in glioma. In this work, we have explored a novel anti-glioma mechanism of Magnolol associated with its role in autophagy modulation. We found increased expression levels of Beclin-1, Atg5-Atg12, and LC3-II and lower p62 expression in Magnolol-treated glioma cells. PI3K/AKT/mTOR pathway proteins were also downregulated in Magnolol-treated glioma cells. Next, we treated the glioma cells with Insulin, a stimulator of PI3K/AKT/mTOR signaling, to confirm that Magnolol induced autophagy by inhibiting this pathway. Insulin reversed the effect on Magnolol-mediated autophagy induction. We also established the same in in vivo glioma model where Magnolol showed an anti-glioma effect by inducing autophagy. To confirm the cytotoxic effect of Magnolol-induced autophagy, we used Chloroquine, a late-stage autophagy inhibitor. Chloroquine efficiently reversed the anti-glioma effects of Magnolol both in vitro and in vivo. Our study revealed the cytotoxic effect of Magnolol-induced autophagy in glioma, which was not previously reported. Additionally, Magnolol showed no toxicity in non-cancerous cell lines as well as rat organs. Thus, we concluded that Magnolol is an excellent candidate for developing new therapeutic strategies for glioma management.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Chandan Kanta Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Gaurav Kulkarni
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Soumen Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Dibakar Dhara
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
5
|
Wang X, Liu Q, Fu Y, Ding RB, Qi X, Zhou X, Sun Z, Bao J. Magnolol as a Potential Anticancer Agent: A Proposed Mechanistic Insight. Molecules 2022; 27:molecules27196441. [PMID: 36234977 PMCID: PMC9570903 DOI: 10.3390/molecules27196441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a serious disease with high mortality and morbidity worldwide. Natural products have served as a major source for developing new anticancer drugs during recent decades. Magnolol, a representative natural phenolic lignan isolated from Magnolia officinali, has attracted considerable attention for its anticancer properties in recent years. Accumulating preclinical studies have demonstrated the tremendous therapeutic potential of magnolol via a wide range of pharmacological mechanisms against cancer. In this review, we summarized the latest advances in preclinical studies investigating anticancer properties of magnolol and described the important signaling pathways explaining its underlying mechanisms. Magnolol was capable of inhibiting cancer growth and metastasis against various cancer types. Magnolol exerted anticancer effects through inhibiting proliferation, inducing cell cycle arrest, provoking apoptosis, restraining migration and invasion, and suppressing angiogenesis. Multiple signaling pathways were also involved in the pharmacological actions of magnolol against cancer, such as PI3K/Akt/mTOR signaling, MAPK signaling and NF-κB signaling. Based on this existing evidence summarized in the review, we have conclusively confirmed magnolol had a multi-target anticancer effect against heterogeneous cancer disease. It is promising to develop magnolol as a drug candidate for cancer therapy in the future.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Qingqing Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Xuejun Zhou
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Zhihua Sun
- State International Joint Research Center for Animal Health Breeding, Key Laboratory of Control and Prevention of Animal Disease of Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- Correspondence: (Z.S.); (J.B.)
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
- Correspondence: (Z.S.); (J.B.)
| |
Collapse
|
6
|
Ghafoor B, Najabat Ali M. Synthesis and in vitro evaluation of natural drug loaded polymeric films for cardiovascular applications. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221085735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drug eluting stents (DES) can efficiently reduce the atherosclerosis and restenosis issues of coronary artery as compared to bare metal stents due to the presence of pharmaceutically active agent on their surface. Nevertheless, the arising safety concerns of DES such as delayed healing and late in stent restenosis and thrombus, has stirred the research efforts to improve the outcomes of the DES. In this connection, attention is being shifted from the use of synthetic drug to natural drug for DES. In the present work, natural compound loaded polymeric films were synthesized and their antioxidant and anticoagulation capabilities were assessed through in vitro testing. The potential of the drug loaded polymeric films to curb the production of free radicals was evaluated by carrying out antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The in vitro platelet adhesion was investigated through static platelet adhesion test while effect of synthesized films on intrinsic coagulation pathway was investigated through activated partially thromboplastin time (APTT). Moreover, to further evaluate the blood compatibility of the developed drug loaded films, in vitro hemolytic and anti-thrombolytic assays were carried out. The obtained results indicated that, incorporating herbal compounds such as ginger, magnolol and curcumin, in polymeric matrix (PVA) has significantly improved the blood compatibility of the polymeric films. Hence, it can be concluded that the synthesized drug loaded polymeric films have the potential capability to be used as a potential coating material for coating biomedical implants with good anticoagulation and antioxidant property to cater the cardiovascular issues such as atherosclerosis, restenosis and thrombus formation.
Collapse
Affiliation(s)
- Bakhtawar Ghafoor
- Biomedical Engineering & Sciences Department, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Murtaza Najabat Ali
- Biomedical Engineering & Sciences Department, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
7
|
Tang Y, Wang L, Yi T, Xu J, Wang J, Qin JJ, Chen Q, Yip KM, Pan Y, Hong P, Lu Y, Shen HM, Chen HB. Synergistic effects of autophagy/mitophagy inhibitors and magnolol promote apoptosis and antitumor efficacy. Acta Pharm Sin B 2021; 11:3966-3982. [PMID: 35024319 PMCID: PMC8727919 DOI: 10.1016/j.apsb.2021.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria as a signaling platform play crucial roles in deciding cell fate. Many classic anticancer agents are known to trigger cell death through induction of mitochondrial damage. Mitophagy, one selective autophagy, is the key mitochondrial quality control that effectively removes damaged mitochondria. However, the precise roles of mitophagy in tumorigenesis and anticancer agent treatment remain largely unclear. Here, we examined the functional implication of mitophagy in the anticancer properties of magnolol, a natural product isolated from herbal Magnolia officinalis. First, we found that magnolol induces mitochondrial depolarization, causes excessive mitochondrial fragmentation, and increases mitochondrial reactive oxygen species (mtROS). Second, magnolol induces PTEN-induced putative kinase protein 1 (PINK1)‒Parkin-mediated mitophagy through regulating two positive feedforward amplification loops. Third, magnolol triggers cancer cell death and inhibits neuroblastoma tumor growth via the intrinsic apoptosis pathway. Moreover, magnolol prolongs the survival time of tumor-bearing mice. Finally, inhibition of mitophagy by PINK1/Parkin knockdown or using inhibitors targeting different autophagy/mitophagy stages significantly promotes magnolol-induced cell death and enhances magnolol's anticancer efficacy, both in vitro and in vivo. Altogether, our study demonstrates that magnolol can induce autophagy/mitophagy and apoptosis, whereas blockage of autophagy/mitophagy remarkably enhances the anticancer efficacy of magnolol, suggesting that targeting mitophagy may be a promising strategy to overcome chemoresistance and improve anticancer therapy.
Collapse
Affiliation(s)
- Yancheng Tang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Jigang Wang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- The First Affiliated Hospital of Southern University of Science and Technology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Ka-Man Yip
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Yihang Pan
- Department of Medical Research, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Peng Hong
- Department of Medical Research, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yingying Lu
- Department of Medical Research, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong SAR 999077, China
- Corresponding authors. Tel./fax: +852 93590902.
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Corresponding authors. Tel./fax: +852 93590902.
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Corresponding authors. Tel./fax: +852 93590902.
| |
Collapse
|
8
|
Screening of phytochemicals effective on relieving cancer cachexia in cisplatin-induced in vitro sarcopenia model. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Mottaghi S, Abbaszadeh H. Natural Lignans Honokiol and Magnolol as Potential Anticarcinogenic and Anticancer Agents. A Comprehensive Mechanistic Review. Nutr Cancer 2021; 74:761-778. [PMID: 34047218 DOI: 10.1080/01635581.2021.1931364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plant lignans constitute an important group of polyphenols, which have been demonstrated to significantly induce cancer cell death and suppress cancer cell proliferation with minimal toxicity against non-transformed cells. Numerous epidemiological studies have shown that the intake of lignans is associated with lower risk of several cancers. These natural compounds have the potential to inhibit carcinogenesis, tumor growth, and metastasis by targeting various signaling molecules and pathways. Growing evidence indicates that honokiol and magnolol as natural lignans possess potent anticancer activities against various types of human cancer. The aim of present review is to provide the reader with the newest findings in understanding the cellular and molecular mechanisms mediating anticancer effects of honokiol and magnolol. This review comprehensively elucidates the effects of honokiol and magnolol on the molecular targets and signal transduction pathways implicated in cancer cell proliferation and metastasis. The findings of current review indicate that honokiol and magnolol can be considered as promising carcinopreventive and anticancer agents.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Calabrese EJ. Hormesis Mediates Acquired Resilience: Using Plant-Derived Chemicals to Enhance Health. Annu Rev Food Sci Technol 2021; 12:355-381. [DOI: 10.1146/annurev-food-062420-124437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review provides an assessment of hormesis, a highly conserved evolutionary dose-response adaptive strategy that leads to the development of acquired resilience within well-defined temporal windows. The hormetic-based acquired resilience has a central role in affecting healthy aging, slowing the onset and progression of numerous neurodegenerative and other age-related diseases, and reducing risks and damage due to heart attacks, stroke, and other serious conditions of public health and medical importance. The review provides the historical foundations of hormesis, its dose-response features, its capacity for generalization across biological models and endpoints measured, and its mechanistic foundations. The review also provides a focus on the adaptive features of hormesis, i.e., its capacity to upregulate acquired resilience and how this can be mediated by numerous plant-derived extracts, such as curcumin, ginseng, Ginkgo biloba, resveratrol, and green tea, that induce a broad spectrum of chemopreventive effects via hormesis.
Collapse
Affiliation(s)
- Edward J. Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
11
|
Molecular Insights into the Multifunctional Role of Natural Compounds: Autophagy Modulation and Cancer Prevention. Biomedicines 2020; 8:biomedicines8110517. [PMID: 33228222 PMCID: PMC7699596 DOI: 10.3390/biomedicines8110517] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a vacuolar, lysosomal degradation pathway for injured and damaged protein molecules and organelles in eukaryotic cells, which is controlled by nutrients and stress responses. Dysregulation of cellular autophagy may lead to various diseases such as neurodegenerative disease, obesity, cardiovascular disease, diabetes, and malignancies. Recently, natural compounds have come to attention for being able to modulate the autophagy pathway in cancer prevention, although the prospective role of autophagy in cancer treatment is very complex and not yet clearly elucidated. Numerous synthetic chemicals have been identified that modulate autophagy and are favorable candidates for cancer treatment, but they have adverse side effects. Therefore, different phytochemicals, which include natural compounds and their derivatives, have attracted significant attention for use as autophagy modulators in cancer treatment with minimal side effects. In the current review, we discuss the promising role of natural compounds in modulating the autophagy pathway to control and prevent cancer, and provide possible therapeutic options.
Collapse
|
12
|
Zhao Q, Peng C, Zheng C, He XH, Huang W, Han B. Recent Advances in Characterizing Natural Products that Regulate Autophagy. Anticancer Agents Med Chem 2020; 19:2177-2196. [PMID: 31749434 DOI: 10.2174/1871520619666191015104458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/16/2018] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
Autophagy, an intricate response to nutrient deprivation, pathogen infection, Endoplasmic Reticulum (ER)-stress and drugs, is crucial for the homeostatic maintenance in living cells. This highly regulated, multistep process has been involved in several diseases including cardiovascular and neurodegenerative diseases, especially in cancer. It can function as either a promoter or a suppressor in cancer, which underlines the potential utility as a therapeutic target. In recent years, increasing evidence has suggested that many natural products could modulate autophagy through diverse signaling pathways, either inducing or inhibiting. In this review, we briefly introduce autophagy and systematically describe several classes of natural products that implicated autophagy modulation. These compounds are of great interest for their potential activity against many types of cancer, such as ovarian, breast, cervical, pancreatic, and so on, hoping to provide valuable information for the development of cancer treatments based on autophagy.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China.,The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, United States
| |
Collapse
|
13
|
Benvenuto M, Albonici L, Focaccetti C, Ciuffa S, Fazi S, Cifaldi L, Miele MT, De Maio F, Tresoldi I, Manzari V, Modesti A, Masuelli L, Bei R. Polyphenol-Mediated Autophagy in Cancer: Evidence of In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E6635. [PMID: 32927836 PMCID: PMC7555128 DOI: 10.3390/ijms21186635] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
One of the hallmarks of cellular transformation is the altered mechanism of cell death. There are three main types of cell death, characterized by different morphological and biochemical features, namely apoptosis (type I), autophagic cell death (type II) and necrosis (type III). Autophagy, or self-eating, is a tightly regulated process involved in stress responses, and it is a lysosomal degradation process. The role of autophagy in cancer is controversial and has been associated with both the induction and the inhibition of tumor growth. Autophagy can exert tumor suppression through the degradation of oncogenic proteins, suppression of inflammation, chronic tissue damage and ultimately by preventing mutations and genetic instability. On the other hand, tumor cells activate autophagy for survival in cellular stress conditions. Thus, autophagy modulation could represent a promising therapeutic strategy for cancer. Several studies have shown that polyphenols, natural compounds found in foods and beverages of plant origin, can efficiently modulate autophagy in several types of cancer. In this review, we summarize the current knowledge on the effects of polyphenols on autophagy, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of polyphenols for envisioning future therapies employing polyphenols as chemoadjuvants.
Collapse
Affiliation(s)
- Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| |
Collapse
|
14
|
Joshi V, Upadhyay A, Prajapati VK, Mishra A. How autophagy can restore proteostasis defects in multiple diseases? Med Res Rev 2020; 40:1385-1439. [PMID: 32043639 DOI: 10.1002/med.21662] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Cellular evolution develops several conserved mechanisms by which cells can tolerate various difficult conditions and overall maintain homeostasis. Autophagy is a well-developed and evolutionarily conserved mechanism of catabolism, which endorses the degradation of foreign and endogenous materials via autolysosome. To decrease the burden of the ubiquitin-proteasome system (UPS), autophagy also promotes the selective degradation of proteins in a tightly regulated way to improve the physiological balance of cellular proteostasis that may get perturbed due to the accumulation of misfolded proteins. However, the diverse as well as selective clearance of unwanted materials and regulations of several cellular mechanisms via autophagy is still a critical mystery. Also, the failure of autophagy causes an increase in the accumulation of harmful protein aggregates that may lead to neurodegeneration. Therefore, it is necessary to address this multifactorial threat for in-depth research and develop more effective therapeutic strategies against lethal autophagy alterations. In this paper, we discuss the most relevant and recent reports on autophagy modulations and their impact on neurodegeneration and other complex disorders. We have summarized various pharmacological findings linked with the induction and suppression of autophagy mechanism and their promising preclinical and clinical applications to provide therapeutic solutions against neurodegeneration. The conclusion, key questions, and future prospectives sections summarize fundamental challenges and their possible feasible solutions linked with autophagy mechanism to potentially design an impactful therapeutic niche to treat neurodegenerative diseases and imperfect aging.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Vijay K Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| |
Collapse
|
15
|
Ding P, Shen H, Wang J, Ju J. Improved oral bioavailability of magnolol by using a binary mixed micelle system. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:668-674. [PMID: 30183380 DOI: 10.1080/21691401.2018.1468339] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aim of this study was to prepare two novel magnolol (MO)-loaded binary mixed micelles (MO-M) using biocompatible copolymers of Soluplus (SOL) and Solutol® HS15 (HS15), SOL and d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS), to improve magnolol's poor solubility and its oral bioavailability. The organic solvent evaporation method was used to obtain two MO-M by optimization; one was prepared by using SOL and HS15 (MO-H), and the other was prepared by using SOL and TPGS (MO-T). The entrapment efficiency (EE%) and drug loading (DL%) of MO-T were 94.61 ± 0.91% and 4.03 ± 0.19%, respectively, and the MO-H has higher EE% and DL% (98.37 ± 1.23%, 4.12 ± 0.16%). TEM results showed that the morphology of MO-M was homogeneous and was spherical in shape. The dilution stability of MO-M did not undergo significant changes. Permeability of MO-M across a Caco-2 cell monolayer was enhanced in Caco-2 cell transport models. The pharmacokinetics study showed that the relative oral bioavailability of MO-T and MO-H increased by 2.39- and 2.98-fold, respectively, compared to that of raw MO. This indicated that MO-H and MO-T could promote absorption of MO in the gastrointestinal tract. Collectively, the mixed micelles demonstrated greater efficacy as a drug delivery system. The development of these novel mixed micelles is valuable for resolving the poor solubility and bioavailability of drugs.
Collapse
Affiliation(s)
- Pinggang Ding
- a Affiliated Hospital of Integrated Traditional Chinese and Western Medicine , Nanjing University of Chinese Medicine , Nanjing , China.,b Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , China
| | - Hongxue Shen
- a Affiliated Hospital of Integrated Traditional Chinese and Western Medicine , Nanjing University of Chinese Medicine , Nanjing , China.,b Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , China
| | - Jianan Wang
- c School of Pharmaceutical Sciences , Jining Medical University , Rizhao , China
| | - Jianming Ju
- a Affiliated Hospital of Integrated Traditional Chinese and Western Medicine , Nanjing University of Chinese Medicine , Nanjing , China.,b Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , China
| |
Collapse
|
16
|
Magnolol: A Neolignan from the Magnolia Family for the Prevention and Treatment of Cancer. Int J Mol Sci 2018; 19:ijms19082362. [PMID: 30103472 PMCID: PMC6121321 DOI: 10.3390/ijms19082362] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022] Open
Abstract
The past few decades have witnessed widespread research to challenge carcinogenesis; however, it remains one of the most important health concerns with the worst prognosis and diagnosis. Increasing lines of evidence clearly show that the rate of cancer incidence will increase in future and will create global havoc, designating it as an epidemic. Conventional chemotherapeutics and treatment with synthetic disciplines are often associated with adverse side effects and development of chemoresistance. Thus, discovering novel economic and patient friendly drugs that are safe and efficacious is warranted. Several natural compounds have proved their potential against this dreadful disease so far. Magnolol is a hydroxylated biphenyl isolated from the root and stem bark of Magnolia tree. Magnolol can efficiently prevent or inhibit the growth of various cancers originating from different organs such as brain, breast, cervical, colon, liver, lung, prostate, skin, etc. Considering these perspectives, the current review primarily focuses on the fascinating role of magnolol against various types of cancers, and the source and chemistry of magnolol and the molecular mechanism underlying the targets of magnolol are discussed. This review proposes magnolol as a suitable candidate that can be appropriately designed and established into a potent anti-cancer drug.
Collapse
|
17
|
Wang P, Zhu L, Sun D, Gan F, Gao S, Yin Y, Chen L. Natural products as modulator of autophagy with potential clinical prospects. Apoptosis 2018; 22:325-356. [PMID: 27988811 DOI: 10.1007/s10495-016-1335-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Natural compounds derived from living organisms are well defined for their remarkable biological and pharmacological properties likely to be translated into clinical use. Therefore, delving into the mechanisms by which natural compounds protect against diverse diseases may be of great therapeutic benefits for medical practice. Autophagy, an intricate lysosome-dependent digestion process, with implications in a wide variety of pathophysiological settings, has attracted extensive attention over the past few decades. Hitherto, accumulating evidence has revealed that a large number of natural products are involved in autophagy modulation, either inducing or inhibiting autophagy, through multiple signaling pathways and transcriptional regulators. In this review, we summarize natural compounds regulating autophagy in multifarious diseases including cancer, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and immune diseases, hoping to inspire further investigation of the underlying mechanisms of natural compounds and to facilitate their clinical use for multiple human diseases.
Collapse
Affiliation(s)
- Peiqi Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lingjuan Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feihong Gan
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Suyu Gao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuanyuan Yin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lixia Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
18
|
The effect of magnolol on Ca 2+ homeostasis and its related physiology in human oral cancer cells. Arch Oral Biol 2018; 89:49-54. [PMID: 29471192 DOI: 10.1016/j.archoralbio.2018.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Magnolol, a polyphenol compound from herbal medicines, was shown to alter physiology in various cell models. However, the effect of magnolol on Ca2+ homeostasis and its related physiology in oral cancer cells is unclear. This study examined whether magnolol altered Ca2+ signaling and cell viability in OC2 human oral cancer cells. METHODS Cytosolic Ca2+ concentrations ([Ca2+]i) in suspended cells were measured by using the fluorescent Ca2+-sensitive dye fura-2. Cell viability was examined by 4-[3-[4-lodophenyl]-2-4(4-nitrophenyl)-2H-5-tetrazolio-1,3-benzene disulfonate] water soluble tetrazolium-1 (WST-1) assay. RESULTS Magnolol at concentrations of 20-100 μM induced [Ca2+]i rises. Ca2+ removal reduced the signal by approximately 50%. Magnolol (100 μM) induced Mn2+ influx suggesting of Ca2+ entry. Magnolol-induced Ca2+ entry was partially suppressed by protein kinase C (PKC) regulators, and inhibitors of store-operated Ca2+ channels. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) abolished magnolol-evoked [Ca2+]i rises. Conversely, treatment with magnolol abolished BHQ-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 partially inhibited magnolol-induced [Ca2+]i rises. Magnolol at 20-100 μM decreased cell viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). CONCLUSIONS Together, in OC2 cells, magnolol induced [Ca2+]i rises by evoking partially PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-sensitive store-operated Ca2+ entry. Magnolol also caused Ca2+-independent cell death. Therefore, magnolol-induced cytotoxicity may not be involved in activation mechanisms associated with intracellular Ca2+ mobilization in oral cancer cells.
Collapse
|
19
|
Poivre M, Duez P. Biological activity and toxicity of the Chinese herb Magnolia officinalis Rehder & E. Wilson (Houpo) and its constituents. J Zhejiang Univ Sci B 2017; 18:194-214. [PMID: 28271656 DOI: 10.1631/jzus.b1600299] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Traditional Chinese herbal drugs have been used for thousands of years in Chinese pharmacopoeia. The bark of Magnolia officinalis Rehder & E. Wilson, known under the pinyin name "Houpo", has been traditionally used in Chinese and Japanese medicines for the treatment of anxiety, asthma, depression, gastrointestinal disorders, headache, and more. Moreover, Magnolia bark extract is a major constituent of currently marketed dietary supplements and cosmetic products. Much pharmacological activity has been reported for this herb and its major compounds, notably antioxidant, anti-inflammatory, antibiotic and antispasmodic effects. However, the mechanisms underlying this have not been elucidated and only a very few clinical trials have been published. In vitro and in vivo toxicity studies have also been published and indicate some intriguing features. The present review aims to summarize the literature on M. officinalis bark composition, utilisation, pharmacology, and safety.
Collapse
Affiliation(s)
- Mélanie Poivre
- Unit of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons-UMONS, Mons, Belgium
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons-UMONS, Mons, Belgium
| |
Collapse
|
20
|
Byun S, Lee E, Lee KW. Therapeutic Implications of Autophagy Inducers in Immunological Disorders, Infection, and Cancer. Int J Mol Sci 2017; 18:ijms18091959. [PMID: 28895911 PMCID: PMC5618608 DOI: 10.3390/ijms18091959] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an essential catabolic program that forms part of the stress response and enables cells to break down their own intracellular components within lysosomes for recycling. Accumulating evidence suggests that autophagy plays vital roles in determining pathological outcomes of immune responses and tumorigenesis. Autophagy regulates innate and adaptive immunity affecting the pathologies of infectious, inflammatory, and autoimmune diseases. In cancer, autophagy appears to play distinct roles depending on the context of the malignancy by either promoting or suppressing key determinants of cancer cell survival. This review covers recent developments in the understanding of autophagy and discusses potential therapeutic interventions that may alter the outcomes of certain diseases.
Collapse
Affiliation(s)
- Sanguine Byun
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea.
| | - Eunjung Lee
- Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam 13539, Korea.
| | - Ki Won Lee
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16495, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
21
|
Xiang M, Li R, Zhang Z, Song X. [Advances in the Research of the Regulation of Chinese Traditional Medicine Monomer and Its Derivatives on Autophagy in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 20:205-212. [PMID: 28302224 PMCID: PMC5973305 DOI: 10.3779/j.issn.1009-3419.2017.03.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The high morbidity and mortality of non-small cell lung cancer (NSCLC) did influence the quality of life of tumor patients world-wide. There is an urgent need to develop new therapies that have high anti-tumor activity and low toxicity side effects. It is widely accepted that autophagy can play diverse roles in carcinogenesis, such as induces pro-death of lung cancer cells or helps the escape from cell death, making it become a proper anticancer target. It's believed that various monomers of Chinese traditional medicine closely correlates to anti-NSCLC activities, and that even could affect the acquired multiple drug resistance (MDR). Furthermore, autophagy might be the underling mechanisms which could play a role as the candidate targets of natural active compounds. Recent studies of terpenoids, alkaloid, dietary polyphenols, saponins and other active ingredients that extracted from a large variety of herbs suggest that different monomer compounds could either regulate the activity of pro-death autophagy or influence the level of protective autophagy of NSCLC cells, thus changing their drug sensitivity and cell viability. This paper aims to give a systemic description of the latest advances about natural compounds and their derivatives that involved in tumorigenesis of NSCLC via inducing the autophagy.
Collapse
Affiliation(s)
- Meiyi Xiang
- Department of Cancer Biotherapy Center, the Third Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Ruilei Li
- Department of Cancer Biotherapy Center, the Third Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Zhiwei Zhang
- Department of Cancer Biotherapy Center, the Third Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Xin Song
- Department of Cancer Biotherapy Center, the Third Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| |
Collapse
|
22
|
Wang SF, Wu MY, Cai CZ, Li M, Lu JH. Autophagy modulators from traditional Chinese medicine: Mechanisms and therapeutic potentials for cancer and neurodegenerative diseases. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:861-876. [PMID: 27793785 DOI: 10.1016/j.jep.2016.10.069] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM), an ancient yet still alive medicinal system widely used in East Asia, has played an essential role in health maintenance and diseases control, for a wide range of human chronic diseases like cancers and neurodegenerative diseases. TCM-derived compounds and extracts attract wide attention for their potential application as therapeutic agents against above mentioned diseases. AIM OF REVIEW Recent years the enthusiasm in searching for autophagy regulators for human diseases has yielded many positive hits. TCM-derived compounds as important sources for drug discovery have been widely tested in different models for autophagy modulation. Here we summarize the current progress in the discovery of natural autophagy regulators from TCM for the therapeutic application in cancer and neurodegenerative disease models, aiming to provide the direct link from traditional use to new pharmacological application. METHODS The present review collected the literature published during the recent 10 years which studied the effect of TCM-derived compounds or extracts on autophagy regulation from PubMed, Web of Science, Google Scholar and Science Direct. The names of chemical compounds studied in this article are corresponding to the information in journal plant list. RESULTS In this review, we give a brief introduction about the autophagy and its roles in cancer and neurodegenerative disease models and describe the molecular mechanisms of autophagy modulation. We also make comprehensive lists to summarize the effects and underlying mechanisms of TCM-derived autophagy regulators in cancer and neurodegenerative disease models. In the end of the review, we discuss the current strategies, problems and future direction for TCM-derived autophagy regulators in the treatment of human diseases. CONCLUSIONS A number of data from in vivo and in vitro models indicated TCM derived compounds and extracts hold great potential for the treatment of human diseases including cancers and neurodegenerative diseases. Autophagy, as a novel and promising drug target involved in a wide range of human diseases, can be modulated by many TCM derived agents, indicating autophagy modulation may be an important mechanism underlying the therapeutic effect of TCM in treating diseases. Furthermore, we look forward to seeing the discovery of ideal autophagy modulators from TCM with considerably higher selectivity for the treatment of human diseases.
Collapse
Affiliation(s)
- Sheng-Fang Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Ming-Yue Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Cui-Zan Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
23
|
Ke B, Tian M, Li J, Liu B, He G. Targeting Programmed Cell Death Using Small-Molecule Compounds to Improve Potential Cancer Therapy. Med Res Rev 2016; 36:983-1035. [PMID: 27357603 DOI: 10.1002/med.21398] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 05/04/2016] [Accepted: 05/28/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Bowen Ke
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Mao Tian
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Jingjing Li
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Bo Liu
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Gu He
- Department of Anesthesiology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital, Sichuan University; Chengdu 610041 China
| |
Collapse
|
24
|
Law BYK, Mok SWF, Wu AG, Lam CWK, Yu MXY, Wong VKW. New Potential Pharmacological Functions of Chinese Herbal Medicines via Regulation of Autophagy. Molecules 2016; 21:359. [PMID: 26999089 PMCID: PMC6274228 DOI: 10.3390/molecules21030359] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a universal catabolic cellular process for quality control of cytoplasm and maintenance of cellular homeostasis upon nutrient deprivation and environmental stimulus. It involves the lysosomal degradation of cellular components such as misfolded proteins or damaged organelles. Defects in autophagy are implicated in the pathogenesis of diseases including cancers, myopathy, neurodegenerations, infections and cardiovascular diseases. In the recent decade, traditional drugs with new clinical applications are not only commonly found in Western medicines, but also highlighted in Chinese herbal medicines (CHM). For instance, pharmacological studies have revealed that active components or fractions from Chaihu (Radix bupleuri), Hu Zhang (Rhizoma polygoni cuspidati), Donglingcao (Rabdosia rubesens), Hou po (Cortex magnoliae officinalis) and Chuan xiong (Rhizoma chuanxiong) modulate cancers, neurodegeneration and cardiovascular disease via autophagy. These findings shed light on the potential new applications and formulation of CHM decoctions via regulation of autophagy. This article reviews the roles of autophagy in the pharmacological actions of CHM and discusses their new potential clinical applications in various human diseases.
Collapse
Affiliation(s)
- Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - An Guo Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Margaret Xin Yi Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
25
|
Lu D, Zhu LH, Shu XM, Zhang CJ, Zhao JY, Qi RB, Wang HD, Lu DX. Ginsenoside Rg1 relieves tert-Butyl hydroperoxide-induced cell impairment in mouse microglial BV2 cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2015; 17:930-45. [PMID: 25971787 DOI: 10.1080/10286020.2015.1031117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microglial activation plays an important role in neurodegenerative diseases associated with oxidative stress. tert-Butyl hydroperoxide (t-BHP), an analog of hydroperoxide, mimics the oxidative damage to microglial cells. It has been reported that ginsenoside Rg1 (G-Rg1), an active ingredient of Panax ginseng, has anti-stress and anti-inflammatory properties. The present study aims to investigate the ability of G-Rg1 to decrease the t-BHP-mediated cell damage of BV2 microglial cells. We performed flow cytometry assays to facilitate the detection of reactive oxygen species as well as Western blotting analyses and immunofluorescence assays using specific antibodies, such as antibodies against phospho-mitogen-activated protein kinases (p-MAPKs), phospho-nuclear factor-κB (p-NF-κB), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X (Bax), Caspase-3, autophagy marker light chain 3 (LC3), and Becline-1. We found that treatment with 50 μM G-Rg1 protected microglial cells against oxidative damage induced by 10 μM t-BHP.
Collapse
Affiliation(s)
- Dan Lu
- a Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology , School of Medicine, Institute of Brain Research, Jinan University , Guangzhou 510632 , China
- b Department of Internal Neurology , Guangzhou Overseas Chinese Hospital, The First Affiliated Hospital of Jinan University , Guangzhou 510632 , China
| | - Li-Hong Zhu
- a Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology , School of Medicine, Institute of Brain Research, Jinan University , Guangzhou 510632 , China
| | - Xiao-Ming Shu
- a Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology , School of Medicine, Institute of Brain Research, Jinan University , Guangzhou 510632 , China
| | - Chan-Juan Zhang
- a Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology , School of Medicine, Institute of Brain Research, Jinan University , Guangzhou 510632 , China
| | - Jia-Yi Zhao
- a Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology , School of Medicine, Institute of Brain Research, Jinan University , Guangzhou 510632 , China
| | - Ren-Bin Qi
- a Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology , School of Medicine, Institute of Brain Research, Jinan University , Guangzhou 510632 , China
| | - Hua-Dong Wang
- a Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology , School of Medicine, Institute of Brain Research, Jinan University , Guangzhou 510632 , China
| | - Da-Xiang Lu
- a Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology , School of Medicine, Institute of Brain Research, Jinan University , Guangzhou 510632 , China
| |
Collapse
|
26
|
Tong XP, Chen Y, Zhang SY, Xie T, Tian M, Guo MR, Kasimu R, Ouyang L, Wang JH. Key autophagic targets and relevant small-molecule compounds in cancer therapy. Cell Prolif 2014; 48:7-16. [PMID: 25474301 DOI: 10.1111/cpr.12154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/31/2014] [Indexed: 02/05/2023] Open
Abstract
Autophagy is a highly conserved lysosomal degradation process which can recycle unnecessary or dysfunctional cell organelles and proteins, thereby playing a crucial regulatory role in cell survival and maintenance. It has been widely accepted that autophagy regulates various pathological processes, among which cancer attracts much attention. Autophagy may either promote cancer cell survival by providing energy during unfavourable metabolic circumstance or can induce individual cancer cell death by preventing necrosis and increasing genetic instability. Thus, dual roles of autophagy may determine the destiny of cancer cells and make it an attractive target for small-molecule drug discovery. Collectively, key autophagy-related elements as potential targets, oncogenes mTORC1, class I PI3K and AKT, as well as tumour suppressor class III PI3K, Beclin-1 and p53, have been discussed. In addition, some small molecule drugs, such as rapamycin and its derivatives, rottlerin, PP242 and AZD8055 (targeting PI3K/AKT/mTORC1), spautin-1, and tamoxifen, as well as oridonin and metformin (targeting p53), can modulate autophagic pathways in different types of cancer. All these data will shed new light on targeting the autophagic process for cancer therapy, using small-molecule compounds, to fight cancer in the near future.
Collapse
Affiliation(s)
- X-P Tong
- State Key Laboratory of Biotherapy & Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tsai JR, Chong IW, Chen YH, Hwang JJ, Yin WH, Chen HL, Chou SH, Chiu CC, Liu PL. Magnolol induces apoptosis via caspase-independent pathways in non-small cell lung cancer cells. Arch Pharm Res 2013; 37:548-57. [DOI: 10.1007/s12272-013-0232-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 08/01/2013] [Indexed: 11/30/2022]
|
28
|
Kumar S, Kumar A, Pathania AS, Guru SK, Jada S, Sharma PR, Bhushan S, Saxena AK, Kumar HMS, Malik F. Tiron and trolox potentiate the autophagic cell death induced by magnolol analog Ery5 by activation of Bax in HL-60 cells. Apoptosis 2013; 18:605-17. [PMID: 23494480 DOI: 10.1007/s10495-013-0805-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study describes the mechanism of trolox and tiron induced potentiation of cytotoxicity caused by Ery5, an analog of magnolol, in human myeloid leukemia HL-60 cells. Ery5 induced cytotoxicity in HL-60 cells by involving activation of bax and cleavage of caspase 3, which contributed towards activation of both apoptotic and autophagic pathways. Trolox and tiron, even at non-toxic concentrations, contributed to the cytotoxicity of Ery5 by activation of autophagic proteins like ATG7, ATG12 and LC3-II. Z-VAD-fmk mediated reduction in the cytotoxicity and expression of autophagic proteins, further suggested that autophagy induced by Ery5 is largely dependent upon caspases. Interestingly, Ery5 induced autophagy was accompanied by the downregulation of PI3K/AKT pathway whereas, trolox and tiron strongly enhanced this effect. In addition to that treatment of cells with Ery5, trolox and tiron individually, displayed a marked upregulation of Bax. The involvement of Bax in trolox and tiron induced enhancement of the cytotoxicity of Ery5 was confirmed, when siRNA induced silencing of Bax led to increased viability of the cells and exerted a strong inhibitory effect on LC3-II accumulation and p62 degradation in case of cells treated by the combination of Ery5 with trolox or tiron. Additionally, an important role of PARP in Ery5 mediated cell death has been suggested by PARP silencing experiments, however, potentiation of autophagic cytotoxicity by trolox and tiron did not seem to be dependent on PARP-1. Therefore, Bax seems to play a vital role in trolox and tiron mediated potentiation of autophagic cell death by Ery5 in HL-60 cells.
Collapse
Affiliation(s)
- Suresh Kumar
- Department of Cancer Pharmacology, Indian Institute of Integrative Medicine CSIR, Canal Road, Jammu 180001, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen YH, Huang PH, Lin FY, Chen WC, Chen YL, Yin WH, Man KM, Liu PL. Magnolol: A multifunctional compound isolated from the Chinese medicinal plant Magnolia officinalis. Eur J Integr Med 2011. [DOI: 10.1016/j.eujim.2011.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Rasul A, Yu B, Khan M, Zhang K, Iqbal F, Ma T, Yang H. Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways. Int J Oncol 2011; 40:1153-61. [PMID: 22139054 PMCID: PMC3584565 DOI: 10.3892/ijo.2011.1277] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 10/27/2011] [Indexed: 12/05/2022] Open
Abstract
Gastric cancer is the fourth most commonly diagnosed cancer with the second highest mortality rate worldwide. Surgery, chemotherapy and radiation therapy are generally used for the treatment of stomach cancer but only limited clinical response is shown by these therapies and still no effectual therapy for advanced gastric adenocarcinoma patients is available. Therefore, there is a need to identify other therapeutic agents against this life-threatening disease. Plants are considered as one of the most important sources for the development of anticancer drugs. Magnolol, a natural compound possesses anticancer properties. However, effects of Magnolol on human gastric cancer remain unexplored. The effects of Magnolol on the viability of SGC-7901 cells were determined by the MTT assay. Apoptosis, mitochondrial membrane potential and cell cycle were evaluated by flow cytometry. Protein expression of Bcl-2, Bax, caspase-3 and PI3K/Akt was analysed by Western blotting. Magnolol induced morphological changes in SGC-7901 cells and its cytotoxic effects were linked with DNA damage, apoptosis and S-phase arrest in a dose-dependent manner. Magnolol triggered the mitochondrial-mediated apoptosis pathway as shown by an increased ratio of Bax/Bcl-2, dissipation of mitochondrial membrane potential (ΔΨm), and sequential activation of caspase-3 and inhibition of PI3K/Akt. Additionally, Magnolol induced autophagy in SGC-7901 cells at high concentration but was not involved in cell death. Magnolol-induced apoptosis of SGC-7901 cells involves mitochondria and PI3K/Akt-dependent pathways. These findings provide evidence that Magnolol is a promising natural compound for the treatment of gastric cancer and may represent a candidate for in vivo studies of monotherapies or combination antitumor therapies.
Collapse
Affiliation(s)
- Azhar Rasul
- Central Research Laboratory, Jilin University Bethune Second Hospital, Changchun 130041, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Lai CS, Lai YS, Kuo DH, Wu CH, Ho CT, Pan MH. Magnolol potently suppressed lipopolysaccharide-induced iNOS and COX-2 expression via downregulating MAPK and NF-κB signaling pathways. J Funct Foods 2011. [DOI: 10.1016/j.jff.2011.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
32
|
Seo JU, Kim MH, Kim HM, Jeong HJ. Anticancer potential of magnolol for lung cancer treatment. Arch Pharm Res 2011; 34:625-33. [DOI: 10.1007/s12272-011-0413-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/29/2010] [Accepted: 12/29/2010] [Indexed: 12/22/2022]
|
33
|
Lee YJ, Lee YM, Lee CK, Jung JK, Han SB, Hong JT. Therapeutic applications of compounds in the Magnolia family. Pharmacol Ther 2011; 130:157-76. [PMID: 21277893 DOI: 10.1016/j.pharmthera.2011.01.010] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 12/18/2022]
Abstract
The bark and/or seed cones of the Magnolia tree have been used in traditional herbal medicines in Korea, China and Japan. Bioactive ingredients such as magnolol, honokiol, 4-O-methylhonokiol and obovatol have received great attention, judging by the large number of investigators who have studied their pharmacological effects for the treatment of various diseases. Recently, many investigators reported the anti-cancer, anti-stress, anti-anxiety, anti-depressant, anti-oxidant, anti-inflammatory and hepatoprotective effects as well as toxicities and pharmacokinetics data, however, the mechanisms underlying these pharmacological activities are not clear. The aim of this study was to review a variety of experimental and clinical reports and, describe the effectiveness, toxicities and pharmacokinetics, and possible mechanisms of Magnolia and/or its constituents.
Collapse
Affiliation(s)
- Young-Jung Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | | | | | |
Collapse
|
34
|
Kuo DH, Lai YS, Lo CY, Cheng AC, Wu H, Pan MH. Inhibitory effect of magnolol on TPA-induced skin inflammation and tumor promotion in mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:5777-5783. [PMID: 20218615 DOI: 10.1021/jf100601r] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Magnolol has been reported to have an anti-inflammatory and antitumor effect in vitro and in vivo. Herein, we report the investigation of the inhibitory effects of magnolol on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in mouse skin. We found that the topical application of magnolol effectively inhibited the transcriptional activation of iNOS and COX-2 mRNA and proteins in mouse skin stimulated by TPA. Pretreatment with magnolol resulted in the reduction of TPA-induced nuclear translocation of the nuclear factor-kappaB (NFkappaB) subunit and DNA binding by blocking the phosphorylation of IkappaBalpha and p65 and subsequent degradation of IkappaBalpha. In addition, magnolol can suppress TPA-induced activation of extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase (PI3K)/Akt, which are upstream of NFkappaB. Moreover, magnolol significantly inhibited 7,12-dimethylbene[a]anthracene (DMBA)/TPA-induced skin tumor formation by reducing the tumor multiplicity, tumor incidence, and tumor size of papillomas at 20 weeks. All these results revealed that magnolol is an effective antitumor agent and that its inhibitory effect is through the down-regulation of inflammatory iNOS and COX-2 gene expression in mouse skin, suggesting that magnolol is a novel functional agent capable of preventing inflammation-associated tumorigenesis.
Collapse
Affiliation(s)
- Daih-Huang Kuo
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung, Taiwan.
| | | | | | | | | | | |
Collapse
|
35
|
Magnolol induces apoptosis via activation of both mitochondrial and death receptor pathways in A375-S2 cells. Arch Pharm Res 2010; 32:1789-94. [DOI: 10.1007/s12272-009-2218-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/29/2009] [Accepted: 10/08/2009] [Indexed: 11/27/2022]
|
36
|
Osipov RM, Robich MP, Feng J, Liu Y, Clements RT, Glazer HP, Sodha NR, Szabo C, Bianchi C, Sellke FW. Effect of hydrogen sulfide in a porcine model of myocardial ischemia-reperfusion: comparison of different administration regimens and characterization of the cellular mechanisms of protection. J Cardiovasc Pharmacol 2009; 54:287-97. [PMID: 19620880 DOI: 10.1097/fjc.0b013e3181b2b72b] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We investigate the impact of different regimens of parenteral hydrogen sulfide (H2S) administration on myocardium during ischemia-reperfusion (IR) and the molecular pathways involved in its cytoprotective effects. METHODS Eighteen male Yorkshire pigs underwent 60 minutes of mid-left anterior descending coronary artery occlusion followed by 120 minutes of reperfusion. Pigs received either placebo (control, n = 6) or H2S as a bolus (bolus group, n = 6, 0.2 mg/kg over 10 seconds at the start of reperfusion) or as an infusion (infusion group, n = 6, 2 mg.kg.h initiated at the onset of ischemia and continued into the reperfusion period). Myocardial function was monitored throughout the experiment. The area at risk and myocardial necrosis was determined by Monastral blue/triphenyl tetrazolium chloride staining. Apoptosis and the expression pattern of various intracellular effector pathways were investigated in the ischemic territory. Coronary microvascular reactivity to endothelium-dependent and endothelium-independent factors was measured. RESULTS H2S infusion but not bolus administration markedly reduce myocardial infarct size (P < 0.05) and improve regional left ventricular function, as well as endothelium-dependent and endothelium-independent microvascular reactivity (P < 0.05). The expression of B-cell lymphoma 2 (P = 0.059), heat shock protein 27 and alphaB-crystallin (P < 0.05) were lower in H2S-treated groups. Infusion of H2S caused higher expression of phospho-glycogen synthase kinase-3 beta isoform(P < 0.05) and lower expression of mammalian target of rapamycin and apoptosis-inducing factor (P < 0.05). Bolus of H2S caused higher expression of phospho-p44/42 MAPK extracellular signal-regulated kinase and lower expression of Beclin-1 (P < 0.05). The expression of caspase 3 and cleaved caspase 3 were lower (P < 0.05), whereas the expression of phospho-Bad(Ser136) was higher in the bolus group versus control and infusion groups (P < 0.05). The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cell count was lower in both H2S-treated groups compared with the control (P < 0.05). CONCLUSIONS This study demonstrates that infusion of H2S is superior to a bolus alone in reducing myocardial necrosis after IR injury, even though some markers of apoptosis and autophagy were affected in both H2S-treated groups. Thus, the current results indicate that infusion of H2S throughout IR may offer better myocardial protection from IR injury.
Collapse
Affiliation(s)
- Robert M Osipov
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lee DH, Szczepanski MJ, Lee YJ. Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt signaling pathway in human prostate cancer cells. J Cell Biochem 2009; 106:1113-22. [PMID: 19229860 DOI: 10.1002/jcb.22098] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We observed that treatment of prostate cancer cells for 24 h with magnolol, a phenolic component extracted from the root and stem bark of the oriental herb Magnolia officinalis, induced apoptotic cell death in a dose- and time-dependent manner. A sustained inhibition of the major survival signal, Akt, occurred in magnolol-treated cells. Treatment of PC-3 cells with an apoptosis-inducing concentration of magnolol (60 microM) resulted in a rapid decrease in the level of phosphorylated Akt leading to inhibition of its kinase activity. Magnolol treatment (60 microM) also caused a decrease in Ser((136)) phosphorylation of Bad (a proapoptotic protein), which is a downstream target of Akt. Protein interaction assay revealed that Bcl-xL, an anti-apoptotic protein, was associated with Bad during treatment with magnolol. We also observed that during treatment with magnolol, translocation of Bax to the mitochondrial membrane occurred and the translocation was accompanied by cytochrome c release, and cleavage of procaspase-8, -9, -3, and poly(ADP-ribose) polymerase (PARP). Similar results were observed in human colon cancer HCT116Bax(+/-) cell line, but not HCT116Bax(-/-) cell line. Interestingly, at similar concentrations (60 microM), magnolol treatment did not affect the viability of normal human prostate epithelial cell (PrEC) line. We also observed that apoptotic cell death by magnolol was associated with significant inhibition of pEGFR, pPI3K, and pAkt. These results suggest that one of the mechanisms of the apoptotic activity of magnolol involves its effect on epidermal growth factor receptor (EGFR)-mediated signaling transduction pathways.
Collapse
Affiliation(s)
- Dae-Hee Lee
- Department of Surgery and Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
38
|
Down-regulation of c-Src/EGFR-mediated signaling activation is involved in the honokiol-induced cell cycle arrest and apoptosis in MDA-MB-231 human breast cancer cells. Cancer Lett 2009; 277:133-40. [DOI: 10.1016/j.canlet.2008.11.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 11/24/2008] [Accepted: 11/27/2008] [Indexed: 11/18/2022]
|
39
|
Park EJ, Min HY, Chung HJ, Hong JY, Kang YJ, Hung TM, Youn UJ, Kim YS, Bae K, Kang SS, Lee SK. Down-regulation of c-Src/EGFR-mediated signaling activation is involved in the honokiol-induced cell cycle arrest and apoptosis in MDA-MB-231 human breast cancer cells. Cancer Lett 2009. [DOI: 10.1016/j.canlet.2008.11.029
expr 942668522 + 914844521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|