1
|
Luyken AK, Lappe C, Viard R, Löhle M, Kleinlein HR, Kuchcinski G, Langner S, Wenzel AM, Walter M, Weber MA, Storch A, Devos D, Walter U. High correlation of quantitative susceptibility mapping and echo intensity measurements of nigral iron overload in Parkinson's disease. J Neural Transm (Vienna) 2024:10.1007/s00702-024-02856-1. [PMID: 39485510 DOI: 10.1007/s00702-024-02856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
Quantitative susceptibility mapping (QSM) and transcranial sonography (TCS) offer proximal evaluations of iron load in the substantia nigra. Our prospective study aimed to investigate the relationship between QSM and TCS measurements of nigral iron content in patients with Parkinson's disease (PD). In secondary analyses, we wanted to explore the correlation of substantia nigra imaging data with clinical and laboratory findings. Eighteen magnetic resonance imaging and TCS examinations were performed in 15 PD patients at various disease stages. Susceptibility measures of substantia nigra were calculated from referenced QSM maps. Echogenicity of substantia nigra on TCS was measured planimetrically (echogenic area) and by digitized analysis (echo-intensity). Iron-related blood serum parameters were measured. Clinical assessments included the Unified PD Rating Scale and non-motor symptom scales. Substantia nigra susceptibility correlated with echogenic area (Pearson correlation, r = 0.53, p = 0.001) and echo-intensity (r = 0.78, p < 0.001). Individual asymmetry indices correlated between susceptibility and echogenic area measurements (r = 0.50, p = 0.042) and, more clearly, between susceptibility and echo-intensity measurements (r = 0.85, p < 0.001). Substantia nigra susceptibility (individual mean of bilateral measurements) correlated with serum transferrin saturation (Spearman test, r = 0.78, p < 0.001) and, by trend, with serum iron (r = 0.69, p = 0.004). Nigral echogenicity was not clearly related to serum values associated with iron metabolism. Susceptibility and echogenicity measurements were unrelated to PD duration, motor subtype, and severity of motor and non-motor symptoms. The present results support the assumption that iron accumulation is involved in the increase of nigral echogenicity in PD. Nigral echo-intensity probably reflects ferritin-bound iron, e.g. stored in microglia.
Collapse
Affiliation(s)
- Adrian Konstantin Luyken
- Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Chris Lappe
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Network of Centers of Excellence in Neurodegeneration (CoEN) Center Rostock, Rostock, Germany
| | - Romain Viard
- UAR 2014 - US 41 - PLBS - Plateformes Lilloises en Biologie & Santé, University of Lille, Lille, France
- INSERM, Centre Hospitalier Universitaire (CHU) de Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LICEND, University of Lille, Lille, France
| | - Matthias Löhle
- Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Network of Centers of Excellence in Neurodegeneration (CoEN) Center Rostock, Rostock, Germany
| | - Hanna Rebekka Kleinlein
- Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Grégory Kuchcinski
- UAR 2014 - US 41 - PLBS - Plateformes Lilloises en Biologie & Santé, University of Lille, Lille, France
- INSERM, Centre Hospitalier Universitaire (CHU) de Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LICEND, University of Lille, Lille, France
- Department of Neuroradiology, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Sönke Langner
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany
| | - Anne-Marie Wenzel
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Network of Centers of Excellence in Neurodegeneration (CoEN) Center Rostock, Rostock, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, Rostock, Germany
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany
| | - Alexander Storch
- Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Network of Centers of Excellence in Neurodegeneration (CoEN) Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University of Rostock, Rostock, Germany
| | - David Devos
- INSERM, Centre Hospitalier Universitaire (CHU) de Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LICEND, University of Lille, Lille, France
- Neurology and Movement Disorders Department, Reference Center for Parkinson's Disease, Lille Center of Excellence for Neurodegenerative Disorders (LiCEND), Network of Centers of Excellence in Neurodegeneration (CoEN) Center, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
- Department of Pharmacology, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Uwe Walter
- Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Network of Centers of Excellence in Neurodegeneration (CoEN) Center Rostock, Rostock, Germany.
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University of Rostock, Rostock, Germany.
| |
Collapse
|
2
|
Otsuka T, Matsui H. Fish Models for Exploring Mitochondrial Dysfunction Affecting Neurodegenerative Disorders. Int J Mol Sci 2023; 24:ijms24087079. [PMID: 37108237 PMCID: PMC10138900 DOI: 10.3390/ijms24087079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative disorders are characterized by the progressive loss of neuronal structure or function, resulting in memory loss and movement disorders. Although the detailed pathogenic mechanism has not been elucidated, it is thought to be related to the loss of mitochondrial function in the process of aging. Animal models that mimic the pathology of a disease are essential for understanding human diseases. In recent years, small fish have become ideal vertebrate models for human disease due to their high genetic and histological homology to humans, ease of in vivo imaging, and ease of genetic manipulation. In this review, we first outline the impact of mitochondrial dysfunction on the progression of neurodegenerative diseases. Then, we highlight the advantages of small fish as model organisms, and present examples of previous studies regarding mitochondria-related neuronal disorders. Lastly, we discuss the applicability of the turquoise killifish, a unique model for aging research, as a model for neurodegenerative diseases. Small fish models are expected to advance our understanding of the mitochondrial function in vivo, the pathogenesis of neurodegenerative diseases, and be important tools for developing therapies to treat diseases.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
3
|
Gonzalez-Alvarez MA, Hernandez-Bonilla D, Plascencia-Alvarez NI, Riojas-Rodriguez H, Rosselli D. Environmental and occupational exposure to metals (manganese, mercury, iron) and Parkinson's disease in low and middle-income countries: a narrative review. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:1-11. [PMID: 33768768 DOI: 10.1515/reveh-2020-0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES We designed and conducted a narrative review consistent with the PRISMA guidelines (PROSPERO registration number: CRD42018099498) to evaluate the association between environmental metals (manganese, mercury, iron) and Parkinson's Disease (PD) in low and middle-income countries (LMIC). METHODS Data sources: A total of 19 databases were screened, and 2,048 references were gathered. Study selection: Randomized controlled trials, cluster trials, cohort studies, case-control studies, nested case-control studies, ecological studies, cross-sectional studies, case series, and case reports carried out in human adults of LMIC, in which the association between at least one of these three metals and the primary outcome were reported. Data extraction: We extracted qualitative and quantitative data. The primary outcome was PD cases, defined by clinical criteria. A qualitative analysis was conducted. RESULTS Fourteen observational studies fulfilled the selection criteria. Considerable variation was observed between these studies' methodologies for the measurement of metal exposure and outcome assessment. A fraction of studies suggested an association between the exposure and primary outcome; nevertheless, these findings should be weighted and appraised on the studies' design and its implementation limitations, flaws, and implications. CONCLUSIONS Further research is required to confirm a potential risk of metal exposure and its relationship to PD. To our awareness, this is the first attempt to evaluate the association between environmental and occupational exposure to metals and PD in LMIC settings using the social determinants of health as a framework.
Collapse
Affiliation(s)
| | - David Hernandez-Bonilla
- Environmental Health Department, National Institute of Public Health, Ciudad de Mexico, CDMX, Mexico
- Environmental Health Department, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | | | - Horacio Riojas-Rodriguez
- Environmental Health Department, National Institute of Public Health, Ciudad de Mexico, CDMX, Mexico
- Environmental Health Department, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Diego Rosselli
- Clinical Epidemiology and Biostatistics Department, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
4
|
Araújo NC, Suassuna JHR, Fernandes RDCL. Transcranial sonography depicts a larger substantia nigra echogenic area in renal transplant patients on calcineurin inhibitors than on rapamycin. BMC Nephrol 2022; 23:108. [PMID: 35300603 PMCID: PMC8931960 DOI: 10.1186/s12882-022-02741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND After kidney transplantation neurologic manifestations may develop, including Parkinson's disease (PD). An enlarged substantia nigra (SN) by transcranial sonography has been recognized as a marker of PD. METHODS In renal transplant recipients (RTRs = 95) and controls (n = 20), measurement of mesencephalon, SN, third ventricle, spleen and carotid intima-media thickness (cIMT) and middle cerebral artery (MCA), kidney and spleen arteries Doppler resistive index (RI) were performed. RESULTS RTRs had larger SN, third ventricle and cIMT and higher renal RI than controls. The SN was larger in the CNIs group than in controls and rapamycin group, while the third ventricle was similar between patients but larger than in controls. In RTRs, SN showed a direct linear correlation with spleen and the third ventricle with age, cIMT and RI of the MCA, kidney and spleen. In CNIs group the SN correlated positively with age and cIMT, while the third ventricle reproduced RTRs correlations. Rapamycin group showed a direct linear relationship between the third ventricle and age and RI of the MCA, kidney and spleen; SN showed no correlations. CONCLUSION RTRs on CNIs present a larger SN area than on rapamycin, probably due to the antiproliferative effect of rapamycin. This finding might be relevant when interpreting TCS in RTRs.
Collapse
Affiliation(s)
- Nordeval Cavalcante Araújo
- Division of Nephrology, University of the State of Rio de Janeiro, Boulevard 28 de Setembro, 77 - Vila Isabel, Rio de Janeiro-RJ, 20551-030, Brazil.
| | - José Hermógenes Rocco Suassuna
- Division of Nephrology, University of the State of Rio de Janeiro, Boulevard 28 de Setembro, 77 - Vila Isabel, Rio de Janeiro-RJ, 20551-030, Brazil
| | | |
Collapse
|
5
|
Prasuhn J, Strautz R, Lemmer F, Dreischmeier S, Kasten M, Hanssen H, Heldmann M, Brüggemann N. Neuroimaging Correlates of Substantia Nigra Hyperechogenicity in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1191-1200. [PMID: 35180131 DOI: 10.3233/jpd-213000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Degeneration of dopaminergic neurons within the brainstem substantia nigra (SN) is both a pathological hallmark of Parkinson's disease (PD) and a major contributor to symptom expression. Therefore, non-invasive evaluation of the SN is critical for diagnosis and evaluation of disease progression. Hyperechogenicity (HE+) on midbrain transcranial sonography (TCS) supports the clinically established diagnosis of PD. Further, postmortem studies suggest involvement of neuromelanin (NM) loss and iron deposition in nigral neurodegeneration and HE+ emergence. However, the associations between HE+ and signs of nigral NM loss and iron deposition revealed by magnetic resonance imaging (MRI) have not been examined. OBJECTIVE To elucidate the magnetic resonance- (MR-) morphological representation of the HE+ by NM-weighted (NMI) and susceptibility-weighted MRI (SWI). METHODS Thirty-four PD patients and 29 healthy controls (HCs) received TCS followed by NMI and SWI. From MR images, two independent raters manually identified the SN, placed seeds in non-SN midbrain areas, and performed semi-automated SN segmentation with different thresholds based on seed mean values and standard deviations. Masks of the SN were then used to extract mean area, mean signal intensity, maximal signal area, maximum signal (for NMI), and minimum signal (for SWI). RESULTS There were no significant differences in NMI- and SWI-based parameters between patients and HCs, and no significant associations between HE+ extent and NMI- or SWI-based parameters. CONCLUSION HE+ on TCS appears unrelated to PD pathology revealed by NMI and SWI. Thus, TCS and MRI parameters should be considered complementary, and the pathophysiological correlates of the HE+ require further study.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Robert Strautz
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Felicitas Lemmer
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Shalida Dreischmeier
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- Department of Psychiatry, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Henrike Hanssen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
6
|
Boas SM, Joyce KL, Cowell RM. The NRF2-Dependent Transcriptional Regulation of Antioxidant Defense Pathways: Relevance for Cell Type-Specific Vulnerability to Neurodegeneration and Therapeutic Intervention. Antioxidants (Basel) 2021; 11:antiox11010008. [PMID: 35052512 PMCID: PMC8772787 DOI: 10.3390/antiox11010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress has been implicated in the etiology and pathobiology of various neurodegenerative diseases. At baseline, the cells of the nervous system have the capability to regulate the genes for antioxidant defenses by engaging nuclear factor erythroid 2 (NFE2/NRF)-dependent transcriptional mechanisms, and a number of strategies have been proposed to activate these pathways to promote neuroprotection. Here, we briefly review the biology of the transcription factors of the NFE2/NRF family in the brain and provide evidence for the differential cellular localization of NFE2/NRF family members in the cells of the nervous system. We then discuss these findings in the context of the oxidative stress observed in two neurodegenerative diseases, Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), and present current strategies for activating NFE2/NRF-dependent transcription. Based on the expression of the NFE2/NRF family members in restricted populations of neurons and glia, we propose that, when designing strategies to engage these pathways for neuroprotection, the relative contributions of neuronal and non-neuronal cell types to the overall oxidative state of tissue should be considered, as well as the cell types which have the greatest intrinsic capacity for producing antioxidant enzymes.
Collapse
Affiliation(s)
- Stephanie M. Boas
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Kathlene L. Joyce
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Rita M. Cowell
- Department of Neuroscience, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA; (S.M.B.); (K.L.J.)
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
- Correspondence:
| |
Collapse
|
7
|
Sommer M, SheikhBahaei S, Maguire GA. An unexpected iron in the fire of speech production. Brain 2021; 144:2904-2905. [PMID: 34849599 PMCID: PMC8634066 DOI: 10.1093/brain/awab348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
This scientific commentary refers to ‘Elevated iron concentration in putamen and cortical speech motor network in developmental stuttering’, by Cler et al. (doi:10.1093/brain/awab283).
Collapse
Affiliation(s)
- Martin Sommer
- Department of Geriatrics, Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Gerald A Maguire
- Department of Psychiatry and Neuroscience, University of California, Riverside School of Medicine, California, CA 92501, USA
| |
Collapse
|
8
|
Kaur D, Behl T, Sehgal A, Singh S, Sharma N, Chigurupati S, Alhowail A, Abdeen A, Ibrahim SF, Vargas-De-La-Cruz C, Sachdeva M, Bhatia S, Al-Harrasi A, Bungau S. Decrypting the potential role of α-lipoic acid in Alzheimer's disease. Life Sci 2021; 284:119899. [PMID: 34450170 DOI: 10.1016/j.lfs.2021.119899] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases with motor disturbances, cognitive decline, and behavioral impairment. It is characterized by the extracellular aggregation of amyloid-β plaques and the intracellular accumulation of tau protein. AD patients show a cognitive decline, which has been associated with oxidative stress, as well as mitochondrial dysfunction. Alpha-lipoic acid (α-LA), a natural antioxidant present in food and used as a dietary supplement, has been considered a promising agent for the prevention or treatment of neurodegenerative disorders. Despite multiple preclinical studies indicating beneficial effects of α-LA in memory functioning, and pointing to its neuroprotective effects, to date only a few studies have examined its effects in humans. Studies performed in animal models of memory loss associated with aging and AD have shown that α-LA improves memory in a variety of behavioral paradigms. Furthermore, molecular mechanisms underlying α-LA effects have also been investigated. Accordingly, α-LA shows antioxidant, antiapoptotic, anti-inflammatory, glioprotective, metal chelating properties in both in vivo and in vitro studies. In addition, it has been shown that α-LA reverses age-associated loss of neurotransmitters and their receptors. The review article aimed at summarizing and discussing the main studies investigating the neuroprotective effects of α-LA on cognition as well as its molecular effects, to improve the understanding of the therapeutic potential of α-LA in patients suffering from neurodegenerative disorders, supporting the development of clinical trials with α-LA.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Ahmed Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt; Center of Excellence for Screening of Environmental Contaminants, Benha University, Toukh, Egypt
| | - Samah F Ibrahim
- Clinical Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia; Forensic Medicine and Clinical Toxicology Department, College of Medicine, Cairo University, Cairo, Egypt
| | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Ensenanza e Investigacion en Bacteriologia Alimentaria, Universidad Nacinol Mayor de San Marcos, Lima, Peru; E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, Peru
| | - Monika Sachdeva
- Fatima College of Health Sciences, Alain, United Arab Emirates
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
9
|
Lima IS, Pêgo AC, Barros JT, Prada AR, Gozzelino R. Cell Death-Osis of Dopaminergic Neurons and the Role of Iron in Parkinson's Disease. Antioxid Redox Signal 2021; 35:453-473. [PMID: 33233941 DOI: 10.1089/ars.2020.8229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: There is still no cure for neurodegenerative diseases, such as Parkinson's disease (PD). Current treatments are based on the attempt to reduce dopaminergic neuronal loss, and multidisciplinary approaches have been used to provide only a temporary symptoms' relief. In addition to the difficulties of drugs developed against PD to access the brain, the specificity of those inhibitory compounds could be a concern. This because neurons might degenerate by activating distinct signaling pathways, which are often initiated by the same stimulus. Recent Advances: Apoptosis, necroptosis, and ferroptosis were shown to significantly contribute to PD progression and, so far, are the main death programs described as capable to alter brain homeostasis. Their activation is characterized by different biochemical and morphological features, some of which might even share the same molecular players. Critical Issues: If there is a pathological need to engage, in PD, multiple death programs, sequentially or simultaneously, is not clear yet. Possibly the activation of apoptosis, necroptosis, and/or ferroptosis correlates to different PD stages and symptom severities. This would imply that the efficacy of therapeutic approaches against neuronal death might depend on the death program they target and the relevance of this death pathway on a specific PD phase. Future Directions: In this review, we describe the molecular mechanisms underlying the activation of apoptosis, necroptosis, and ferroptosis in PD. Understanding the interrelationship between different death pathways' activation in PD is of utmost importance for the development of therapeutic approaches against disease progression. Antioxid. Redox Signal. 35, 453-473.
Collapse
Affiliation(s)
- Illyane Sofia Lima
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Catarina Pêgo
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João Tomas Barros
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Rita Prada
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Raffaella Gozzelino
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Universidade Técnica do Atlântico (UTA), São Vicente, Cabo Verde
| |
Collapse
|
10
|
Trentin S, Fraiman de Oliveira BS, Ferreira Felloni Borges Y, de Mello Rieder CR. Systematic review and meta-analysis of Sniffin Sticks Test performance in Parkinson's disease patients in different countries. Eur Arch Otorhinolaryngol 2021; 279:1123-1145. [PMID: 34319482 DOI: 10.1007/s00405-021-06970-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/27/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Olfaction impairment occurs in about 90% of patients with Parkinson's disease. The Sniffin Sticks Test is a widely used instrument to measure olfactory performance and is divided into three subtests that assess olfactory threshold, discrimination and identification. However, cultural and socioeconomic differences can influence test performance. OBJECTIVES We performed a systematic review and meta-analysis of the existent data about Sniffin Sticks Test performance of Parkinson's disease patients and healthy controls in different countries and investigated if there are other cofactors which could influence the olfactory test results. A subgroup analysis by country was performed as well as a meta-regression using age, gender and air pollution as covariates. RESULTS Four hundred and thirty studies were found and 66 articles were included in the meta-analysis. Parkinson's disease patients showed significantly lower scores on the Sniffin Sticks Test and all its subtests than healthy controls. Overall, the heterogeneity among studies was moderate to high as well as the intra-country heterogeneity. The subgroup analysis, stratifying by country, maintained a high residual heterogeneity. CONCLUSION The meta-regression showed a significant correlation with age and air pollution in a few subtests. A high heterogeneity was found among studies which was not significantly decreased after subgroup analysis by country. This fact signalizes that maybe cultural influence has a small impact on the Sniffin Sticks Test results. Age and air pollution have influence in a few olfactory subtests.
Collapse
Affiliation(s)
- Sheila Trentin
- Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, 6690, Ipiranga Avenue, Jardim Botânico, Porto Alegre, 90619-900, Brazil.
| | - Bruno Samuel Fraiman de Oliveira
- Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, 6690, Ipiranga Avenue, Jardim Botânico, Porto Alegre, 90619-900, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Yuri Ferreira Felloni Borges
- Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, 6690, Ipiranga Avenue, Jardim Botânico, Porto Alegre, 90619-900, Brazil
| | | |
Collapse
|
11
|
Rand D, Ravid O, Atrakchi D, Israelov H, Bresler Y, Shemesh C, Omesi L, Liraz-Zaltsman S, Gosselet F, Maskrey TS, Schnaider Beeri M, Wipf P, Cooper I. Endothelial Iron Homeostasis Regulates Blood-Brain Barrier Integrity via the HIF2α-Ve-Cadherin Pathway. Pharmaceutics 2021; 13:pharmaceutics13030311. [PMID: 33670876 PMCID: PMC7997362 DOI: 10.3390/pharmaceutics13030311] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to investigate the molecular response to damage at the blood-brain barrier (BBB) and to elucidate critical pathways that might lead to effective treatment in central nervous system (CNS) pathologies in which the BBB is compromised. We have used a human, stem-cell derived in-vitro BBB injury model to gain a better understanding of the mechanisms controlling BBB integrity. Chemical injury induced by exposure to an organophosphate resulted in rapid lipid peroxidation, initiating a ferroptosis-like process. Additionally, mitochondrial ROS formation (MRF) and increase in mitochondrial membrane permeability were induced, leading to apoptotic cell death. Yet, these processes did not directly result in damage to barrier functionality, since blocking them did not reverse the increased permeability. We found that the iron chelator, Desferal© significantly decreased MRF and apoptosis subsequent to barrier insult, while also rescuing barrier integrity by inhibiting the labile iron pool increase, inducing HIF2α expression and preventing the degradation of Ve-cadherin specifically on the endothelial cell surface. Moreover, the novel nitroxide JP4-039 significantly rescued both injury-induced endothelium cell toxicity and barrier functionality. Elucidating a regulatory pathway that maintains BBB integrity illuminates a potential therapeutic approach to protect the BBB degradation that is evident in many neurological diseases.
Collapse
Affiliation(s)
- Daniel Rand
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer 52621, Israel; (D.R.); (O.R.); (D.A.); (H.I.); (Y.B.); (C.S.); (L.O.); (S.L.-Z.); (M.S.B.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Orly Ravid
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer 52621, Israel; (D.R.); (O.R.); (D.A.); (H.I.); (Y.B.); (C.S.); (L.O.); (S.L.-Z.); (M.S.B.)
| | - Dana Atrakchi
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer 52621, Israel; (D.R.); (O.R.); (D.A.); (H.I.); (Y.B.); (C.S.); (L.O.); (S.L.-Z.); (M.S.B.)
| | - Hila Israelov
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer 52621, Israel; (D.R.); (O.R.); (D.A.); (H.I.); (Y.B.); (C.S.); (L.O.); (S.L.-Z.); (M.S.B.)
| | - Yael Bresler
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer 52621, Israel; (D.R.); (O.R.); (D.A.); (H.I.); (Y.B.); (C.S.); (L.O.); (S.L.-Z.); (M.S.B.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer 52621, Israel; (D.R.); (O.R.); (D.A.); (H.I.); (Y.B.); (C.S.); (L.O.); (S.L.-Z.); (M.S.B.)
| | - Liora Omesi
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer 52621, Israel; (D.R.); (O.R.); (D.A.); (H.I.); (Y.B.); (C.S.); (L.O.); (S.L.-Z.); (M.S.B.)
| | - Sigal Liraz-Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer 52621, Israel; (D.R.); (O.R.); (D.A.); (H.I.); (Y.B.); (C.S.); (L.O.); (S.L.-Z.); (M.S.B.)
- Department of Pharmacology, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem 97905, Israel
- Department of Sports Therapy, Institute for Health and Medical Professions, Ono Academic College, Kiryat Ono 55000, Israel
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory (LBHE), Artois University, UR 2465, F-62300 Lens, France;
| | - Taber S. Maskrey
- Department of Chemistry and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (T.S.M.); (P.W.)
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer 52621, Israel; (D.R.); (O.R.); (D.A.); (H.I.); (Y.B.); (C.S.); (L.O.); (S.L.-Z.); (M.S.B.)
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- School of Psychology, Interdisciplinary Center (IDC), Herzliya 4610101, Israel
| | - Peter Wipf
- Department of Chemistry and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (T.S.M.); (P.W.)
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer 52621, Israel; (D.R.); (O.R.); (D.A.); (H.I.); (Y.B.); (C.S.); (L.O.); (S.L.-Z.); (M.S.B.)
- School of Psychology, Interdisciplinary Center (IDC), Herzliya 4610101, Israel
- The Nehemia Rubin Excellence in Biomedical Research—The TELEM Program, Sheba Medical Center, Tel-Hashomer 5262000, Israel
- Correspondence:
| |
Collapse
|
12
|
Liman J, Wolff von Gudenberg A, Baehr M, Paulus W, Neef NE, Sommer M. Enlarged Area of Mesencephalic Iron Deposits in Adults Who Stutter. Front Hum Neurosci 2021; 15:639269. [PMID: 33643015 PMCID: PMC7904683 DOI: 10.3389/fnhum.2021.639269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Childhood onset speech fluency disorder (stuttering) is possibly related to dopaminergic dysfunction. Mesencephalic hyperechogenicity (ME) detected by transcranial ultrasound (TCS) might be seen as an indirect marker of dopaminergic dysfunction. We here determined whether adults who stutter since childhood (AWS) show ME. METHODS We performed TCS in ten AWS and ten matched adults who never stuttered. We also assessed motor performance in finger tapping and in the 25 Foot Walking test. RESULTS Compared to controls, AWS showed enlarged ME on either side. Finger tapping was slower in AWS. Walking cadence, i.e., the ratio of number of steps by time, tended to be higher in AWS than in control participants. DISCUSSION The results demonstrate a motor deficit in AWS linked to dopaminergic dysfunction and extending beyond speech. Since iron deposits evolve in childhood and shrink thereafter, ME might serve as an easily quantifiable biomarker helping to predict the risk of persistency in children who stutter.
Collapse
Affiliation(s)
- Jan Liman
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Mathias Baehr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Nicole E. Neef
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Sommer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Tai S, Zheng Q, Zhai S, Cai T, Xu L, Yang L, Jiao L, Zhang C. Alpha-Lipoic Acid Mediates Clearance of Iron Accumulation by Regulating Iron Metabolism in a Parkinson's Disease Model Induced by 6-OHDA. Front Neurosci 2020; 14:612. [PMID: 32670009 PMCID: PMC7330090 DOI: 10.3389/fnins.2020.00612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/18/2020] [Indexed: 01/18/2023] Open
Abstract
The disruption of neuronal iron homeostasis and oxidative stress are related to the pathogenesis of Parkinson's disease (PD). Alpha-lipoic acid (ALA) is a naturally occurring enzyme cofactor with antioxidant and iron chelator properties and has many known effects. ALA has neuroprotective effects on PD. However, its underlying mechanism remains unclear. In the present study, we established PD models induced by 6-hydroxydopamine (6-OHDA) to explore the neuroprotective ability of ALA and its underlying mechanism in vivo and in vitro. Our results showed that ALA could provide significant protection from 6-OHDA-induced cell damage in vitro by decreasing the levels of intracellular reactive oxygen species and iron. ALA significantly promoted the survival of the dopaminergic neuron in the 6-OHDA-induced PD rat model and remarkably ameliorated motor deficits by dramatically inhibiting the decrease in tyrosine hydroxylase expression and superoxide dismutase activity in the substantia nigra. Interestingly, ALA attenuated 6-OHDA-induced iron accumulation both in vivo and in vitro by antagonizing the 6-OHDA-induced upregulation of iron regulatory protein 2 and divalent metal transporter 1. These results indicated that the neuroprotective mechanism of ALA against neurological injury induced by 6-OHDA may be related to the regulation of iron homeostasis and reduced oxidative stress levels. Therefore, ALA may provide neuroprotective therapy for PD and other diseases related to iron metabolism disorder.
Collapse
Affiliation(s)
- Shengyan Tai
- Department of Biology, College of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Qian Zheng
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Suzhen Zhai
- Department of Biology, College of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Ting Cai
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Li Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lizhu Yang
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ling Jiao
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chunlin Zhang
- Department of Biology, College of Basic Medical, Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
Tao A, Chen G, Mao Z, Gao H, Deng Y, Xu R. Essential tremor vs idiopathic Parkinson disease: Utility of transcranial sonography. Medicine (Baltimore) 2020; 99:e20028. [PMID: 32443307 PMCID: PMC7254097 DOI: 10.1097/md.0000000000020028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Substantia nigra (SN) hyperechogenicity measured by transcranial sonography (TCS) is a promising biomarker for Parkinson disease (PD). The aim of this study was to explore the diagnostic accuracy of SN hyperechogenicity (SN) for differentiating PD from essential tremor (ET). A total of 119 patients with PD, 106 ET patients and 112 healthy controls that underwent TCS from November 2016 to February 2019 were included in this single-center retrospective case-control study. Two reviewers who were blinded to clinical information independently measured the SN by TCS imaging. The diagnostic sensitivity, specificity, and accuracy of TCS imaging were evaluated between the PD and healthy controls and between patients with PD and ET. Interrater agreement was assessed with the Cohen κ statistic. TCS imaging of the SN allowed to differentiate between patients with PD and ET with a sensitivity (91.6% and 90.8%) and specificity (91.5% and 89.6%) for readers 1 and 2, respectively. Interobserver agreement was excellent (к = 0.87). In addition, measurement of the SN allowed to differentiate between patients with PD and healthy subjects with a sensitivity (91.6% and 90.8%) and specificity (88.4% and 89.3%) for readers 1 and 2, respectively. Interobserver agreement was excellent (к = 0.91). Measurement of SN on TCS images could be a useful tool to distinguishing patients with PD from those with ET.
Collapse
Affiliation(s)
- Anyu Tao
- Department of Medical Ultrasound
| | - Guangzhi Chen
- Division of Cardiology, Department of Internal Medicine
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongling Gao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
15
|
Xu R, Chen G, Mao Z, Gao H, Deng Y, Tao A. Diagnostic Performance of Transcranial Sonography for Evaluating Substantia Nigra Hyper-echogenicity in Patients with Parkinson's Disease. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1208-1215. [PMID: 32102740 DOI: 10.1016/j.ultrasmedbio.2020.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
To determine the diagnostic performance of transcranial sonography (TCS) in assessing increased echogenic area of the substantia nigra (SN) in patients with Parkinson's disease (PD). Institutional review board approval was obtained for this retrospective study. A total of 278 PD patients (mean age: 64.7 ± 9.8 y, 100 women) and 300 healthy control patients (mean age: 63.6 ± 9.3 y, 97 women) were referred for TCS assessment of SN hyper-echogenicity (SN+) from June 2016 to December 2018. Two sonographers independently measured the sizes of the echogenic areas of the SN by TCS imaging in both PD patients and healthy controls. The diagnostic sensitivity, specificity and accuracy of TCS imaging were compared between PD patients and healthy controls. Inter-rater agreement was assessed with the Cohen's κ statistic. The sensitivity, specificity and accuracy of readers 1 and 2, respectively, for the identification of SN+ in TCS were 90.3% and 89.6% (251 and 249 of 278), 89.3% and 88.3% (268 and 265 of 300) and 89.8% and 88.9% (519 and 514 of 578). Inter-observer agreement was excellent (к = 0.84). The area under the receiver operating characteristic curve (AUC) for differentiation of PD patients from healthy controls was 0.92 for reader 1 and 0.91 for reader 2. Cutoff values of 0.20 and 0.21 cm2 were derived from the assessments performed by readers 1 and 2, respectively. We defined 0.20 cm2 as the optimal cutoff value because it had a higher AUC. TCS is a promising diagnostic technique and can be very helpful in differentiating PD patients from healthy individuals.
Collapse
Affiliation(s)
- Renfan Xu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangzhi Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongling Gao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youbin Deng
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anyu Tao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Devos D, Cabantchik ZI, Moreau C, Danel V, Mahoney-Sanchez L, Bouchaoui H, Gouel F, Rolland AS, Duce JA, Devedjian JC. Conservative iron chelation for neurodegenerative diseases such as Parkinson's disease and amyotrophic lateral sclerosis. J Neural Transm (Vienna) 2020; 127:189-203. [PMID: 31912279 DOI: 10.1007/s00702-019-02138-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022]
Abstract
Focal iron accumulation associated with brain iron dyshomeostasis is a pathological hallmark of various neurodegenerative diseases (NDD). The application of iron-sensitive sequences in magnetic resonance imaging has provided a useful tool to identify the underlying NDD pathology. In the three major NDD, degeneration occurs in central nervous system (CNS) regions associated with memory (Alzheimer's disease, AD), automaticity (Parkinson's disease, PD) and motor function (amyotrophic lateral sclerosis, ALS), all of which require a high oxygen demand for harnessing neuronal energy. In PD, a progressive degeneration of the substantia nigra pars compacta (SNc) is associated with the appearance of siderotic foci, largely caused by increased labile iron levels resulting from an imbalance between cell iron import, storage and export. At a molecular level, α-synuclein regulates dopamine and iron transport with PD-associated mutations in this protein causing functional disruption to these processes. Equally, in ALS, an early iron accumulation is present in neurons of the cortico-spinal motor pathway before neuropathology and secondary iron accumulation in microglia. High serum ferritin is an indicator of poor prognosis in ALS and the application of iron-sensitive sequences in magnetic resonance imaging has become a useful tool in identifying pathology. The molecular pathways that cascade down from such dyshomeostasis still remain to be fully elucidated but strong inroads have been made in recent years. Far from being a simple cause or consequence, it has recently been discovered that these alterations can trigger susceptibility to an iron-dependent cell-death pathway with unique lipoperoxidation signatures called ferroptosis. In turn, this has now provided insight into some key modulators of this cell-death pathway that could be therapeutic targets for the NDD. Interestingly, iron accumulation and ferroptosis are highly sensitive to iron chelation. However, whilst chelators that strongly scavenge intracellular iron protect against oxidative neuronal damage in mammalian models and are proven to be effective in treating systemic siderosis, these compounds are not clinically suitable due to the high risk of developing iatrogenic iron depletion and ensuing anaemia. Instead, a moderate iron chelation modality that conserves systemic iron offers a novel therapeutic strategy for neuroprotection. As demonstrated with the prototype chelator deferiprone, iron can be scavenged from labile iron complexes in the brain and transferred (conservatively) either to higher affinity acceptors in cells or extracellular transferrin. Promising preclinical and clinical proof of concept trials has led to several current large randomized clinical trials that aim to demonstrate the efficacy and safety of conservative iron chelation for NDD, notably in a long-term treatment regimen.
Collapse
Affiliation(s)
- David Devos
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France.
- Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France.
- Département de Pharmacologie Médicale, Université Lille INSERM 1171, CHU de Lille, 59037, Lille, France.
| | - Z Ioav Cabantchik
- Della Pergola Chair, Alexander Silberman Institute of Life Sciences, Hebrew University, 91904, Jerusalem, Israel
| | - Caroline Moreau
- Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - Véronique Danel
- Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - Laura Mahoney-Sanchez
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - Hind Bouchaoui
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - Flore Gouel
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - Anne-Sophie Rolland
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
| | - James A Duce
- The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jean-Christophe Devedjian
- Service de Pharmacologie Clinique et Service de Neurologie NS-Park/FCRIN Network LICEND COEN Center Lille, Université de Lille, CHU de Lille, INSERM, UMRS_1171, Lille, France
- Université du Littoral Côte d'Opale-1, place de l'Yser, BP 72033, 59375, Dunkerque Cedex, France
| |
Collapse
|
17
|
Li SJ, Ren YD, Li J, Cao B, Ma C, Qin SS, Li XR. The role of iron in Parkinson's disease monkeys assessed by susceptibility weighted imaging and inductively coupled plasma mass spectrometry. Life Sci 2019; 240:117091. [PMID: 31760102 DOI: 10.1016/j.lfs.2019.117091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/18/2023]
Abstract
Mounting evidences indicated that elevated iron levels in the substantia nigra (SN) have been concerned as the underlying mechanisms of neurodegenerative diseases, including Parkinson's disease (PD). The present study used the 1-Methyl-4-phenyl-1, 2, 3, 6 -tetrahydropyridine (MPTP)-treated cynomolgus monkeys for PD to evaluate the usability of SWI for assessing iron deposition in the cerebral nuclei of PD. The results showed that susceptibility-weighted imaging (SWI) phase values of the ipsilateral (MPTP-lesion side) SN of MPTP-treated monkeys were lower than those in the contralateral SN of MPTP-treated monkeys and the same side of Control monkeys, suggesting that iron deposition were elevated in the affected side SN of MPTP-treated monkeys. Whereas MPTP has not effects on the SWI phase values in other detected brain regions of monkeys, including red nucleus (RN), putamen (PUT) and caudate nucleus (CA). Furthermore, ICP-MS results showed that MPTP increased the iron levels in MPTP injection side, but no in the ipsilateral striatum. Additionally, MPTP treatment did not affect the calcium and manganese levels in the detected brain regions of monkeys. However, Pearson correlation analysis results indicated that there were not relationship between SWI phase values in MPTP-lesion side of SN with the behavioral score, tyrosine hydroxylase (TH)-positive cells number and iron levels in the MPTP-lesion side of midbrain. Taken together, the results confirm the involvement of SN iron accumulations in the MPTP-treated monkey models for PD, and indirectly verify the usability of SWI for the measurement of iron deposition in the cerebral nuclei of PD.
Collapse
Affiliation(s)
- Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021, Guangxi Province, China
| | - Yan-De Ren
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China.
| | - Jin Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning 530021, Guangxi Province, China
| | - Bin Cao
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Chi Ma
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Shan-Shan Qin
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Xiang-Rong Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning 530021, Guangxi Province, China.
| |
Collapse
|
18
|
Choi JY, Lee J, Nam Y, Lee J, Oh SH. Improvement of reproducibility in quantitative susceptibility mapping (QSM) and transverse relaxation rates ( R 2 * ) after physiological noise correction. J Magn Reson Imaging 2019; 49:1769-1776. [PMID: 31062456 DOI: 10.1002/jmri.26522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Numerous studies have suggested that quantitative susceptibility mapping (QSM) and transverse relaxation rates ( R 2 * ) are useful to monitor neurological diseases. For clinical use of QSM and R 2 * , reproducibility is an important feature. However, respiration-induced local magnetic field variation makes artifacts in gradient echo-based images and reduces the reproducibility of QSM and R 2 * . PURPOSE To investigate the improvement of reproducibility of QSM and R 2 * after the correction of respiration-induced field variation, and to assess the effect of varying types of the region of interest (ROI) analysis on reproducibility. STUDY TYPE Reproducibility study. POPULATION Ten controls. FIELD STRENGTH/SEQUENCE 3T/multiecho gradient echo sequence. ASSESSMENT Intrascan reproducibility of QSM and R 2 * was investigated in ROIs before and after the respiration correction. STATISTICAL TESTS Reproducibility was obtained by the square of voxel-wise correlation coefficients between scans. A paired t-test was performed for comparison between before and after the respiration correction and between QSM and R 2 * . RESULTS Based on the ROI analysis, reproducibility increased after the respiration correction. Reproducibility in the white matter (11.89% increased in QSM and 23.38% in R 2 * , P = 0.009 and 0.024, respectively) and deep gray matter (5.50% increased in QSM and 13.96% in R 2 * , P = 0.024 and 0.019, respectively) increased significantly after the respiration correction. Reproducibility of R 2 * was higher than that of QSM in the whole brain and cortical gray matter, while QSM maps showed higher reproducibility than R 2 * in the white matter and deep gray matter. DATA CONCLUSION Respiration-induced error correction significantly improved reproducibility in QSM and R 2 * mapping. QSM and R 2 * mapping showed a different level of reproducibility depending on the types of ROI analysis. LEVEL OF EVIDENCE 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018.
Collapse
Affiliation(s)
- Joon Yul Choi
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jingu Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Yoonho Nam
- Department of Radiology, Seoul Saint Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Se-Hong Oh
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea
| |
Collapse
|
19
|
Probable RBD Associates with the Development of RLS in Parkinson's Disease: A Cross-Sectional Study. Behav Neurol 2019; 2019:7470904. [PMID: 31065297 PMCID: PMC6466878 DOI: 10.1155/2019/7470904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 12/19/2022] Open
Abstract
Objectives We aimed to investigate the prevalence of restless leg syndrome (RLS) and exploring the contributing factors that affect the development of RLS in Parkinson's disease (PD) patients. Methods A cross-sectional study was conducted consisting of 178 consecutive PD patients from our hospital between October 2015 and August 2016. We divided the participants into two groups, which were PD with RLS and PD with non-RLS. Then, we recorded their demographics and clinical data to draw a comparison between PD with RLS and PD with non-RLS. Results 23 (12.92%) were diagnosed with RLS among all the enrolled PD patients. Unified Parkinson's Disease Rating Scale III (UPDRS III) and Hamilton Depression Scale (HAMD) scores, probable rapid eye movement sleep behavior disorder (PRBD), and daily levodopa equivalent dose (LED) in the PD with the RLS group were significantly different from those in the PD with the non-RLS group. Daily LED and the scores of UPDRS III and HAMD in PD patients with RLS were all higher than those in PD patients with non-RLS. PRBD, daily LED, and HAMD scores were significantly independent factors contributing to the development of RLS (OR = 4.678, 95% CI 1.372~15.944, P = 0.014; OR = 1.003, 95% CI 1.001~1.005, P = 0.019; OR = 1.094, 95% CI 1.002~1.193, P = 0.045). The severity of RLS was positively correlated with the duration of PD and daily LED (r = 0.438, P = 0.036; r = 0.637, P = 0.001). Conclusion PRBD existence, daily LED, and HAMD scores are independent factors for developing RLS in PD patients. PRBD existence is firstly proposed as an independent factor in developing RLS among PD patients. RLS severity in PD patients are positively associated with the duration of PD and daily LED.
Collapse
|
20
|
Pilotto A, Yilmaz R, Berg D. Developments in the role of transcranial sonography for the differential diagnosis of parkinsonism. Curr Neurol Neurosci Rep 2016; 15:43. [PMID: 26008814 DOI: 10.1007/s11910-015-0566-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the last two decades transcranial sonography (TCS) has developed as a valuable, supplementary tool in the diagnosis and differential diagnosis of movement disorders. In this review, we highlight recent evidence supporting TCS as a reliable method in the differential diagnosis of parkinsonism, combining substantia nigra (SN), basal ganglia and ventricular system findings. Moreover, several studies support SN hyperechogenicity as one of most important risk factors for Parkinson's disease (PD). The advantages of TCS include short investigation time, low cost and lack of radiation. Principal limitations are still the dependency on the bone window and operator experience. New automated algorithms may reduce the role of investigator skill in the assessment and interpretation, increasing TCS diagnostic reliability. Based on the convincing evidence available, the EFNS accredited the method of TCS a level A recommendation for supporting the diagnosis of PD and its differential diagnosis from secondary and atypical parkinsonism. An increasing number of training programmes is extending the use of this technique in clinical practice.
Collapse
Affiliation(s)
- Andrea Pilotto
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
21
|
You LH, Li F, Wang L, Zhao SE, Wang SM, Zhang LL, Zhang LH, Duan XL, Yu P, Chang YZ. Brain iron accumulation exacerbates the pathogenesis of MPTP-induced Parkinson's disease. Neuroscience 2014; 284:234-246. [PMID: 25301748 DOI: 10.1016/j.neuroscience.2014.09.071] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 12/11/2022]
Abstract
Brain iron levels are significantly increased in Parkinson's disease (PD) and iron deposition is observed in the substantia nigra (SN) of PD patients. It is unclear whether iron overload is an initial cause of dopaminergic neuronal death or merely a byproduct that occurs in the SN of PD patients. In this study, ceruloplasmin knockout (CP-/-) mice and mice receiving an intracerebroventricular injection of ferric ammonium citrate (FAC) were selected as mouse models with high levels of brain iron. These mice were administered with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by intraperitoneal injection. Their behavior and the dopaminergic neuron damage to their substantia nigra pars compacta (SNpc) were assessed. These findings suggest that the injection of FAC or the absence of the CP gene may exacerbate both the observed apoptosis of TH-positive neurons and the behavioral symptoms of the MPTP-treated mice. The intracerebroventricular injection of deferoxamine (DFO) significantly alleviated the neuronal damage caused by MPTP in CP-/- mice. Furthermore, our findings suggest that the increased nigral iron content exacerbates the oxidative stress levels, promoting apoptosis through the Bcl-2/Bax pathway and the activated caspase-3 pathway in the brain. Therefore, iron overload in the brain exacerbates dopaminergic neuronal death in SNpc and leads to the onset of PD.
Collapse
Affiliation(s)
- L-H You
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - F Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - L Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - S-E Zhao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China; Department of Internal Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - S-M Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - L-L Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - L-H Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - X-L Duan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - P Yu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China.
| | - Y-Z Chang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China.
| |
Collapse
|
22
|
Skoloudík D, Jelínková M, Blahuta J, Cermák P, Soukup T, Bártová P, Langová K, Herzig R. Transcranial sonography of the substantia nigra: digital image analysis. AJNR Am J Neuroradiol 2014; 35:2273-8. [PMID: 25059698 DOI: 10.3174/ajnr.a4049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Increased echogenicity of the substantia nigra is a typical transcranial sonography finding in Parkinson disease. Experimental software for digital analysis of the echogenic substantia nigra area has been developed. The aim of this study was to compare the evaluation of substantia nigra echogenicity by using digital analysis with a manual measurement in patients with Parkinson disease and healthy volunteers. MATERIALS AND METHODS One hundred thirteen healthy volunteers were enrolled in the derivation cohort, and 50 healthy volunteers and 30 patients with Parkinson disease, in the validation cohort. The substantia nigra was imaged from the right and left temporal bone window by using transcranial sonography. All subjects were examined twice by using different sonographic machines by an experienced sonographer. DICOM images of the substantia nigra were encoded; then, digital analysis and manual measurement of the substantia nigra were performed. The 90th percentile of the derivation cohort values was used as a cut-point for the evaluation of the hyperechogenic substantia nigra in the validation cohort. The Spearman coefficient was used for assessment of the correlation between both measurements. The Cohen κ coefficient was used for the assessment of the correlation between both measurements and Parkinson disease diagnosis. RESULTS The Spearman coefficient between measurements by using different machines was 0.686 for digital analysis and 0.721 for manual measurement (P < .0001). Hyperechogenic substantia nigra was detected in the same 26 (86.7%) patients with Parkinson disease by using both measurements. Cohen κ coefficients for digital analysis and manual measurement were 0.787 and 0.762, respectively (P < .0001). CONCLUSIONS The present study showed comparable results when measuring the substantia nigra features conventionally and by using the developed software.
Collapse
Affiliation(s)
- D Skoloudík
- From the Faculty of Health Science (D.Š.), Palacký University Olomouc, Olomouc, Czech Republic Department of Neurology (D.Š., M.J., P.B.), University Hospital Ostrava, Ostrava, Czech Republic
| | - M Jelínková
- Department of Neurology (D.Š., M.J., P.B.), University Hospital Ostrava, Ostrava, Czech Republic Department of Neurology (M.J.), Hospital, Karviná-Ráj, Karviná, Czech Republic
| | - J Blahuta
- Institute of Computer Science (J.B., P.Č., T.S.), Faculty of Philosophy and Science, Silesian University in Opava, Opava, Czech Republic
| | - P Cermák
- Institute of Computer Science (J.B., P.Č., T.S.), Faculty of Philosophy and Science, Silesian University in Opava, Opava, Czech Republic
| | - T Soukup
- Institute of Computer Science (J.B., P.Č., T.S.), Faculty of Philosophy and Science, Silesian University in Opava, Opava, Czech Republic
| | - P Bártová
- Department of Neurology (D.Š., M.J., P.B.), University Hospital Ostrava, Ostrava, Czech Republic
| | - K Langová
- Department of Biophysics (K.L.), Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University, Olomouc, Czech Republic
| | - R Herzig
- Department of Neurology (R.H.), Charles University Faculty of Medicine and University Hospital Hradec Králové, Hradec Králové, Czech Republic
| |
Collapse
|
23
|
Nigral iron elevation is an invariable feature of Parkinson's disease and is a sufficient cause of neurodegeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:581256. [PMID: 24527451 PMCID: PMC3914334 DOI: 10.1155/2014/581256] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/28/2013] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits accompanying degeneration of substantia nigra pars compactor (SNc) neurons. Although familial forms of the disease exist, the cause of sporadic PD is unknown. Symptomatic treatments are available for PD, but there are no disease modifying therapies. While the neurodegenerative processes in PD may be multifactorial, this paper will review the evidence that prooxidant iron elevation in the SNc is an invariable feature of sporadic and familial PD forms, participates in the disease mechanism, and presents as a tractable target for a disease modifying therapy.
Collapse
|
24
|
Müller T. Detoxification and antioxidative therapy for levodopa-induced neurodegeneration in Parkinson's disease. Expert Rev Neurother 2014; 13:707-18. [PMID: 23739007 DOI: 10.1586/ern.13.50] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Levodopa is the most efficacious drug treatment option for Parkinson's disease. However, in particular, high levodopa dosing may contribute to disease progression. Chronic levodopa metabolism reduces the methylation capacity and the antioxidant defense. Thus, this levodopa-induced free radical production complements the disease process, which considerably depends on free radical-induced, apoptotic neuronal cell death. Accordingly, clinical long-term studies with in the laboratory neuroprotective compounds failed in clinical investigations, as these studies were performed in levodopa-naive patients with Parkinson's disease over a relative short interval. Therefore, the likelihood for a positive outcome was rather low, since trials only focused on the disease process in levodopa-naive patients. However, studies on antioxidant therapeutic strategies were positive in levodopa-treated Parkinson's disease patients. To counteract these metabolic long-term levodopa-associated effects, chronic levodopa therapy should be combined with supplemental application of free radical scavengers and methyl group donating vitamins.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weißensee, Gartenstr. 1, 13088, Berlin, Germany.
| |
Collapse
|
25
|
Klepac N, Habek M, Adamec I, Barušić AK, Bach I, Margetić E, Lušić I. An update on the management of young-onset Parkinson's disease. Degener Neurol Neuromuscul Dis 2013; 2:53-62. [PMID: 30890879 PMCID: PMC6065598 DOI: 10.2147/dnnd.s34251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the text that follows, we review the main clinical features, genetic characteristics, and treatment options for Parkinson's disease (PD), considering the age at onset. The clinical variability between patients with PD points at the existence of subtypes of the disease. Identification of subtypes is important, since a focus on homogenous group may lead to tailored treatment strategies. One of the factors that determine variability of clinical features of PD is age of onset. Young-onset Parkinson's disease (YOPD) is defined as parkinsonism starting between the ages of 21 and 40. YOPD has a slower disease progression and a greater incidence and earlier appearance of levodopa-induced motor complications; namely, motor fluctuations and dyskinesias. Moreover, YOPD patients face a lifetime of a progressive disease with gradual worsening of quality of life and their expectations are different from those of their older counterparts. Knowing this, treatment plans and management of symptoms must be paid careful attention to in order to maintain an acceptable quality of life in YOPD patients.
Collapse
Affiliation(s)
- Nataša Klepac
- Department of Neurology, Clinical University Hospital Zagreb, Medical School, University of Zagreb, Zagreb, Croatia,
| | - Mario Habek
- Department of Neurology, Clinical University Hospital Zagreb, Medical School, University of Zagreb, Zagreb, Croatia,
| | - Ivan Adamec
- Department of Neurology, Clinical University Hospital Zagreb, Medical School, University of Zagreb, Zagreb, Croatia,
| | - Anabella Karla Barušić
- Department of Neurology, Clinical University Hospital Zagreb, Medical School, University of Zagreb, Zagreb, Croatia,
| | - Ivo Bach
- Department of Neurology, Clinical University Hospital Zagreb, Medical School, University of Zagreb, Zagreb, Croatia,
| | - Eduard Margetić
- Department of Cardiology, Clinical University Hospital Zagreb, Medical School, University of Zagreb, Zagreb, Croatia
| | - Ivo Lušić
- Department of Neurology, Clinical University Hospital, Medical School, University of Split, Split, Croatia
| |
Collapse
|
26
|
Mariani S, Ventriglia M, Simonelli I, Spalletta G, Bucossi S, Siotto M, Assogna F, Melgari JM, Vernieri F, Squitti R. Effects of hemochromatosis and transferrin gene mutations on peripheral iron dyshomeostasis in mild cognitive impairment and Alzheimer's and Parkinson's diseases. Front Aging Neurosci 2013; 5:37. [PMID: 23935582 PMCID: PMC3733023 DOI: 10.3389/fnagi.2013.00037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/01/2013] [Indexed: 12/31/2022] Open
Abstract
Deregulation of iron metabolism has been observed in patients with neurodegenerative diseases. We have carried out a molecular analysis investigating the interaction between iron specific gene variants [transferrin (TF, P589S), hemochromatosis (HFE) C282Y and (H63D)], iron biochemical variables [iron, Tf, ceruloplasmin (Cp), Cp:Tf ratio and % of Tf saturation (% Tf-sat)] and apolipoprotein E (APOE) gene variants in 139 Alzheimer's disease (AD), 27 Mild Cognitive Impairment (MCI), 78 Parkinson's disease (PD) patients and 139 healthy controls to investigate mechanisms of iron regulation or toxicity. No difference in genetic variant distributions between patients and controls was found in our Italian sample, but the stratification for the APOEε4 allele revealed that among the APOEε4 carriers was higher the frequency of those carriers of at least a mutated TF P589S allele. Decreased Tf in both AD and MCI and increased Cp:Tf ratio in AD vs. controls were detected. A multinomial logistic regression model revealed that increased iron and Cp:Tf ratio and being man instead of woman increased the risk of having PD, that increased values of Cp:Tf ratio corresponded to a 4-fold increase of the relative risk of having MCI, while higher Cp levels were protective for PD and MCI. Our study has some limitations: the small size of the samples, one ethnic group considered, the rarity of some alleles which prevent the statistical power of some genetic analysis. Even though they need confirmation in larger cohorts, our data suggest the hypothesis that deregulation of iron metabolism, in addition to other factors, has some effect on the PD disease risk.
Collapse
Affiliation(s)
- S Mariani
- Neurology, University "Campus Biomedico" Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hare DJ, Adlard PA, Doble PA, Finkelstein DI. Metallobiology of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Metallomics 2013; 5:91-109. [DOI: 10.1039/c2mt20164j] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Kansara S, Trivedi A, Chen S, Jankovic J, Le W. Early diagnosis and therapy of Parkinson’s disease: can disease progression be curbed? J Neural Transm (Vienna) 2012; 120:197-210. [DOI: 10.1007/s00702-012-0840-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 05/26/2012] [Indexed: 12/15/2022]
|
29
|
Kaya MC, Bez Y, Selek S, Fatih Karababa I, Bulut M, Savaş HA, Çelik H, Herken H. No Effect of Antidepressant Treatment on Elevated Serum Ceruloplasmin Level in Patients with First-Episode Depression: A Longitidunal Study. Arch Med Res 2012; 43:294-7. [DOI: 10.1016/j.arcmed.2012.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
|
30
|
Serum Iron, Vitamin B12 and Folic Acid Levels in Parkinson’s Disease. Neurochem Res 2012; 37:1436-41. [DOI: 10.1007/s11064-012-0729-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 02/04/2012] [Accepted: 02/11/2012] [Indexed: 10/28/2022]
|
31
|
Go CL, Frenzel A, Rosales RL, Lee LV, Benecke R, Dressler D, Walter U. Assessment of substantia nigra echogenicity in German and Filipino populations using a portable ultrasound system. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2012; 31:191-196. [PMID: 22298861 DOI: 10.7863/jum.2012.31.2.191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
OBJECTIVES Transcranial sonography of the substantia nigra for diagnosing premotor stages of Parkinson disease has been attracting increasing interest. Standard reference values defining an abnormal increased echogenic size (hyperechogenicity) of the substantia nigra have been established in several populations using high-end stationary ultrasound systems. It is unknown whether a portable ultrasound system can be appropriately used and how the Filipino population would compare with the well-studied white population. METHODS We prospectively studied substantia nigra echogenic sizes and third ventricle widths in 71 healthy adult German participants and 30 age- and sex-matched Filipino participants using both a well-established stationary ultrasound system (in the German cohort) and a recently distributed portable ultrasound system (in both ethnic cohorts). RESULTS Mean substantia nigra echogenic sizes, cutoff values defining abnormal hyperechogenicity, and intra-rater reliability were similar with both systems and in both ethnic cohorts studied. The Filipino and German participants did not differ with respect to the frequency of insufficient insonation conditions (each 3%) and substantia nigra hyperechogenicity (10% versus 9%; P = .80). However, third ventricle widths were smaller in the Filipino than the German participants (mean ± SD, 1.6 ± 1.1 versus 2.4 ± 1.0 mm; P = .004). CONCLUSIONS The frequency of substantia nigra hyperechogenicity appears to be homogeneous in white and Asian populations. Screening for this feature may well be performed with a present-day portable ultrasound system.
Collapse
Affiliation(s)
- Criscely L Go
- Department of Neurology, University of Rostock, Gehlsheimer Strasse 20, D-18147 Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Kristinsson J, Snaedal J, Tórsdóttir G, Jóhannesson T. Ceruloplasmin and iron in Alzheimer's disease and Parkinson's disease: a synopsis of recent studies. Neuropsychiatr Dis Treat 2012; 8:515-21. [PMID: 23144563 PMCID: PMC3493298 DOI: 10.2147/ndt.s34729] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ceruloplasmin (Cp) concentration and oxidative activity in serum are lowered in Parkinson's disease (PD). In most PD patients, iron increases in the substantia nigra in the midbrain. In PD, the low Cp concentration and activity in serum and the high iron amounts in the substantia nigra appears to be correlated. An hereditary background is common in PD and variations in the Cp gene that have been found in PD are associated with high iron levels in the substantia nigra. Variations in Cp synthesis and in the incorporation of copper into the Cp molecule are essential features of PD. In Alzheimer's disease (AD), the Cp activity in serum is lowered but not the concentration, except in the advanced stages of the disease. Generally, iron is not increased in the AD brain. In the AD brain, iron accumulates in neuritic plaques and in neurofibrillary tangles. There is also increased risk of iron-mediated tissue damage, which may possibly be counteracted by Cp. At the same time, the AD brain is short in copper, which presumably results in the deficient activity of many copper enzymes in the brain, in addition to Cp. Lowered Cp activity in serum most likely stems from lessened incorporation of copper in the Cp molecule and similar incorporation defects might also apply to other copper enzymes in AD.
Collapse
Affiliation(s)
- Jakob Kristinsson
- Department of Pharmacology and Toxicology, University of Iceland, Reykjavik, Iceland
| | | | | | | |
Collapse
|
34
|
Fernandes RDCL, Rosso ALZD, Vincent MB, Silva KSD, Bonan C, Araújo NC, Berg D. Transcranial sonography as a diagnostic tool for Parkinson's disease: a pilot study in the city of Rio de Janeiro, Brazil. ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 69:892-5. [DOI: 10.1590/s0004-282x2011000700008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/07/2011] [Indexed: 11/22/2022]
Abstract
In Brazil there is no systematic study on Transcranial Sonography (TCS), a neuroimaging method that depicts echogenic deep brain structures using ultrasound. OBJECTIVE: To establish the percentage of subjects with permissive temporal windows and to address the ability of TCS of the substantia nigra (SN) to distinguish parkinsonian patients in a Brazilian sample. METHOD: We performed TCS using the Acuson X300 (Siemens, Germany) in 37 individuals: 23 with Parkinson's disease (PD) and 14 healthy controls. RESULTS: 10.8% of subjects had insufficient temporal acoustic bone windows. SN echogenic areas were larger in patients (mean±SD, 0.31±0.08cm²) compared to controls (mean±SD, 0.17±0.02cm²). TCS accurately identified 88.2% of PD patients. CONCLUSION: A large proportion of Brazilians seem to be eligible for TCS. An expressive number of PD patients could be diagnosed by TCS based on an expanded SN echogenic area. However, the current data is preliminary and must be corroborated by larger studies.
Collapse
|
35
|
Zhang X, Yin X, Yu H, Liu X, Yang F, Yao J, Jin H, Yang P. Quantitative proteomic analysis of serum proteins in patients with Parkinson's disease using an isobaric tag for relative and absolute quantification labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. Analyst 2011; 137:490-5. [PMID: 22108571 DOI: 10.1039/c1an15551b] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Parkinson's disease (PD) is a common disease which occurs in aged people with chronic, progressive degenerative character of the central nervous system. Until now there is no effective treatment method in PD patients before they show obvious symptoms for prevention and early diagnosis. In order to find out early disease specific biomarkers, two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling was employed to quantitatively identify the differentially expressed proteins among the different disease progress types of PD. 26 proteins were differentially expressed in a total of 258 identified proteins by proteomic techniques. The expression level of eight proteins which included sero-transferrin and clusterin increased. The expression level of eighteen proteins which include complement component 4B, apolipoprotein A-I, α-2-antiplasmin and coagulation factor V decreased. Those proteins may be associated with oxidative stress, mitochondrial dysfunction, abnormal protein aggregation and inflammation. In this study, the expression level of apolipoprotein A-I decreased, particularly in the early stage of PD patients. This protein regulated not only the lipid metabolism in the central nervous system, but also influenced the deposition process of proteins which are involved in neural degenerative diseases, such as the pathogenesis of PD.
Collapse
Affiliation(s)
- Xiaping Zhang
- Hua Dong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Transcranial sonography in pantothenate kinase-associated neurodegeneration. J Neurol 2011; 259:959-64. [DOI: 10.1007/s00415-011-6294-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/12/2011] [Accepted: 10/15/2011] [Indexed: 10/15/2022]
|
37
|
Abstract
PURPOSE OF REVIEW This review enumerates recent developments in the early diagnosis of Parkinson's disease, with an emphasis on detection of preclinical Parkinson's disease. RECENT FINDINGS Several clinical, laboratory, and imaging tests are now being investigated as potential early markers of Parkinson's disease. These include various nonmotor features that predate the motor manifestations of Parkinson's disease, including sleep abnormalities, neurobehavioral symptoms, and olfactory dysfunction. Tests of the autonomic nervous system, such as cardiac functional imaging, allow for a measure of cardiac sympathetic denervation. Cerebrospinal fluid and serum tests, including α-synuclein and DJ-1, are being developed and refined. Various imaging modalities have contributed to the diagnostic armamentarium in Parkinson's disease, including transcranial Doppler ultrasonography, radiolabeled tracer imaging, and magnetic resonance imaging. Early Parkinson's disease detection will pave the way for major advances in disease modifying therapies. SUMMARY Various diagnostic modalities hold promise for the early and preclinical diagnosis of Parkinson's disease. It is likely that the future diagnosis of Parkinson's disease will rely on a combination of clinical, laboratory, imaging, and genetic data.
Collapse
|
38
|
Intranasal administration of neurotoxicants in animals: support for the olfactory vector hypothesis of Parkinson's disease. Neurotox Res 2011; 21:90-116. [PMID: 22002807 DOI: 10.1007/s12640-011-9281-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/20/2011] [Accepted: 09/27/2011] [Indexed: 12/11/2022]
Abstract
The causes of Parkinson's disease (PD) are unknown, but there is evidence that exposure to environmental agents, including a number of viruses, toxins, agricultural chemicals, dietary nutrients, and metals, is associated with its development in some cases. The presence of smell loss and the pathological involvement of the olfactory pathways in the early stages of PD are in accord with the tenants of the olfactory vector hypothesis. This hypothesis postulates that some forms of PD may be caused or catalyzed by environmental agents that enter the brain via the olfactory mucosa. In this article, we provide an overview of evidence implicating xenobiotics agents in the etiology of PD and review animal, mostly rodent, studies in which toxicants have been introduced into the nose in an attempt to induce behavioral or neurochemical changes similar to those seen in PD. The available data suggest that this route of exposure results in highly variable outcomes, depending upon the involved xenobiotic, exposure history, and the age and species of the animals tested. Some compounds, such as rotenone, paraquat, and 6-hydroxydopamine, have limited capacity to reach and damage the nigrostriatal dopaminergic system via the intranasal route. Others, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), readily enter the brain via this route in some species and influence the function of the nigrostriatal pathway. Intranasal infusion of MPTP in some rodents elicits a developmental sequence of behavioral and neurochemical changes that closely mimics that seen in PD. For this reason, such an MPTP rodent model appears to be an ecologically valid means for assessing novel palliative treatments for both the motor and non-motor symptoms of PD. More research is needed, however, on this and other ecologically valid models.
Collapse
|
39
|
Nakamura Y, Nakamichi N, Takarada T, Ogita K, Yoneda Y. Transferrin receptor-1 suppresses neurite outgrowth in neuroblastoma Neuro2A cells. Neurochem Int 2011; 60:448-57. [PMID: 22019713 DOI: 10.1016/j.neuint.2011.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 10/16/2022]
Abstract
Transferrin receptor-1 (TfR1) is a cell membrane-associated glycoprotein responsible for incorporation of the iron bound to transferrin through an endocytotic process from the circulating blood. Iron is believed to play a dual role as an active center of the electron transfer system in mitochondria and as an endogenous cytotoxin through promoted generation of reactive oxygen species in different eukaryotic cells. In this study, we evaluated expression profiles of different genes related to iron mobilization across plasma membranes in neuronal cells. Marked mRNA expression was seen for various iron-related genes such as TfR1 in cultured mouse neocortical neurons, while TfR1 mRNA levels were more than doubled during culture from 3 to 6days. In mouse embryonal carcinoma P19 cells endowed to differentiate into neuronal and astroglial lineages, a transient increase was seen in both mRNA and corresponding protein for TfR1 in association with neuronal marker expression during culture with all-trans retinoic acid (ATRA). In neuronal Neuro2A cells cultured with ATRA, moreover, neurite was elongated together with increased expression of both mRNA and protein for TfR1. Overexpression of TfR1 significantly decreased the length of neurite elongated, however, while significant promotion was invariably seen in the neurite elongation in Neuro2A cells transfected with TfR1 siRNA as well as in Neuro2A cells cultured with an iron chelator. These results suggest that TfR1 would be highly expressed by neurons rather than astroglia to play a negative role in the neurite outgrowth after the incorporation of circulating transferrin in the brain.
Collapse
Affiliation(s)
- Yukary Nakamura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | |
Collapse
|
40
|
Differential Effect of Nimodipine in Attenuating Iron-Induced Toxicity in Brain- and Blood–Brain Barrier-Associated Cell Types. Neurochem Res 2011; 37:134-42. [DOI: 10.1007/s11064-011-0591-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/13/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
|
41
|
Berg D, Steinberger JD, Warren Olanow C, Naidich TP, Yousry TA. Milestones in magnetic resonance imaging and transcranial sonography of movement disorders. Mov Disord 2011; 26:979-92. [DOI: 10.1002/mds.23766] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
42
|
Müller T. Motor complications, levodopa metabolism and progression of Parkinson's disease. Expert Opin Drug Metab Toxicol 2011; 7:847-55. [PMID: 21480824 DOI: 10.1517/17425255.2011.575779] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Oxidative stress is an essential component of neuronal death in Parkinson's disease (PD). Clinically, progression of PD is also characterised by onset of motor complications (MC). MC results from the peripheral and central degree of fluctuations of levodopa (LD) and of dopamine. AREAS COVERED This review highlights aspects of LD and dopamine metabolism in chronic neurodegeneration in PD. A Medline search (terms: homocysteine, LD, PD, progression [from 2000 onwards]) was performed and considered preclinical and clinical investigations. The author discusses pharmacokinetic and metabolic aspects of chronic LD administration in PD patients and provides a therapeutic concept to reduce probable PD accelerating consequences of chronic LD application. EXPERT OPINION The author suggests that the future 'ideal' oral LD therapy should be homocysteine-reducing, methyl-group-donating, oxidative-stress-decreasing and antiglutamatergic while also allowing continuous delivery to the brain. This may slow the progression of PD and delay the onset of MC, both of which represent unmet needs in the treatment of PD patients.
Collapse
Affiliation(s)
- Thomas Müller
- St. Joseph Hospital Berlin-Weissensee, Department of Neurology , Gartenstr. 1, 13088 Berlin, Germany.
| |
Collapse
|
43
|
Gebril OH, Kirby J, Savva G, Brayne C, Ince PG. HFE H63D, C282Y and AGTR1 A1166C polymorphisms and brain white matter lesions in the aging brain. J Neurogenet 2011; 25:7-14. [PMID: 21332426 DOI: 10.3109/01677063.2011.556206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Incidental white matter lesions (WML) are a common neuroradiological finding in elderly people and have been linked to dementia and depression. Various mechanisms including hypoxia and increased production of reactive oxygen species (ROS) are implicated in the etiology of WML. The hemochromatosis (HFE) gene p.H63D and p.C282Y polymorphisms have been linked to dysregulation of iron metabolism and increased levels of ROS, whereas Angiotensin II receptor 1 (AGTR1) c.1166A → C polymorphism is known as a vascular risk factor. These genetic polymorphisms were characterized in brains donated to the UK MRC Cognitive Function and Ageing Study (CFAS) to assess their potential role in the risk for development of age-related WML. The study cohort comprised 258 brain donated to CFAS. WML severity was assessed in the postmortem brain donations using magnetic resonance imaging (MRI) scans and scored using the Scheltens' scale. Polymerase chain reaction (PCR) amplification of extracted DNA followed by restriction enzyme digestion was used to genotype the samples. Genotypes were validated using direct sequencing in a smaller sample. The results show that HFE p.H63D polymorphism is not associated with WML severity in the whole cohort. However, there is a significant association of the D allele with severity of WML in noncarriers of the APOE ε4 allele. No association is demonstrated between the HFE p.C282Y nor the AGTR1 c.1166A → C polymorphisms and WML severity. The HFE gene appears to be a genetic risk factor for severe aging WML independently of the APOE ε4 genotype. This would support the role of iron-related oxidative stress, in addition to previously studied factors, e.g., hypoxia as potential risk factors for developing prominent aging WML.
Collapse
Affiliation(s)
- Ola H Gebril
- Medical Research Division, National Research Centre, Cairo, Egypt.
| | | | | | | | | |
Collapse
|
44
|
Substantia nigra hyperechogenicity is a risk marker of Parkinson’s disease: yes. J Neural Transm (Vienna) 2011; 118:613-9. [DOI: 10.1007/s00702-010-0565-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 12/12/2010] [Indexed: 11/26/2022]
|
45
|
Zhou ZD, Lan YH, Tan EK, Lim TM. Iron species-mediated dopamine oxidation, proteasome inhibition, and dopaminergic cell demise: implications for iron-related dopaminergic neuron degeneration. Free Radic Biol Med 2010; 49:1856-71. [PMID: 20854902 DOI: 10.1016/j.freeradbiomed.2010.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/19/2010] [Accepted: 09/13/2010] [Indexed: 12/31/2022]
Abstract
Iron species have been suggested to be highly involved in the pathogenesis of Parkinson disease. However, the detailed mechanism of iron-induced dopaminergic degeneration is still unclear. In this study, we demonstrate that free iron ions (trivalent or bivalent) and iron ions in stable complex with cyanide ions (K(4)Fe(CN)(6) and K(3)Fe(CN)(6)) can induce dopamine (DA) oxidation with different profiles and subsequently lead to proteasome inhibition and even dopaminergic MN9D cell demise via different mechanisms. The free iron ions could mediate extensive DA oxidation in an iron-DA complex-dependent manner. However, iron ions in stable complex with cyanide ions could not induce, or could induce only brief, DA oxidation. Deferoxamine, a specific iron ion chelator, could disrupt iron-DA complex formation and thus abrogate free iron ion-catalyzed DA oxidation and subsequent cell toxicity. Glutathione could neither disrupt iron-DA complex formation nor influence free iron ion-catalyzed DA oxidation but could protect against iron-mediated toxicity via detoxification of toxic by-products of iron-mediated DA oxidation. The resulting DA oxidation could inhibit chymotrypsin-like, trypsin-like, and caspase-like proteasome activities. However, we demonstrated that oxidative damage was not the major toxic mechanism of MN9D cell degeneration, but it was the DA quinones derived from iron-induced DA oxidation that contributed significantly to proteasome inhibition and even dopaminergic cell demise.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- Department of Biological Science, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
46
|
Xu H, Jiang H, Wang J, Xie J. Rg1 protects iron-induced neurotoxicity through antioxidant and iron regulatory proteins in 6-OHDA-treated MES23.5 cells. J Cell Biochem 2010; 111:1537-45. [DOI: 10.1002/jcb.22885] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
48
|
Horowitz MP, Greenamyre JT. Mitochondrial iron metabolism and its role in neurodegeneration. J Alzheimers Dis 2010; 20 Suppl 2:S551-68. [PMID: 20463401 DOI: 10.3233/jad-2010-100354] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In addition to their well-established role in providing the cell with ATP, mitochondria are the source of iron-sulfur clusters (ISCs) and heme - prosthetic groups that are utilized by proteins throughout the cell in various critical processes. The post-transcriptional system that mammalian cells use to regulate intracellular iron homeostasis depends, in part, upon the synthesis of ISCs in mitochondria. Thus, proper mitochondrial function is crucial to cellular iron homeostasis. Many neurodegenerative diseases are marked by mitochondrial impairment, brain iron accumulation, and oxidative stress - pathologies that are inter-related. This review discusses the physiological role that mitochondria play in cellular iron homeostasis and, in so doing, attempts to clarify how mitochondrial dysfunction may initiate and/or contribute to iron dysregulation in the context of neurodegenerative disease. We review what is currently known about the entry of iron into mitochondria, the ways in which iron is utilized therein, and how mitochondria are integrated into the system of iron homeostasis in mammalian cells. Lastly, we turn to recent advances in our understanding of iron dysregulation in two neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), and discuss the use of iron chelation as a potential therapeutic approach to neurodegenerative disease.
Collapse
Affiliation(s)
- Maxx P Horowitz
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
49
|
Subramanian T, Lieu CA, Guttalu K, Berg D. Detection of MPTP-induced substantia nigra hyperechogenicity in Rhesus monkeys by transcranial ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:604-609. [PMID: 20211515 PMCID: PMC2862281 DOI: 10.1016/j.ultrasmedbio.2009.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/20/2009] [Accepted: 12/03/2009] [Indexed: 05/28/2023]
Abstract
Detection of substantia nigra (SN) hyperechogenicity by transcranial ultrasound has been proposed as a putative biomarker to differentiate between idiopathic Parkinson's disease (PD) and other forms of parkinsonism. In the present study, we evaluated the feasibility of using transcranial ultrasound to detect SN echogenicity in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated Rhesus monkeys, a well-established model of PD. All animals had natural temporal bone windows for transcranial sonography. We could show that it is possible to visualize major brain landmarks including the "butterfly shaped" midbrain, basal cisterns, third and lateral ventricles in all animals by transcranial ultrasound. Blinded assessments showed that all normal monkeys had no SN hyperechogenicity. Bilaterally parkinsonian (overlesioned) monkeys showed hyperechogenicity of both SN, whereas right hemiparkinsonian monkeys only showed left nigral hyperechogenicity. These findings confirm the feasibility of transcranial ultrasound to detect SN hyperechogenicity in MPTP-treated Rhesus monkeys and suggest that this animal model may provide a platform for understanding the pathophysiologic basis of nigral hyperechogenicity.
Collapse
Affiliation(s)
- Thyagarajan Subramanian
- Department of Neurology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | | | | | | |
Collapse
|
50
|
Yeager MP, Coleman RA. In silico evidence for glutathione- and iron-related pathogeneses in Parkinson's disease. J Neurosci Methods 2010; 188:151-64. [DOI: 10.1016/j.jneumeth.2010.01.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/25/2010] [Accepted: 01/29/2010] [Indexed: 12/20/2022]
|