1
|
Sobański D, Staszkiewicz R, Sobańska M, Strojny D, Grabarek BO. Effects of pain in lumbosacral stenosis and lifestyle-related factors on brain-derived neurotrophic factor expression profiles. Mol Pain 2025; 21:17448069241309001. [PMID: 39763435 PMCID: PMC11705318 DOI: 10.1177/17448069241309001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/13/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigated the role of brain-derived neurotrophic factor (BDNF) in patients with degenerative lumbar stenosis, focusing on its expression and correlation with pain intensity. The study examined 96 patients with lumbar stenosis and 85 control participants. BDNF levels in the yellow ligamentum flavum were measured using reverse transcription quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and western blot analysis. The results showed significantly higher BDNF expression at both messenger ribonucleic acid (mRNA; fold change = +1.35 ± 0.23; p < 0.05) and protein levels in patients (28.98 ± 6.40 pg/mg) compared to controls (4.56 ± 1.98 pg/mg; p < 0.05). Furthermore, BDNF levels correlated positively with pain intensity reported by patients, with higher expression observed in those experiencing more severe pain. The study also explored the influence of lifestyle factors, such as smoking and alcohol consumption, and related diseases, such as diabetes, on BDNF expression. Smoking, alcohol use, and diabetes were associated with significantly elevated BDNF levels (p < 0.05). These findings suggest that BDNF could serve as a biomarker for pain severity in degenerative lumbar stenosis at the protein level, although this was not consistently observed at the mRNA level; this highlights the potential for BDNF-targeted therapies in managing pain. Future research should involve larger longitudinal studies to validate these findings and explore therapeutic interventions. This study underscores the importance of considering molecular and lifestyle factors in the treatment of degenerative lumbar stenosis, aiming to improve patient outcomes through comprehensive, targeted approaches.
Collapse
Affiliation(s)
- Dawid Sobański
- Department of Neurosurgery, Szpital sw. Rafala in Cracow, Cracow, Poland
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Rafał Staszkiewicz
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Krakow, Poland
- Department of Neurosurgery, Faculty of Medicine in Zabrze, Academy of Silesia, Katowice, Poland
| | - Małgorzata Sobańska
- Department of Neurosurgery, Szpital sw. Rafala in Cracow, Cracow, Poland
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Damian Strojny
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
- Institute of Health Care, National Academy of Applied Sciences in Przemyśl, Przemyśl, Poland
- New Medical Techniques Specialist Hospital of St. Family in Rudna Mała, Rzeszów, Poland
| | | |
Collapse
|
2
|
de Melo PS, Pacheco-Barrios K, Marduy A, Vasquez-Avila K, Simis M, Imamura M, Cardenas-Rojas A, Navarro-Flores A, Batistella L, Fregni F. The Endogenous Pain Modulatory System as a Healing Mechanism: A Proposal on How to Measure and Modulate It. NEUROSCI 2024; 5:230-243. [PMID: 39483278 PMCID: PMC11469741 DOI: 10.3390/neurosci5030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Chronic pain is highly burdening and multifactorial in etiology. The endogenous-pain-healing system restores body tissue to a non-painful state after an injury leading to pain, and its disruption could represent a relevant mechanism, especially for nursing interventions. AIM To review the literature and summarize the results that support this hypothesis. METHODS We hypothesized that the mechanism behind this system mainly depends on the endogenous pain modulatory system (EPMS), which is responsible for inhibiting pain after tissue healing is complete and facilitating it when tissue damage is still present. Different biomarkers can quantify EPMS functioning. We reviewed the literature and included relevant information regarding this hypothesis. RESULTS First, conditioned pain modulation (CPM) measures pain inhibition and is a possible predictor for pain chronification. Second, motor cortex excitability measures the cortical control of the EPMS, which can be assessed through transcranial magnetic stimulation (using intracortical inhibition) or electroencephalography. Modifiable factors disrupt its functioning, such as sleep deprivation, medication overuse, and mental health status, but could be protective, such as exercise, certain medications, mind-body techniques, and non-invasive neuromodulation therapies. The acquisition of neurophysiological knowledge of how the chronicity of pain occurs and the EPMS involvement in this process may allow for better management of these patients. CONCLUSIONS We raised the hypothesis that the impairment of the EPMS (altered cortical excitability and descendent pain modulation pathways) seems to be related to the disruption of the pain healing process and its chronicity. Further longitudinal studies evaluating the relationship between these biomarkers and chronic pain development are necessary.
Collapse
Affiliation(s)
- Paulo S. de Melo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA 02141, USA
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA 02141, USA
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima 15024, Peru
| | - Anna Marduy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA 02141, USA
| | - Karen Vasquez-Avila
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA 02141, USA
| | - Marcel Simis
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-060, Brazil
| | - Marta Imamura
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-060, Brazil
| | - Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA 02141, USA
| | | | - Linamara Batistella
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-060, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA 02141, USA
| |
Collapse
|
3
|
Giri SS, Tripathi AS, Erkekoğlu P, Zaki MEA. Molecular pathway of pancreatic cancer-associated neuropathic pain. J Biochem Mol Toxicol 2024; 38:e23638. [PMID: 38613466 DOI: 10.1002/jbt.23638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 04/15/2024]
Abstract
The pancreas is a heterocrine gland that has both exocrine and endocrine parts. Most pancreatic cancer begins in the cells that line the ducts of the pancreas and is called pancreatic ductal adenocarcinoma (PDAC). PDAC is the most encountered pancreatic cancer type. One of the most important characteristic features of PDAC is neuropathy which is primarily due to perineural invasion (PNI). PNI develops tumor microenvironment which includes overexpression of fibroblasts cells, macrophages, as well as angiogenesis which can be responsible for neuropathy pain. In tumor microenvironment inactive fibroblasts are converted into an active form that is cancer-associated fibroblasts (CAFs). Neurotrophins they also increase the level of Substance P, calcitonin gene-related peptide which is also involved in pain. Matrix metalloproteases are the zinc-associated proteases enzymes which activates proinflammatory interleukin-1β into its activated form and are responsible for release and activation of Substance P which is responsible for neuropathic pain by transmitting pain signal via dorsal root ganglion. All the molecules and their role in being responsible for neuropathic pain are described below.
Collapse
Affiliation(s)
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, Uttar Pradesh, India
| | - Pınar Erkekoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Estivill-Torrús G, Martínez-Padilla AB, Sánchez-Salido L, Evercooren ABV, García-Díaz B. The dorsal root ganglion as a target for neurorestoration in neuropathic pain. Neural Regen Res 2024; 19:296-301. [PMID: 37488881 PMCID: PMC10503598 DOI: 10.4103/1673-5374.374655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 05/19/2023] [Indexed: 07/26/2023] Open
Abstract
Neuropathic pain is a severe and chronic condition widely found in the general population. The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients. During the processing of pain, the dorsal root ganglia constitute an important region where dorsal root ganglion neurons play a crucial role in the transmission and propagation of sensory electrical stimulation. Furthermore, the dorsal root ganglia have recently exhibited a regenerative capacity that should not be neglected in the understanding of the development and resolution of neuropathic pain and in the elucidation of innovative therapies. Here, we will review the complex interplay between cells (satellite glial cells and inflammatory cells) and factors (cytokines, neurotrophic factors and genetic factors) that takes place within the dorsal root ganglia and accounts for the generation of the aberrant excitation of primary sensory neurons occurring in neuropathic pain. More importantly, we will summarize an updated view of the current pharmacologic and nonpharmacologic therapies targeting the dorsal root ganglia for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | | | - Lourdes Sánchez-Salido
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Anne Baron-Van Evercooren
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Beatriz García-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| |
Collapse
|
5
|
Contribution of COMT and BDNF Genotype and Expression to the Risk of Transition From Acute to Chronic Low Back Pain. Clin J Pain 2021; 36:430-439. [PMID: 32079998 PMCID: PMC7211115 DOI: 10.1097/ajp.0000000000000819] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES A number of factors, including heritability and the environment, contribute to risk of transition from acute low back pain to chronic low back pain (CLBP). The aim of this study was to (1) compare somatosensory function and pain ratings at low back pain (LBP) onset between the acute low back pain and CLBP conditions and (2) evaluate associations between BDNF and COMT polymorphisms and expression levels at LBP onset to acute and chronic pain burden and risk for transition to the chronic pain state. METHODS In this longitudinal study, 220 participants were enrolled following recent onset of LBP and data were collected until the LBP resolved or until the end of the study at 6 months. Forty-two participants' pain resolved before 6 weeks from onset and 42 participants continued to have pain at 6 months. Patient-reported pain burden, somatosensory function (quantitative sensory testing), and blood samples were collected at each study visit. RESULTS CLBP is associated with greater pain burden and somatosensory hypersensitivity at the time of LBP onset. COMT rs4680 genotype (GG) was associated with acute cold pain sensitivity and with the risk for transition to CLBP while COMT expression was independently associated with risk for transition. DISCUSSION CLBP was characterized by higher reported pain burden and augmented hypersensitivity at LBP onset. COMT expression and genotype were associated with acute pain burden and likelihood of transition to CLBP.
Collapse
|
6
|
Abbas M, Alzarea S, Papke RL, Rahman S. Effects of α7 Nicotinic Acetylcholine Receptor Positive Allosteric Modulator on BDNF, NKCC1 and KCC2 Expression in the Hippocampus following Lipopolysaccharide-Induced Allodynia and Hyperalgesia in a Mouse Model of Inflammatory Pain. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2021; 20:366-377. [PMID: 33380307 DOI: 10.2174/1871527319666201230102616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND & OBJECTIVES Hyperalgesia and allodynia are frequent symptoms of inflammatory pain. Neuronal excitability induced by the Brain-Derived Neurotrophic Factor (BDNF)-tyrosine receptor kinase B (TrkB) cascade has a role in the modulation of inflammatory pain. The effects of 3a,4,5,9b-tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS), an α7 nicotinic Acetylcholine Receptor Positive Allosteric Modulator (nAChR PAM), on hippocampal BDNF, cation-chloride cotransporters, NKCC1 and KCC2, expression in inflammatory pain are not known. The objective of the study was to determine the effects of TQS on BDNF, NKCC1, and KCC2 expression in the hippocampus following lipopolysaccharide (LPS)-induced allodynia and hyperalgesia in a mouse model of inflammatory pain. METHODS Mice were treated with TQS followed by LPS (1 mg/kg, ip) administration. The effects of TQS on mRNA and BDNF in the hippocampus were examined using qRT-PCR and Western blot, respectively. Immunoreactivity of BDNF, NKCC1, and KCC2 in the hippocampus was measured after LPS administration using immunofluorescence assay. Allodynia and hyperalgesia were determined using von Frey filaments and hot plate, respectively. RESULTS The LPS (1 mg/kg) upregulates mRNA of BDNF and downregulates mRNA of KCC2 in the hippocampus and pretreatment of TQS (4 mg/kg) reversed the effects induced by LPS. In addition, the TQS decreased LPS-induced upregulation of BDNF and p-NKCC1 immunoreactivity in the dentate gyrus and CA1 region of the hippocampus. BDNF receptor (TrkB) antagonist, ANA12 (0.50 mg/kg), and NKCC1 inhibitor bumetanide (30 mg/kg) reduced LPS-induced allodynia and hyperalgesia. Blockade of TrkB with ANA12 (0.25 mg/kg) enhanced the effects of TQS (1 mg/kg) against LPS-induced allodynia and hyperalgesia. Similarly, bumetanide (10 mg/kg) enhanced the effects of TQS (1 mg/kg) against allodynia and hyperalgesia. CONCLUSION These results suggest that antinociceptive effects of α7 nAChR PAM are associated with downregulation of hippocampal BDNF and p-NKCC1 and upregulation of KCC2 in a mouse model of inflammatory pain.
Collapse
Affiliation(s)
- Muzaffar Abbas
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings SD 57007, United States
| | - Sami Alzarea
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings SD 57007, United States
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville FL 32610, United States
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings SD 57007, United States
| |
Collapse
|
7
|
Effects of SHINBARO2 on Rat Models of Lumbar Spinal Stenosis. Mediators Inflamm 2019; 2019:7651470. [PMID: 31182933 PMCID: PMC6512060 DOI: 10.1155/2019/7651470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 01/05/2023] Open
Abstract
Lumbar spinal stenosis (LSS) is a major cause of chronic low back pain; however, only a few therapies which have been used in clinics still have limited effects on functional recovery. SHINBARO2 is a refined traditional formulation for inflamed lesions and relieve pain of muscular skeletal disease. This study aimed at investigating the effects of SHINBARO2 on LSS and at determining its underlying molecular mechanism in rat models. The LSS rat models were set up by surgical operations in 6-week-old male Sprague-Dawley rats. SHINBARO2 was orally or intraperitoneally administered for 14 days. The motor and sensory ability of rats were evaluated using the activity cage and hot plate method. On the termination day, total vertebrae including the disc and spinal cord were excised for ex vivo study. SHINBARO2 improved locomotor functions and pain sensitivity in LSS rat models. Mechanism study suggested that SHINBARO2 inhibited the production of nitric oxide and prostaglandin E2 in tissues from LSS-induced rats. SHINBARO2 also suppressed the expression of proinflammatory cytokines including tumor necrosis factor-α and interleukin-1β. The activation of NF-κB by LSS surgery was effectively reduced by SHINBARO2, which coincided with the inhibition of IκB degradation. In addition, brain-derived neurotrophic factor (BDNF), a potent promoter of neurite growth, and its downstream ERK signaling were also regulated by SHINBARO2. These findings suggest that the effect of SHINBARO2 might be associated in part with the anti-inflammation and pain control in LSS rat models.
Collapse
|
8
|
Sikandar S, Minett MS, Millet Q, Santana-Varela S, Lau J, Wood JN, Zhao J. Brain-derived neurotrophic factor derived from sensory neurons plays a critical role in chronic pain. Brain 2018; 141:1028-1039. [PMID: 29394316 PMCID: PMC5888992 DOI: 10.1093/brain/awy009] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 12/24/2022] Open
Abstract
Many studies support the pro-nociceptive role of brain-derived neurotrophin factor (BDNF) in pain processes in the peripheral and central nervous system. We have previously shown that nociceptor-derived BDNF is involved in inflammatory pain. Microglial-derived BDNF has also been shown to be involved in neuropathic pain. However, the distinct contribution of primary afferent-derived BNDF to chronic pain processing remains undetermined. In this study, we used Avil-CreERT2 mice to delete Bdnf from all adult peripheral sensory neurons. Conditional BDNF knockouts were healthy with no sensory neuron loss. Behavioural assays and in vivo electrophysiology indicated that spinal excitability was normal. Following formalin inflammation or neuropathy with a modified Chung model, we observed normal development of acute pain behaviour, but a deficit in second phase formalin-induced nocifensive responses and a reversal of neuropathy-induced mechanical hypersensitivity during the later chronic pain phase in conditional BDNF knockout mice. In contrast, we observed normal development of acute and chronic neuropathic pain in the Seltzer model, indicating differences in the contribution of BDNF to distinct models of neuropathy. We further used a model of hyperalgesic priming to examine the contribution of primary afferent-derived BDNF in the transition from acute to chronic pain, and found that primed BDNF knockout mice do not develop prolonged mechanical hypersensitivity to an inflammatory insult. Our data suggest that BDNF derived from sensory neurons plays a critical role in mediating the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Shafaq Sikandar
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, Division of Medicine, University College London, Gower Street London WC1E 6BT, UK
| | - Michael S Minett
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, Division of Medicine, University College London, Gower Street London WC1E 6BT, UK
| | - Queensta Millet
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, Division of Medicine, University College London, Gower Street London WC1E 6BT, UK
| | - Sonia Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, Division of Medicine, University College London, Gower Street London WC1E 6BT, UK
| | - Joanne Lau
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, Division of Medicine, University College London, Gower Street London WC1E 6BT, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, Division of Medicine, University College London, Gower Street London WC1E 6BT, UK
| | - Jing Zhao
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, Division of Medicine, University College London, Gower Street London WC1E 6BT, UK
| |
Collapse
|
9
|
Siotto M, Aprile I, Simonelli I, Pazzaglia C, Ventriglia M, Santoro M, Imbimbo I, Squitti R, Padua L. An exploratory study of BDNF and oxidative stress marker alterations in subacute and chronic stroke patients affected by neuropathic pain. J Neural Transm (Vienna) 2017; 124:1557-1566. [PMID: 29086097 DOI: 10.1007/s00702-017-1805-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/17/2017] [Indexed: 12/27/2022]
Abstract
Patients affected by stroke, particularly subacute stroke patients, often complain of neuropathic pain (NP), which may severely impair their quality of life. The aim of this exploratory study was to characterize NP and to investigate whether there is a correlation between NP and serum brain-derived neurotrophic factor (BDNF) and serum markers of oxidative stress. We enrolled 50 patients divided in subacute (< 90 days from stroke onset) and chronic (> 90 and 180 < days from stroke onset). The Barthel Index, Deambulation Index, and Short Form 36 were used to assess the patients' degree of disability and quality of life. Pain-specific tools, namely the Numeric Rating Scale (NRS), Neuropathic Pain Diagnostic questionnaire (DN4), and Neuropathic Pain Symptom Inventory (NPSI), were also used. Serum levels of BDNF and markers of oxidative stress and of metal status were evaluated: copper, iron, transferrin, ferritin, ceruloplasmin concentration (iCp) and activity (eCp), Total Antioxidant status (TAS), Cp/Tf ratio, eCp/iCp ratio, and non-ceruloplasmin bound copper (Non-Cp Cu). We found the highest value of BDNF in subacute with NP (DN4 score ≥ 4). The TAS, Cp/Tf ratio, and eCp/iCp not only fell outside the normal reference range in a high percentage of subacute and chronic patients, but were also found to be related to specific NP symptoms. These preliminary results reveal altered BDNF and oxidative stress indices in subacute stroke patients who complain of NP. These investigative findings may shed more light on the mechanisms underlying NP and consequently lead to a more tailored therapeutic and/or rehabilitation procedure of subacute stroke patients.
Collapse
Affiliation(s)
| | - Irene Aprile
- Don Carlo Gnocchi ONLUS Foundation, P.le Morandi 6, 20121, Milan, Italy
| | - Ilaria Simonelli
- AFaR Division, Service of Medical Statistics and Information Technology, Fatebenefratelli Foundation for Health Research and Education, Lungotevere de' Cenci, 5, Rome, Italy
| | | | - Mariacarla Ventriglia
- AFaR Division, Fatebenefratelli Foundation for Health Research and Education, Isola Tiberina, Rome, Italy
| | - Massimo Santoro
- Don Carlo Gnocchi ONLUS Foundation, P.le Morandi 6, 20121, Milan, Italy
| | - Isabella Imbimbo
- Don Carlo Gnocchi ONLUS Foundation, P.le Morandi 6, 20121, Milan, Italy
| | - Rosanna Squitti
- Molecular Marker Laboratory, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Luca Padua
- Don Carlo Gnocchi ONLUS Foundation, P.le Morandi 6, 20121, Milan, Italy.,Department of Geriatrics, Neurosciences and Orthopaedics, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
10
|
Kazemi A, Rahmati M, Eslami R, Sheibani V. Activation of neurotrophins in lumbar dorsal root probably contributes to neuropathic pain after spinal nerve ligation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:29-35. [PMID: 28133521 PMCID: PMC5243971 DOI: 10.22038/ijbms.2017.8089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Neurotrophins (NTs) exert various effects on neuronal system. Growing evidence indicates that NTs are involved in the pathophysiology of neuropathic pain. However, the exact role of these proteins in modulating nociceptive signaling requires being defined. Thus, the aim of this study was to evaluate the effects of spinal nerve ligation (SNL) on NTs activation in the lumbar dorsal root. MATERIALS AND METHODS Ten male Wistar rats were randomly assigned to two groups: tight ligation of the L5 spinal nerve (SNL: n=5) and Sham (n=5). In order to produce neuropathic pain, the L5 spinal nerve was tightly ligated (SNL). Then, allodynia and hyperalgesia tests were conducted weekly. After 4 weeks, tissue samples were taken from the two groups for laboratory evaluations. Here, Real-Time PCR quantity method was used for measuring NTs gene expression levels. RESULTS SNL resulted in a significant weight loss in the soleus muscle (P<0.05), mechanical allodynia and thermal hyperalgesia thresholds (respectively, P<0.05; P<0.05). Also, NGF, NT-4, NT-3, TrkA, TrkB and TrkC expression were up-regulated following spinal nerve ligation group (respectively, P=0.025, P=0.013, P=0.001, P=0.002, P<0.001, P=001) (respectively, 4.7, 5.2, 7.5, 5.1, 7.2, 6.2 folds). CONCLUSION The present study provides new evidence that neuropathic pain induced by spinal nerve ligation probably activates NTs and Trk receptors expression in DRG. However, further studies are needed to better elucidate the role of NTs in a neuropathic pain.
Collapse
Affiliation(s)
- Abdolreza Kazemi
- Department of Physical Education and Sports Sciences, Faculty of Humanity and Literature, Vali E Asr University of Rafsanjan, Rafsanjan, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Corresponding author: Abdolreza Kazemi. Department of Physical Education and Sports Sciences, Faculty of Humanity and Literature, Vali E ASR University, Rafsanjan, Iran. Tel/Fax: +98-31-312335;
| | - Masoud Rahmati
- Departments of Physical Education and Sports Sciences, Lorestan University, Khoram Abad, Iran
| | - Rasoul Eslami
- Department of corrective exercise and Sports injury, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Li W, Wang JX, Zhou ZH, Lu Y, Li XQ, Liu BJ, Chen HS. Contribution of capsaicin-sensitive primary afferents to mechanical hyperalgesia induced by ventral root transection in rats: the possible role of BDNF. Neurol Res 2016; 38:80-5. [DOI: 10.1080/01616412.2015.1135570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Matusica D, Alfonsi F, Turner BJ, Butler TJ, Shepheard SR, Rogers ML, Skeldal S, Underwood CK, Mangelsdorf M, Coulson EJ. Inhibition of motor neuron death in vitro and in vivo by a p75 neurotrophin receptor intracellular domain fragment. J Cell Sci 2015; 129:517-30. [PMID: 26503157 DOI: 10.1242/jcs.173864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022] Open
Abstract
The p75 neurotrophin receptor (p75(NTR); also known as NGFR) can mediate neuronal apoptosis in disease or following trauma, and facilitate survival through interactions with Trk receptors. Here we tested the ability of a p75(NTR)-derived trophic cell-permeable peptide, c29, to inhibit p75(NTR)-mediated motor neuron death. Acute c29 application to axotomized motor neuron axons decreased cell death, and systemic c29 treatment of SOD1(G93A) mice, a common model of amyotrophic lateral sclerosis, resulted in increased spinal motor neuron survival mid-disease as well as delayed disease onset. Coincident with this, c29 treatment of these mice reduced the production of p75(NTR) cleavage products. Although c29 treatment inhibited mature- and pro-nerve-growth-factor-induced death of cultured motor neurons, and these ligands induced the cleavage of p75(NTR) in motor-neuron-like NSC-34 cells, there was no direct effect of c29 on p75(NTR) cleavage. Rather, c29 promoted motor neuron survival in vitro by enhancing the activation of TrkB-dependent signaling pathways, provided that low levels of brain-derived neurotrophic factor (BDNF) were present, an effect that was replicated in vivo in SOD1(G93A) mice. We conclude that the c29 peptide facilitates BDNF-dependent survival of motor neurons in vitro and in vivo.
Collapse
Affiliation(s)
- Dusan Matusica
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia Department of Anatomy & Histology, Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Fabienne Alfonsi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Victoria 3051, Australia
| | - Tim J Butler
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephanie R Shepheard
- Department of Human Physiology, Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Mary-Louise Rogers
- Department of Human Physiology, Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Sune Skeldal
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Clare K Underwood
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marie Mangelsdorf
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elizabeth J Coulson
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
13
|
Richner M, Ulrichsen M, Elmegaard SL, Dieu R, Pallesen LT, Vaegter CB. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system. Mol Neurobiol 2014; 50:945-70. [PMID: 24752592 DOI: 10.1007/s12035-014-8706-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/01/2014] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injury disrupts the normal functions of sensory and motor neurons by damaging the integrity of axons and Schwann cells. In contrast to the central nervous system, the peripheral nervous system possesses a considerable capacity for regrowth, but regeneration is far from complete and functional recovery rarely returns to pre-injury levels. During development, the peripheral nervous system strongly depends upon trophic stimulation for neuronal differentiation, growth and maturation. The perhaps most important group of trophic substances in this context is the neurotrophins (NGF, BDNF, NT-3 and NT-4/5), which signal in a complex spatial and timely manner via the two structurally unrelated p75(NTR) and tropomyosin receptor kinase (TrkA, Trk-B and Trk-C) receptors. Damage to the adult peripheral nerves induces cellular mechanisms resembling those active during development, resulting in a rapid and robust increase in the synthesis of neurotrophins in neurons and Schwann cells, guiding and supporting regeneration. Furthermore, the injury induces neurotrophin-mediated changes in the dorsal root ganglia and in the spinal cord, which affect the modulation of afferent sensory signaling and eventually may contribute to the development of neuropathic pain. The focus of this review is on the expression patterns of neurotrophins and their receptors in neurons and glial cells of the peripheral nervous system and the spinal cord. Furthermore, injury-induced changes of expression patterns and the functional consequences in relation to axonal growth and remyelination as well as to neuropathic pain development will be reviewed.
Collapse
Affiliation(s)
- Mette Richner
- Danish Research Institute of Translational Neuroscience DANDRITE, Nordic EMBL Partnership, and Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000, Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
14
|
Kras JV, Weisshaar CL, Quindlen J, Winkelstein BA. Brain-derived neurotrophic factor is upregulated in the cervical dorsal root ganglia and spinal cord and contributes to the maintenance of pain from facet joint injury in the rat. J Neurosci Res 2013; 91:1312-21. [PMID: 23918351 DOI: 10.1002/jnr.23254] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 11/06/2022]
Abstract
The facet joint is commonly associated with neck and low back pain and is susceptible to loading-induced injury. Although tensile loading of the cervical facet joint has been associated with inflammation and neuronal hyperexcitability, the mechanisms of joint loading-induced pain remain unknown. Altered brain-derived neurotrophic factor (BDNF) levels are associated with a host of painful conditions, but the role of BDNF in loading-induced joint pain remains undefined. Separate groups of rats underwent a painful cervical facet joint distraction or a sham procedure. Bilateral forepaw mechanical hypersensitivity was assessed and BDNF mRNA and protein levels were quantified in the dorsal root ganglion (DRG) and spinal cord at days 1 and 7. Facet joint distraction induced significant (P < 0.001) mechanical hypersensitivity at both time points. Painful joint distraction did not alter BDNF mRNA in the DRG compared with sham levels but did significantly increase (P < 0.016) BDNF protein expression over sham in the DRG at day 7. Painful distraction also significantly increased BDNF mRNA (P = 0.031) and protein expression (P = 0.047) over sham responses in the spinal cord at day 7. In a separate study, intrathecal administration of the BDNF-sequestering molecule trkB-Fc on day 5 after injury partially attenuated behavioral sensitivity after joint distraction and reduced pERK in the spinal cord at day 7 (P < 0.045). Changes in BDNF after painful facet joint injury and the effect of spinal BDNF sequestration in partially reducing pain suggest that BDNF signaling contributes to the maintenance of loading-induced facet pain but that additional cellular responses are also likely involved.
Collapse
Affiliation(s)
- Jeffrey V Kras
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
15
|
Chew DJ, Murrell K, Carlstedt T, Shortland PJ. Segmental spinal root avulsion in the adult rat: a model to study avulsion injury pain. J Neurotrauma 2013; 30:160-72. [PMID: 22934818 DOI: 10.1089/neu.2012.2481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Road traffic accidents are the most common cause of avulsion injury, in which spinal roots are torn from the spinal cord. Patients suffer from a loss of sensorimotor function, intractable spontaneous pain, and border-zone hypersensitivity. The neuropathic pains are particularly difficult to treat because the lack of a well-established animal model of avulsion injury prevents identifying the underlying mechanisms and hinders the development of efficacious drugs. This article describes a hindlimb model of avulsion injury in adult rats where the L5 dorsal and ventral spinal root are unilaterally avulsed (spinal root avulsion [SRA]), leaving the adjacent L4 spinal root intact. SRA produced a significant ipsilateral hypersensitivity to mechanical and thermal stimulation by 5 days compared with sham-operated or naïve rats. This hypersensitivity is maintained for up to 60 days. No autotomy was observed and locomotor deficits were minimal. The hypersensitivity to peripheral stimuli could be temporarily ameliorated by administration of amitriptyline and carbamazepine, drugs that are currently prescribed to avulsion patients. Histological assessment of the L4 ganglion cells revealed no significant alterations in calcitonin gene-related peptide (CGRP), IB4, transient receptor potential cation channel subfamily V member 1 (TrpV1), or N52 staining across groups. Immunohistochemistry of the spinal cord revealed a localized glial response, phagocyte infiltration, and neuronal loss within the ipsilateral avulsed segment. A comparable response from glia and phagocytes was also found in the intact L4 spinal cord, supporting the role for central mechanisms within the L4-5 spinal cord in contributing to the generation of the pain-related behavior. The SRA model provides a platform to investigate possible new pharmacological treatments for avulsion injuries.
Collapse
Affiliation(s)
- Daniel J Chew
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, United Kingdom.
| | | | | | | |
Collapse
|
16
|
Siniscalco D, Giordano C, Rossi F, Maione S, de Novellis V. Role of neurotrophins in neuropathic pain. Curr Neuropharmacol 2012; 9:523-9. [PMID: 22654713 PMCID: PMC3263449 DOI: 10.2174/157015911798376208] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/06/2010] [Accepted: 07/06/2010] [Indexed: 11/27/2022] Open
Abstract
Neurotrophins (NTs) belong to a family of structurally and functionally related proteins, they are the subsets of neurotrophic factors. Neurotrophins are responsible for diverse actions in the developing peripheral and central nervous systems. They are important regulators of neuronal function, affecting neuronal survival and growth. They are able to regulate cell death and survival in development as well as in pathophysiologic states. NTs and their receptors are expressed in areas of the brain that undergo plasticity, indicating that they are able to modulate synaptic plasticity. Recently, neurotrophins have been shown to play significant roles in the development and transmission of neuropathic pain. Neuropathic pain is initiated by a primary lesion or dysfunction in the nervous system. It has a huge impact on the quality of life. It is debilitating and often has an associated degree of depression that contributes to decreasing human well being. Neuropathic pain ranks at the first place for sanitary costs. Neuropathic pain treatment is extremely difficult. Several molecular pathways are involved, making it a very complex disease. Excitatory or inhibitory pathways controlling neuropathic pain development show altered gene expression, caused by peripheral nerve injury. At present there are no valid treatments over time and neuropathic pain can be classified as an incurable disease. Nowadays, pain research is directing towards new molecular methods. By targeting neurotrophin molecules it may be possible to provide better pain control than currently available.
Collapse
Affiliation(s)
- Dario Siniscalco
- Department of Experimental Medicine, Division of Pharmacology "L. Donatelli", Second University of Naples, Via S. Maria di Costantinopoli, 16 - 80138 Naples, Italy
| | | | | | | | | |
Collapse
|
17
|
Gao L, Li LH, Xing RX, Ou S, Liu GD, Wang YP, Zhang H, Gao GD, Wang TH. Gastrocnemius-derived BDNF promotes motor function recovery in spinal cord transected rats. Growth Factors 2012; 30:167-75. [PMID: 22515203 DOI: 10.3109/08977194.2012.678842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study evaluated the role of gastrocnemius-derived brain-derived neurotrophic factor (BDNF) and possible mechanism in motor improvement in T10 spinal cord transection (SCT) rats. There was complete paralysis in hindlimbs immediately after SCT, followed by partial functional restoration with time going. The level of BDNF but not its mRNA gradually increased in caudal stump after SCT, whereas a significant increase in both BDNF and its mRNA was simultaneously seen in gastrocnemius. Injection of BDNF antibody into the gastrocnemius significantly decreased hindlimb locomotor function, downregulated the level of BDNF and its mRNA together with extracellular signal-regulated kinase 1/2 (Erk1/2). Moreover, ventral root ligation led to decrease both BDNF and Erk in caudal stump, indicating BDNF transportation from gastrocnemius into the spinal cord. We concluded that gastrocnemius-derived BDNF reduced motor functional deficits in SCT rats through Erk signaling pathway. These novel findings suggested the usage of BDNF in muscle for the treatment of spinal cord injury in clinic.
Collapse
Affiliation(s)
- Li Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chew DJ, Carlstedt T, Shortland PJ. A comparative histological analysis of two models of nerve root avulsion injury in the adult rat. Neuropathol Appl Neurobiol 2011; 37:613-32. [DOI: 10.1111/j.1365-2990.2011.01176.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Dubový P. Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann Anat 2011; 193:267-75. [PMID: 21458249 DOI: 10.1016/j.aanat.2011.02.011] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 12/29/2022]
Abstract
Wallerian degeneration is a cascade of stereotypical events in reaction to injury of nerve fibres. These events consist of cellular and molecular alterations, including macrophage invasion, activation of Schwann cells, as well as neurotrophin and cytokine upregulation. This review focuses on cellular and molecular changes distal to various types of peripheral nerve injury which simultaneously contribute to axonal regeneration and neuropathic pain induction. In addition to the stereotypical events of Wallerian degeneration, various types of nerve damage provide different conditions for both axonal regeneration and neuropathic pain induction. Wallerian degeneration of injured peripheral nerve is associated with an inflammatory response including rapid upregulation of the immune signal molecules like cytokines, chemokines and transcription factors with both beneficial and detrimental effects on nerve regeneration or neuropathic pain induction. A better understanding of the molecular interactions between the immune system and peripheral nerve injury would open the possibility for targeting these inflammatory mediators in therapeutic interventions. Understanding the pleiotropic effects of cytokines/chemokines, however, requires investigating their highly specific pathways and precise points of action.
Collapse
Affiliation(s)
- Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine and Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, Brno, Czech Republic.
| |
Collapse
|
20
|
Fukui Y, Ohtori S, Yamashita M, Yamauchi K, Inoue G, Suzuki M, Orita S, Eguchi Y, Ochiai N, Kishida S, Takaso M, Wakai K, Hayashi Y, Aoki Y, Takahashi K. Low affinity NGF receptor (p75 neurotrophin receptor) inhibitory antibody reduces pain behavior and CGRP expression in DRG in the mouse sciatic nerve crush model. J Orthop Res 2010; 28:279-83. [PMID: 19824062 DOI: 10.1002/jor.20986] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nerve growth factor (NGF) and its low-affinity receptor, p75 neurotrophin receptor (p75 NTR), are important mediators of pain. To explore further the mechanisms involved, we examined suppression of pain behavior and expression of neuropeptides such as calcitonin gene-related peptide (CGRP) using a p75 NTR inhibitory antibody, in a mouse sciatic nerve crush model. In the nerve-injured model, 150 microg of a p75 NTR inhibitory antibody or 10 microl of saline were applied. The sciatic nerve in the sham-operated group was uninjured. Mechanical allodynia was measured for 2 weeks. CGRP and p75 NTR expression in L5 dorsal root ganglions (DRGs) was examined immunohistochemically. Mechanical allodynia was found in the two nerve injured groups, but not in the sham-operated group (p < 0.05). However, the magnitude of the mechanical allodynia was significantly decreased after application of p75 NTR inhibitory antibody (p < 0.05). CGRP and p75 NTR immunoreactivity in the L5 DRG neurons was upregulated in the injured nerve groups compared with the sham-operated group; however, p75 NTR inhibitory antibody decreased the CGRP and p75 NTR expression (p < 0.01). Application of the p75 NTR inhibitory antibody to the pinched sciatic nerve suppressed CGRP and p75 NTR expression and pain behavior.
Collapse
Affiliation(s)
- Yu Fukui
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Renn CL, Leitch CC, Dorsey SG. In vivo evidence that truncated trkB.T1 participates in nociception. Mol Pain 2009; 5:61. [PMID: 19874592 PMCID: PMC2777863 DOI: 10.1186/1744-8069-5-61] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/29/2009] [Indexed: 01/16/2023] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is a central nervous system modulator of nociception. In animal models of chronic pain, BDNF exerts its effects on nociceptive processing by binding to the full-length receptor tropomyosin-related kinase B (trkB.FL) and transducing intracellular signaling to produce nocifensive behaviors. In addition to trkB.FL, the trkB locus also produces a widely-expressed alternatively-spliced truncated isoform, trkB.T1. TrkB.T1 binds BDNF with high affinity; however the unique 11 amino acid intracellular cytoplasmic tail lacks the kinase domain of trkB.FL. Recently, trkB.T1 was shown to be specifically up-regulated in a model of HIV-associated neuropathic pain, potentially implicating trkB.T1 as a modulator of nociception. Here, we report that trkB.T1 mRNA and protein is up-regulated in the spinal dorsal horn at times following antiretroviral drug treatment and hind paw inflammation in which nocifensive behaviors develop. While genetic depletion of trkB.T1 did not affect baseline mechanical and thermal thresholds, the absence of trkB.T1 resulted in significant attenuation of inflammation- and antiretroviral-induced nocifensive behaviors. Our results suggest that trkB.T1 up-regulation following antiretroviral treatment and tissue inflammation participates in the development and maintenance of nocifensive behavior and may represent a novel therapeutic target for pain treatment.
Collapse
Affiliation(s)
- Cynthia L Renn
- School of Nursing, University of Maryland, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
22
|
Li F, Li L, Song XY, Zhong JH, Luo XG, Xian CJ, Zhou XF. Preconditioning selective ventral root injury promotes plasticity of ascending sensory neurons in the injured spinal cord of adult rats - possible roles of brain-derived
neurotrophic factor, TrkB and p75 neurotrophin receptor. Eur J Neurosci 2009; 30:1280-96. [DOI: 10.1111/j.1460-9568.2009.06920.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Xian CJ, Zhou XF. Treating skeletal pain: limitations of conventional anti-inflammatory drugs, and anti-neurotrophic factor as a possible alternative. ACTA ACUST UNITED AC 2009; 5:92-8. [DOI: 10.1038/ncprheum0982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 11/05/2008] [Indexed: 11/09/2022]
|
24
|
Zhou LJ, Zhong Y, Ren WJ, Li YY, Zhang T, Liu XG. BDNF induces late-phase LTP of C-fiber evoked field potentials in rat spinal dorsal horn. Exp Neurol 2008; 212:507-14. [DOI: 10.1016/j.expneurol.2008.04.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 04/24/2008] [Accepted: 04/28/2008] [Indexed: 12/30/2022]
|
25
|
Song XY, Li F, Zhang FH, Zhong JH, Zhou XF. Peripherally-derived BDNF promotes regeneration of ascending sensory neurons after spinal cord injury. PLoS One 2008; 3:e1707. [PMID: 18320028 PMCID: PMC2246162 DOI: 10.1371/journal.pone.0001707] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 02/04/2008] [Indexed: 12/12/2022] Open
Abstract
Background The blood brain barrier (BBB) and truncated trkB receptor on astrocytes prevent the penetration of brain derived neurotrophic factor (BDNF) applied into the peripheral (PNS) and central nervous system (CNS) thus restrict its application in the treatment of nervous diseases. As BDNF is anterogradely transported by axons, we propose that peripherally derived and/or applied BDNF may act on the regeneration of central axons of ascending sensory neurons. Methodology/Principal Findings The present study aimed to test the hypothesis by using conditioning lesion of the sciatic nerve as a model to increase the expression of endogenous BDNF in sensory neurons and by injecting exogenous BDNF into the peripheral nerve or tissues. Here we showed that most of regenerating sensory neurons expressed BDNF and p-CREB but not p75NTR. Conditioning-lesion induced regeneration of ascending sensory neuron and the increase in the number of p-Erk positive and GAP-43 positive neurons was blocked by the injection of the BDNF antiserum in the periphery. Enhanced neurite outgrowth of dorsal root ganglia (DRG) neurons in vitro by conditioning lesion was also inhibited by the neutralization with the BDNF antiserum. The delivery of exogenous BDNF into the sciatic nerve or the footpad significantly increased the number of regenerating DRG neurons and regenerating sensory axons in the injured spinal cord. In a contusion injury model, an injection of BDNF into the footpad promoted recovery of motor functions. Conclusions/Significance Our data suggest that endogenous BDNF in DRG and spinal cord is required for the enhanced regeneration of ascending sensory neurons after conditioning lesion of sciatic nerve and peripherally applied BDNF may have therapeutic effects on the spinal cord injury.
Collapse
Affiliation(s)
- Xing-Yun Song
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Fang Li
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Feng-He Zhang
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Jin-Hua Zhong
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Xin-Fu Zhou
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
- *E-mail:
| |
Collapse
|