1
|
Prevost JB, Bossi A, Sciot R, Debiec-Rychter M. Post-irradiation Sarcoma after External Beam Radiation Therapy for Localized Adenocarcinoma of the Prostate. TUMORI JOURNAL 2018; 90:618-21. [PMID: 15762367 DOI: 10.1177/030089160409000615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report a case of postirradiation sarcoma that arose in the right inguinal region 8 years after completion of external beam radiation therapy for a localized adenocarcinoma of the prostate. The patient was treated in 1995 with a “mixed-beams” technique (18 MV photons and 65 MeV fast neutrons). Eight years after the end of treatment, he presented with a radio-induced, high-grade spindle-cell sarcoma. Cytogenetic analysis was performed to confirm the diagnosis. Although the use of external beam radiation therapy for the treatment of prostate cancer has been common practice for decades, postirradiation sarcomas have been reported to be rare sequelae of irradiation and, to our knowledge, only a few of them were cytogenetically investigated.
Collapse
Affiliation(s)
- Jean-Briac Prevost
- Department of Radiation Oncology, University Hospitals Gasthuisberg, Leuven, Belgium
| | | | | | | |
Collapse
|
2
|
Stokkevåg CH, Schneider U, Muren LP, Newhauser W. Radiation-induced cancer risk predictions in proton and heavy ion radiotherapy. Phys Med 2017; 42:259-262. [DOI: 10.1016/j.ejmp.2017.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/01/2017] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
|
3
|
Stokkevåg CH, Fukahori M, Nomiya T, Matsufuji N, Engeseth GM, Hysing LB, Ytre-Hauge KS, Rørvik E, Szostak A, Muren LP. Modelling of organ-specific radiation-induced secondary cancer risks following particle therapy. Radiother Oncol 2016; 120:300-6. [PMID: 27424291 DOI: 10.1016/j.radonc.2016.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 06/20/2016] [Accepted: 07/03/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND PURPOSE Radiation-induced cancer is a serious late effect that may follow radiotherapy. A considerable uncertainty is associated with carcinogenesis from photon-based treatment, and even less established when including relative biological effectiveness (RBE) for particle therapy. The aim of this work was therefore to estimate and in particular explore relative risks (RR) of secondary cancer (SC) following particle therapy as applied in treatment of prostate cancer. MATERIAL AND METHODS RRs of radiation-induced SC in the bladder and rectum were estimated using a bell-shaped dose-response model incorporating RBE and fractionation effects. The risks from volumetric modulated arc therapy (VMAT) were compared to intensity-modulated proton therapy (IMPT) and scanning carbon ions for ten patients. RESULTS The mean estimated RR (95% CI) of SC for VMAT/C-ion was 1.31 (0.65-2.18) for the bladder and 0.58 (0.41-0.80) for the rectum. Corresponding values for VMAT/IMPT were 1.72 (1.06-2.37) and 1.10 (0.78-1.43). The radio-sensitivity parameter α had the strongest influence on the results with decreasing RR for increasing values of α. CONCLUSION Based on the wide spread in RR between patients and variations across the included parameter values, the risk profiles of the rectum and bladder were not dramatically different for the investigated radiotherapy techniques.
Collapse
Affiliation(s)
- Camilla H Stokkevåg
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Physics and Technology, University of Bergen, Norway.
| | - Mai Fukahori
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Takuma Nomiya
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan; Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Naruhiro Matsufuji
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Grete May Engeseth
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Liv B Hysing
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Eivind Rørvik
- Department of Physics and Technology, University of Bergen, Norway
| | - Artur Szostak
- Department of Physics and Technology, University of Bergen, Norway
| | - Ludvig P Muren
- Department of Medical Physics, Aarhus University/Aarhus University Hospital, Denmark
| |
Collapse
|
4
|
Nguyen D, Dong P, Long T, Ruan D, Low DA, Romeijn E, Sheng K. Integral dose investigation of non-coplanar treatment beam geometries in radiotherapy. Med Phys 2013; 41:011905. [DOI: 10.1118/1.4845055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
5
|
Finnberg N, Wambi C, Kennedy AR, El-Deiry WS. The effects of antioxidants on gene expression following gamma-radiation (GR) and proton radiation (PR) in mice in vivo. Cell Cycle 2013; 12:2241-2247. [PMID: 23797590 DOI: 10.4161/cc.25324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ionizing radiation (IR) generates free radicals that interact randomly with a range of intracellular biomolecules that can result in lethal cellular injury. Therefore, IR-inflicted damage is a highly complex interplay of vastly different pathophysiological processes, including inflammation, epithelial regeneration, tissue remodeling, and fibrosis. The development of safe and effective radioprotectors that protect normal tissues following IR exposure is highly desirable. It was previously shown that dietary supplementation with an antioxidant (AOX) diet containing SeM (0.06 μg/g diet), α-lipoic acid (85.7 μg/g diet), NAC (171.4 μg/g diet), sodium ascorbate (142.8 μg/g diet), and vitamin E succinate (71.4μg/ g diet) was an effective countermeasure to lethality in mice following γ-radiation (GR) and proton radiation (PR). ( 1) (,) ( 2) Here we are examining the effect of the AOX diet on global gene expression following RBE-weighted doses of GR (7.0 Gy) and PR (6.4 Gy) in an attempt to gain further insight into the molecular mechanism of action of AOX diet in the context of radiation exposure. The AOX diet altered the expression pattern of several pro- and anti-apoptotic genes. Our data suggest that the AOX diet may alter IL6 signaling following GR and completely block the expression of the prokineticin PROK2, the ligand to the G protein-coupled receptors PROKR1 and PROKR2, which are involved in a number of pathophysiological processes.
Collapse
|
6
|
Fokas E, Kraft G, An H, Engenhart-Cabillic R. Ion beam radiobiology and cancer: time to update ourselves. Biochim Biophys Acta Rev Cancer 2009; 1796:216-29. [PMID: 19682551 DOI: 10.1016/j.bbcan.2009.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/28/2009] [Accepted: 07/31/2009] [Indexed: 12/20/2022]
Abstract
High-energy protons and carbon ions exhibit an inverse dose profile allowing for increased energy deposition with penetration depth. Additionally, heavier ions like carbon beams have the advantage of a markedly increased biological effectiveness characterized by enhanced ionization density in the individual tracks of the heavy particles, where DNA damage becomes clustered and therefore more difficult to repair, but is restricted to the end of their range. These superior biophysical and biological profiles of particle beams over conventional radiotherapy permit more precise dose localization and make them highly attractive for treating anatomically complex and radioresistant malignant tumors but without increasing the severe side effects in the normal tissue. More than half a century since Wilson proposed their use in cancer therapy, the effects of particle beams have been extensively investigated and the biological complexity of particle beam irradiation begins to unfold itself. The goal of this review is to provide an as comprehensive and up-to-date summary as possible of the different radiobiological aspects of particle beams for effective application in cancer treatment.
Collapse
Affiliation(s)
- Emmanouil Fokas
- Department of Radiotherapy and Radiation Oncology, University Hospital Giessen and Marburg, Medical Faculty of Philipps University, Baldingerstrasse, 35043 Marburg, Germany.
| | | | | | | |
Collapse
|
7
|
Tenhumberg S, Gudowska-Nowak E, Nasonova E, Ritter S. Cell cycle arrest and aberration yield in normal human fibroblasts. II: Effects of 11 MeV u−1C ions and 9.9 MeV u−1Ni ions. Int J Radiat Biol 2009; 83:501-13. [PMID: 17613123 DOI: 10.1080/09553000701436802] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate further the relationship between high linear energy transfer (LET) induced cell cycle arrests and the yield of chromosome aberrations observable in normal human fibroblasts at the first post-irradiation mitosis. MATERIALS AND METHODS Normal human fibroblasts (AG01,522C) were exposed in G0/G1 to either 11 MeV u(-1) C ions (LET = 153.5 keV microm(-1)) or 9.9 MeV u(-1) Ni ions (LET = 2,455 keV microm(-1)), subcultured in medium containing 5-Bromo-2'-deoxyuridine (BrdU) and at multiple time-points post-irradiation the yield of chromosomal damage, the mitotic index and the cumulative BrdU-labelling index were determined. Furthermore, a mathematical approach was used to analyse the entire cell population. RESULTS Following high LET exposure normal fibroblasts suffer a transient delay into S-phase and into mitosis as well as a prolonged, probably permanent cell cycle arrest in the initial G0/G1-phase. Cells that reach the first mitosis at early times carried less aberrations than those collected at later times indicating a relationship between cell cycle delay and the number of aberrations. However, with respect to the whole cell population, only a few aberrant fibroblasts are able to progress to the first mitosis. For all endpoints studied the relative biological effectiveness (RBE) of C ions is in the range of 2 - 4, while for Ni ions RBE < 1 is estimated. In contrast, when compared on a per particle basis Ni ions with the higher ionization density were found to be more effective. CONCLUSIONS Detailed analysis of the data demonstrates that the number of fibroblasts at risk for neoplastic transformation is significantly reduced by a chronic cell cycle arrest in the initial G0/G1-phase and, for the first time, the LET-dependence of this effect has been shown.
Collapse
Affiliation(s)
- S Tenhumberg
- Biophysik, Gesellschaft für Schwerionenforschung, Darmstadt, Germany
| | | | | | | |
Collapse
|
8
|
Finnberg N, Wambi C, Ware JH, Kennedy AR, El-Deiry WS. Gamma-radiation (GR) triggers a unique gene expression profile associated with cell death compared to proton radiation (PR) in mice in vivo. Cancer Biol Ther 2008; 7:2023-33. [PMID: 19106632 DOI: 10.4161/cbt.7.12.7417] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Proton radiation (PR) therapy offers a number of potential advantages over conventional (photon) gamma-radiation (GR) therapy for cancer, due to a more localized delivery of the radiation dose. However, the pathophysiological effects following PR-exposure are less well characterized than those of GR-exposure and the molecular changes associated with the acute apoptotic effects in mice in vivo following PR have not been elucidated. Previous studies have estimated the RBE of protons for various in vivo and in vitro endpoints at between 1.1 and 1.3. We assumed an RBE of 1.1 for the endpoints to be evaluated in these studies. Based on this assumption, ICR mice were treated with whole-body doses of GR (1.1 and 7.0 Gy) and PR (1.0 and 6.4 Gy) that were expected to represent RBE-weighted doses. The bone marrow, thymus, spleen and GI-tract were isolated and processed for histology and immunohistochemistry. The apoptotic responses varied greatly between GR and PR in a tissue- and dose-dependent manner. Surprisingly,cell death in the splenic white pulp was consistently lower in PR-treated animals compared to animals treated with GR. This was in spite of an increased presence of damaged DNA following PR as determined by staining for gammaH2AX and phospho-ATM. Interestingly, both PR and GR triggered nuclear accumulation of p53 and no significant differences were found in the majority of the known pro-apoptotic p53-target genes in the spleens of treated mice. However, GR uniquely triggered a pro-apoptotic expression profile including expression of the pro-apoptotic, p53- and interferon stimulated target gene Bcl-G. In contrast to PR, GR may, in a cell type specific manner, trigger a more diverse non-random stress-response that mediates apoptosis partially independent of the extent of DNA damage.
Collapse
Affiliation(s)
- Niklas Finnberg
- Laboratory of Molecular Oncology and Cell Cycle Regulation, The Institute for Translational Medicine and Therapeutics, The Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
While dose escalation is proving important to achieve satisfactory long-term outcomes in prostate cancer, the optimal radiation modality to deliver the treatment is still a topic of debate. Charged particle beams can offer improved dose distributions to the target volume as compared to conventional 3D-conformal radiotherapy, with better sparing of surrounding healthy tissues. Exquisite dose distributions, with the fulfillment of dose-volume constraints to normal tissues, however, can also be achieved with photon-based intensity-modulated techniques. This review summarizes the literature on the use of particle therapy in prostate cancer and attempts to put in perspective its relative merits compared to current photon-based radiotherapy.
Collapse
Affiliation(s)
- C Greco
- Division of Radiation Oncology, University of Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
10
|
Hara T, Kawahara N, Tsuboi K, Shibahara J, Ushiku T, Kirino T. Sarcomatous transformation of clival chordoma after charged-particle radiotherapy. J Neurosurg 2006; 105:136-41. [PMID: 16871889 DOI: 10.3171/jns.2006.105.1.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
✓ Skull base chordomas containing a sarcomatous component are extremely rare. Here the authors report two new cases in which a recurrent tumor with a sarcomatous component appeared after the patient had undergone charged-particle radiotherapy. Histological examinations performed in Case 1 revealed some retention of epithelial features in the sarcomatous component, whereas no such regions were observed in Case 2. Both patients had rapidly deteriorating clinical courses and died within 6 months after diagnosis of the recurrent tumor. The authors discuss the significance of the histological subtypes of these tumors for long-term prognosis and their pathogenetic mechanisms in relation to radiotherapy. Although these sarcomatous transformations are rare in conventional chordomas, a careful histological examination and thorough follow-up imaging studies are crucial when treating patients with such lesions.
Collapse
Affiliation(s)
- Takayuki Hara
- Department of Neurosurgery, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Radiation-induced bystander responses are observed when cells respond to their neighbours being irradiated. Considerable evidence is now available regarding the importance of these responses in cell and tissue models. Most studies have utilized two approaches where either a media-transferable factor has been assessed or cells have been exposed to low fluences of charged particles, where only a few percent are exposed. The development of microbeams has allowed nontargeted responses such as bystander effects to be more carefully analysed. As well as charged particle microbeams, X-ray microprobes have been developed, and several groups are also developing electron microbeams. Using the Gray Cancer Institute soft X-ray microprobe, it has been possible to follow the response of individual cells to targeted low doses of carbon-characteristic soft X-rays. Studies in human fibroblasts have shown evidence of a significant radiation quality-dependent bystander effect, measured as chromosomal damage in the form of micronuclei which is radiation quality dependent. Other studies show that even under conditions when only a single cell is targeted with soft X-rays, significant bystander-mediated cell killing is observed. The observation of bystander responses with low LET radiation suggests that these may be important in understanding radiation risk from background levels of radiation, where cells observe only single electron track traversals. Also, the indirect evidence for these responses in vivo indicates that they may have a role to play in current radiotherapy approaches and future novel strategies involving modulating nontargeted responses.
Collapse
Affiliation(s)
- Kevin M Prise
- Cell & Molecular Biophysics Group, Gray Cancer Institute, PO Box 100, Mount Vernon Hospital, Northwood, Middlesex, UK.
| | | | | |
Collapse
|
12
|
Monobe M, Ando K. Drinking beer reduces radiation-induced chromosome aberrations in human lymphocytes. JOURNAL OF RADIATION RESEARCH 2002; 43:237-245. [PMID: 12518984 DOI: 10.1269/jrr.43.237] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We here investigated and reported the effects of beer drinking on radiation-induced chromosome aberrations in blood lymphocytes. Human blood that was collected either before or after drinking a 700 ml beer was in vitro irradiated with 200 kVp X rays or 50 keV/microm carbon ions. The relation between the radiation dose and the aberration frequencies (fragments and dicentrics) was significantly (p < 0.05) lower for lymphocytes collected 3 h after beer drinking than those before drinking. Fitting the dose response to a linear quadratic model showed that the alpha term of carbon ions was significantly (p < 0.05) decreased by beer drinking. A decrease of dicentric formation was detected as early as 0.5 h after beer drinking, and lasted not shorter than 4.5 h. The mitotic index of lymphocytes was higher after beer drinking than before, indicating that a division delay would not be responsible for the low aberrations induced by beer drinking. An in vitro treatment of normal lymphocytes with 0.1 M ethanol, which corresponded to a concentration of 6-times higher than the maximum ethanol concentration in the blood after beer drinking, reduced the dicentric formation caused by X-ray irradiation, but not by carbonion irradiation. The beer-induced reduction of dicentric formation was not affected by serum. It is concluded that beer could contain non-ethanol elements that reduce the chromosome damage of lymphocytes induced by high-LET radiation.
Collapse
Affiliation(s)
- Manami Monobe
- Graduate School of Science and Technology, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | |
Collapse
|