1
|
Bal NB, Bostanci A, Sadi G, Dönmez MO, Uludag MO, Demirel-Yilmaz E. Resveratrol and regular exercise may attenuate hypertension-induced cardiac dysfunction through modulation of cellular stress responses. Life Sci 2022; 296:120424. [PMID: 35196531 DOI: 10.1016/j.lfs.2022.120424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 01/26/2023]
Abstract
AIMS Hypertension is one of the major causes of cardiac damage. In this study, the effects of resveratrol supplementation and regular exercise on hypertension-induced cellular stress responses of myocardium were compared. MAIN METHODS Hypertension was induced in male Wistar rats by deoxycorticosterone-acetate + salt administration for 12 weeks. Resveratrol and regular exercise were applied for the last six weeks. In addition to biochemical and molecular examinations, isoprenaline, phenylephrine and, acetylcholine-mediated contractions and sinus rate were recorded in the isolated cardiac tissues. KEY FINDINGS Resveratrol and regular exercise reduced systolic blood pressure in hypertensive rats. The altered adrenergic and cholinergic responses of the right atrium and left papillary muscles in hypertension were separately improved by resveratrol and regular exercise. Resveratrol and regular exercise decreased plasma and cardiac total antioxidant capacity and, augmented the expression of antioxidant genes in hypertensive rats. While regular exercise restored the increase in p-PERK expression associated with endoplasmic reticulum stress and decrease in mitophagic marker PINK1 expression, resveratrol only ameliorated PINK1 expression in hypertensive rats. Resveratrol and exercise training suppressed hypertension-induced NLRP3 inflammasome activation by reversing the increase in NLRP3, p-NF-κB expression and the mature-IL-1β/pro-IL-1β and cleaved-caspase-1/pro-caspase-1 ratio. Resveratrol and exercise enhanced mRNA expression of caspase-3, bax, and bcl-2 involved in the apoptotic pathway, but attenuated phosphorylation of stress-related mitogenic proteins p38 and JNK induced by hypertension. SIGNIFICANCE Our study demonstrated the protective effect of resveratrol and exercise on hypertension-induced cardiac dysfunction by modulating cellular stress responses including oxidative stress, ER stress, mitophagy, NLRP3 inflammasome-mediated inflammation, and mitogenic activation.
Collapse
Affiliation(s)
- Nur Banu Bal
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey.
| | - Aykut Bostanci
- Karamanoglu Mehmetbey University, K.Ö. Faculty of Science, Department of Biology, Karaman 70100, Turkey
| | - Gökhan Sadi
- Karamanoglu Mehmetbey University, K.Ö. Faculty of Science, Department of Biology, Karaman 70100, Turkey
| | - Muhammet Oguzhan Dönmez
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Mecit Orhan Uludag
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Emine Demirel-Yilmaz
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sihhiye, 06100 Ankara, Turkey
| |
Collapse
|
2
|
Wei TT, Li MJ, Guo L, Xie YD, Chen WH, Sun Y, Liu GH, Ding Y, Chai YR. Resveratrol ameliorates thymus senescence changes in D-galactose induced mice. Microbiol Immunol 2020; 64:620-629. [PMID: 32691886 DOI: 10.1111/1348-0421.12833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2023]
Abstract
The thymic microenvironment plays an important role in the development of T cells. A decrease of thymic epithelial cells is the main cause of age-related thymic atrophy or degeneration. Resveratrol (RSV), a phytoalexin produced from plants, has been shown to inhibit the adverse effects of dietary obesity on the structure and function of the thymus. D-Galactose (D-gal) can induce accelerated aging in mice. In the present study, young mice (2 months old) were injected with D-gal (120 mg/kg/day) for 8 consecutive weeks to construct an accelerated aging model. Compared with normal control mice, the thymus epithelium of the D-gal treated mice had structural changes, the number of senescent cells increased, the number of CD4+ T cells decreased, and CD8+ T cells increased. After RSV administration by gavage for 6 weeks, it was found that RSV improved the surface phenotypes of D-gal treated mice, and recovered thymus function by maintaining the ratio of CD4+ to CD8+ cells. It also indicated that RSV enhanced the cell proliferation and inhibited cell senescence. Increased autoimmune regulator (Aire) expression was present in the RSV treated mice. The lymphotoxin-beta receptor (LTβR) expression also increased. These findings suggested that RSV intake could restore the alterations caused by D-gal treatment in the thymus via stimulation of Aire expression.
Collapse
Affiliation(s)
- Ting-Ting Wei
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Population and Family Planning Science and Technology Research Institute of Henan, Zhengzhou, Henan Province, China
| | - Meng-Jie Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Li Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yan-Dong Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wen-Hui Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yun Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Guo-Hong Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yi Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
3
|
Han S, Bal NB, Sadi G, Usanmaz SE, Uludag MO, Demirel-Yilmaz E. The effects of resveratrol and exercise on age and gender-dependent alterations of vascular functions and biomarkers. Exp Gerontol 2018; 110:191-201. [PMID: 29908346 DOI: 10.1016/j.exger.2018.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 01/18/2023]
Abstract
The purpose of this study was to determine the effects of resveratrol and regular aerobic exercise on vascular functions and biomarkers related to vessel responsiveness in an age and gender-dependent manner. The study used young (3 months) and old (12 months) male and female Wistar albino rats. Resveratrol was given in the drinking water (0.05 mg/ml; approximately 7.5 mg/kg) for 6 weeks. In the exercise group, all rats performed treadmill running at 20 m/min on a 0° incline, 40 min/day, 3 times a week, for 6 weeks. Acetylcholine-induced, endothelium-dependent and sodium nitroprusside-mediated, endothelium-independent relaxations of rat thoracic aorta and blood levels of biomarkers were separately changed by resveratrol intake and exercise-training in an age and gender-dependent manner. Antioxidant enzymes and eNOS expressions in vessels were elevated by resveratrol and exercise. Resveratrol and exercise enhanced gene expressions of non-selective PDE1, 2, 3 and cAMP selective PDE4 but not cGMP selective PDE5 in the aorta. In addition, the aortic mRNA expression of inflammation markers were altered by resveratrol and exercise-training. The results of the study demonstrated that vessel responsiveness and biomarkers related to vascular functions were altered by resveratrol consumption and exercise-training in an age and gender-dependent manner.
Collapse
Affiliation(s)
- Sevtap Han
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey.
| | - Nur Banu Bal
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Gökhan Sadi
- Karamanoglu Mehmed Bey University, Faculty of Arts and Sciences, Department of Biological Sciences, Turkey
| | - Suzan E Usanmaz
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sihhiye, 06100 Ankara, Turkey
| | - M Orhan Uludag
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Emine Demirel-Yilmaz
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sihhiye, 06100 Ankara, Turkey
| |
Collapse
|
4
|
Novakovi R, Radunovi N, Markovi -Lipkovski J, irovi S, Beleslin- oki B, Ili B, Ivkovi B, Heinle H, ivanovi V, Gojkovi -Bukarica L. Effects of the polyphenol resveratrol on contractility of human term pregnant myometrium. Mol Hum Reprod 2015; 21:545-51. [DOI: 10.1093/molehr/gav011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/02/2015] [Indexed: 12/27/2022] Open
|
5
|
Han S, Uludag MO, Usanmaz SE, Ayaloglu-Butun F, Akcali KC, Demirel-Yilmaz E. Resveratrol affects histone 3 lysine 27 methylation of vessels and blood biomarkers in DOCA salt-induced hypertension. Mol Biol Rep 2014; 42:35-42. [DOI: 10.1007/s11033-014-3737-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/10/2014] [Indexed: 01/06/2023]
|
6
|
Ferrara A, Fusi F, Gorelli B, Sgaragli G, Saponara S. Effects of freeze-dried red wine on cardiac function and ECG of the Langendorff-perfused rat heart. Can J Physiol Pharmacol 2014; 92:171-4. [DOI: 10.1139/cjpp-2013-0262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effect of freeze-dried red wine (FDRW) on cardiac function and electrocardiogram (ECG) in Langendorff-isolated rat hearts was investigated. FDRW significantly decreased left ventricular pressure and coronary perfusion pressure, the latter being dependent on the activation of both phosphatidylinositol 3-kinase and eNOS. FDRW did not affect the QRS and QT interval in the ECG, although at 56 μg of gallic acid equivalents/mL, it prolonged PQ interval and induced a second-degree atrioventricular block in 3 out of 6 hearts. This is the first study demonstrating that at concentrations resembling a moderate consumption of red wine, FDRW exhibited negative inotropic and coronary vasodilating activity leaving unaltered ECG, whereas at very high concentrations, it induced arrhythmogenic effects.
Collapse
Affiliation(s)
- Antonella Ferrara
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - Fabio Fusi
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - Beatrice Gorelli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - Giampietro Sgaragli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
- Accademia Italiana della Vite e del Vino, Via XXVIII Aprile, 26 Conegliano Treviso, Italy
| | - Simona Saponara
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
7
|
Quintieri AM, Baldino N, Filice E, Seta L, Vitetti A, Tota B, De Cindio B, Cerra MC, Angelone T. Malvidin, a red wine polyphenol, modulates mammalian myocardial and coronary performance and protects the heart against ischemia/reperfusion injury. J Nutr Biochem 2012; 24:1221-31. [PMID: 23266283 DOI: 10.1016/j.jnutbio.2012.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/12/2012] [Accepted: 09/19/2012] [Indexed: 12/12/2022]
Abstract
A moderate red wine consumption and a colored fruit-rich diet protect the cardiovascular system, thanks to the presence of several polyphenols. Malvidin-3-0-glucoside (malvidin), an anthocyanidine belonging to polyphenols, is highly present in red grape skin and red wine. Its biological activity is poorly characterized, although a role in tumor cell inhibition has been found. To analyze whether and to which extent, like other food-derived polyphenols, malvidin affects the cardiovascular function, in this study, we have performed a quantitative analysis by high-performance liquid chromatography of polyphenolic content of red grape skins extract, showing that it contains a high malvidin amount (63.93 ±12.50 mg/g of fresh grape skin). By using the isolated and Langendorff perfused rat heart, we found that the increasing doses (1-1000 ng/ml) of the extract induced positive inotropic and negative lusitropic effects associated with coronary dilation. On the same cardiac preparations, we observed that malvidin (10(-10)-10(-6) mol/L) elicited negative inotropism and lusitropism and coronary dilation. Analysis of mechanism of action revealed that malvidin-dependent cardiac effects require the activation of the phosphatidylinositol 3-kinase (PI3K)/nitric oxide (NO)/cGMP/PKG pathway and are associated with increased intracellular cGMP and the phosphorylation of endothelial NO synthase (eNOS), PI3K-AKT, ERK1/2, and GSK-3β. AKT and eNOS phosphorylation was confirmed in human umbilical vein endothelial cell. We also found that malvidin act as a postconditioning agent, being able to elicit cardioprotection against ischemia/reperfusion damages. Our results show the cardioactivity of polyphenols-rich red grape extracts and indicate malvidin as a new cardioprotective principle. This is of relevance not only for a better clarification of the beneficial cardiovascular effects of food-derived polyphenols but also for nutraceutical research.
Collapse
Affiliation(s)
- Anna Maria Quintieri
- Department of Cell Biology, University of Calabria, Arcavacata di Rende, CS, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Resveratrol and diabetic cardiac function: focus on recent in vitro and in vivo studies. J Bioenerg Biomembr 2012; 44:281-96. [DOI: 10.1007/s10863-012-9429-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Aiello EA, Cingolani HE. A possible subcellular mechanism underlying the "French paradox": the opening of mitochondrial K(ATP) channels. Appl Physiol Nutr Metab 2012; 36:768-72. [PMID: 21999300 DOI: 10.1139/h11-089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A reduction in the risk of coronary heart disease has been associated to moderate red wine consumption. We tested whether a nonalcoholic red wine extract would open mitochondrial K(ATP) channels in guinea pig myocytes. The opening of mitochondrial K(ATP) channels was assessed by endogenous flavoprotein fluorescence. Red wine extract (100 μg·mL(-1)) increased flavoprotein oxidation (10.9% ± 1.2%, n = 20). This effect was prevented by the mitochondrial K(ATP) channel blocker, 5-hydroxydecanoate (500 µmol·L(-1); 0.3% ± 1.1%, n = 13), confirming the hypothesis that red wine extract opens mitochondrial K(ATP) channels.
Collapse
Affiliation(s)
- Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina.
| | | |
Collapse
|
10
|
Kovacic P, Somanathan R. Multifaceted approach to resveratrol bioactivity: Focus on antioxidant action, cell signaling and safety. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:86-100. [PMID: 20716933 DOI: 10.4161/oxim.3.2.11147] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resveratrol (RVT) is a naturally occurring trihydroxy stilbene that displays a wide spectrum of physiological activity. Its ability to behave therapeutically as a component of red wine has attracted wide attention. The phenol acts as a protective agent involving various body constituents. Most attention has been given to beneficial effects in insults involving cancer, aging, cardiovascular system, inflammation and the central nervous system. One of the principal modes of action appears to be as antioxidant. Other mechanistic pathways entail cell signaling, apoptosis and gene expression. There is an intriguing dichotomy in relation to pro-oxidant property. Also discussed are metabolism, receptor binding, rationale for safety and suggestions for future work. This is the first comprehensive review of RVT based on a broad, unifying mechanism.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA, USA.
| | | |
Collapse
|
11
|
Chen YR, Yi FF, Li XY, Wang CY, Chen L, Yang XC, Su PX, Cai J. Resveratrol attenuates ventricular arrhythmias and improves the long-term survival in rats with myocardial infarction. Cardiovasc Drugs Ther 2008; 22:479-85. [PMID: 18853243 DOI: 10.1007/s10557-008-6141-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 09/18/2008] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The effects of resveratrol treatment on ventricular arrhythmia, survival, and late cardiac remodeling were evaluated in rats with myocardial infarction (MI). METHODS Three groups of rats (S: ham-operated, MI, and MI pre-treated with resveratrol) were treated in an in vivo MI model by ligation of left anterior descending coronary artery. The electrocardiogram signals were monitored and recorded for 24 h using an implanted telemetry transmitter. The incidence of ventricular arrhythmias during the first 24-h after MI was also evaluated. Meanwhile, invasive in vivo electrophysiology with pacing in the right ventricle was performed in each group to assess the inducibility of ventricular arrhythmias. RESULTS Administration of resveratrol significantly suppressed the MI-induced ventricular tachycardia and ventricular fibrillation (0.4 +/- 0.2 in Resv group vs. 7.1 +/- 2.2 in MI group episodes per hour per rat, P < 0.01). Data also showed that the incidence of inducible ventricular tachycardia was lower in the Resv group than the MI group (46% vs. 81%, P < 0.01). The infarct size and mortality in the Resv group at 14 weeks were reduced by 20% and 33%, respectively, compared with the MI groups. Results from patch clamp recording revealed that resveratrol inhibited L-type calcium current (I (Ca-L)), and selectively enhanced ATP-sensitive K(+) current (I (K,ATP)) in a concentration-dependent manner. CONCLUSION These results suggested that the emerging anti-arrhythmic character induced by resveratrol treatment in rat hearts could be mainly accounted for by inhibition of I (Ca-L) and enhancement of I (K,ATP). Administration of resveratrol also improved the long-term survival by suppressing left ventricular remodeling.
Collapse
Affiliation(s)
- You-Ren Chen
- Department of Cardiology, The Second Affiliated Hospital to Medical College, Shantou University, Shantou 515041, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|