1
|
Guo M, Li M, Cui F, Ding X, Gao W, Fang X, Chen L, Wang H, Niu P, Ma J. MTBE exposure may increase the risk of insulin resistance in male gas station workers. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:334-343. [PMID: 38168809 DOI: 10.1039/d3em00491k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Insulin resistance is closely related to many metabolic diseases and has become a serious public health problem worldwide. So, it is crucial to find its environmental pathogenic factors. Methyl tert-butyl ether (MTBE), a widely used unleaded gasoline additive, has been proven to affect glycolipid metabolism. However, results from population studies are lacking. For this purpose, the potential relationships between MTBE exposure and the triglyceride glucose (TyG) index, a useful surrogate marker of insulin resistance, were evaluated using a small-scale occupational population. In this study, 201 participants including occupational and non-occupational MTBE exposure workers were recruited from the Occupational Disease Prevention and Control Hospital of Huaibei, and their health examination information and blood samples with informed consent were collected. The internal exposure levels were assessed by detecting blood MTBE using solid-phase-micro-extraction gas chromatography-mass spectrometry. Then the adjusted linear regression model was used to assess the relationship between MTBE exposure and fasting plasma glucose (FPG), or TyG index. Then, receiver-operating-characteristic (ROC) curves were performed to calculate the optimal cut-off points. Multivariable and hierarchical logistic regression models were used to analyze the impact of MTBE exposure on the risk of insulin resistance. Obvious correlations were observed between blood MTBE levels with TyG index (p = 0.016) and FPG (p = 0.001). Further analysis showed that using the mean of the TyG index (8.77) as a cutoff value had a good effect on reflecting the risk of insulin resistance. Multivariable logistic regression analysis also indicated that MTBE exposure was an independent risk factor for a high TyG index (OR = 1.088, p = 0.038), which indicated that MTBE exposure might be a new environmental pathogenic factor leading to insulin resistance, and MTBE exposure might increase the risk of insulin resistance by independently elevating the TyG index in male gas station workers.
Collapse
Affiliation(s)
- Mingxiao Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Mengdi Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Fengtao Cui
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd, Huaibei, Anhui Province, 235000, China
| | - Xinping Ding
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd, Huaibei, Anhui Province, 235000, China
| | - Wei Gao
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd, Huaibei, Anhui Province, 235000, China
| | - Xingqiang Fang
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd, Huaibei, Anhui Province, 235000, China
| | - Li Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Hanyun Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Junxiang Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Chen Y, Ren H, Kong X, Wu H, Lu Z. A multicomponent propane monooxygenase catalyzes the initial degradation of methyl tert-butyl ether in Mycobacterium vaccae JOB5. Appl Environ Microbiol 2023; 89:e0118723. [PMID: 37823642 PMCID: PMC10617536 DOI: 10.1128/aem.01187-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
Methyl tert-butyl ether (MTBE) has been recognized as a groundwater contaminant due to its widespread distribution and potential threat to human health. The limited understanding of the enzymes catalyzing MTBE degradation restricts their application in MTBE bioremediation. In this study, an MTBE-degrading soluble di-iron monooxygenase that clusters phylogenetically with a known propane monooxygenase (PRM) encoded by the prmABCD gene cluster was identified and functionally characterized, revealing their role in MTBE metabolism by Mycobacterium vaccae JOB5. Transcriptome analysis demonstrated that the expression of prmABCD was upregulated when JOB5 was induced by MTBE. Escherichia coli Rosetta heterologously expressing prmABCD from JOB5 could transform MTBE, indicating that the PRM of JOB5 is capable of the initial degradation of MTBE. The loss of the gene encoding the oxygenase α-subunit or β-subunit, the coupling protein, or the reductase disrupted MTBE transformation by the recombinant E. coli Rosetta. In addition, the catalytic capacity of PRM is likely affected by residue G95 in the active site pocket and residues I84, P165, A269, and V270 in the substrate tunnel structure. Mutation of amino acids in the active site and substrate tunnel resulted in inefficiency or inactivation of MTBE degradation, and the activity in 1,4-dioxane (1,4-D) degradation was diminished less than that in MTBE degradation.IMPORTANCEMulticomponent monooxygenases catalyzing the initial hydroxylation of MTBE are important in MTBE biodegradation. Previous studies of MTBE degradation enzymes have focused on P450s, alkane monooxygenase and MTBE monooxygenase, but the vital role of soluble di-iron monooxygenases has rarely been reported. In this study, we deciphered the essential catalytic role of a PRM and revealed the key residues of the PRM in MTBE metabolism. Our findings provide new insight into the MTBE-degrading gene cluster and enzymes in bacteria. This characterization of the PRM associated with MTBE degradation expands our understanding of MTBE-degrading gene diversity and provides a novel candidate enzyme for the bioremediation of MTBE-contaminated sites.
Collapse
Affiliation(s)
- Yiyang Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Li Y, Wang J, Yang Z, Li G, Zhang Z, Zhang D, Sun H. Oxidative stress and DNA damage in earthworms induced by methyl tertiary-butyl ether in natural soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20514-20526. [PMID: 36258110 DOI: 10.1007/s11356-022-23679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Adverse effects of methyl tertiary-butyl ether (MTBE) have been noticed at different trophic levels by international researchers. However, there was unclear evidence about its effects on oxidative stress and DNA damage in earthworms. In this study, earthworms were cultivated in various doses of MTBE (0.0 mg/kg, 10.0 mg/kg, 30.0 mg/kg, and 60.0 mg/kg) contaminated agricultural soil for 7 days, 14 days, 21 days, and 28 days, respectively. The result showed that the reactive oxygen species (ROS) content of earthworms significantly increased in MTBE treatment groups compared to the control group. In MTBE treatment groups, the activities of superoxide dismutase, catalase, peroxidase, and glutathione S-transferase were significantly activated at the exposure of 7 days, which increased by 36.3-78.9%, 51.8-97.3%, 36.5-61.9%, and 12.0-54.8%, respectively. Then, the activities of these defense enzymes showed various changes following the changes in exposure times and MTBE concentrations. Especially in the 60.0 mg kg-1 group, both antioxidant enzymes and GST were still significantly activated at the exposure of 14 days and then significantly inhibited at the exposure of 28 days. The analysis of olive tail moment showed significant DNA damage in the 10.0 mg kg-1 group at the exposure of 28 days, and this damage in 30.0 mg/kg and 60.0 mg/kg groups was found at the exposure of 7 days. This result was consistent with the malondialdehyde accumulation in earthworms. Additionally, the analysis of IBRv2 showed the effects of MTBE treatments on earthworms in dose- and time-dependent manners. This study helps better to understand the effects of MTBE on soil invertebrate animals and provide theoretical support for soil protection in governing MTBE application.
Collapse
Affiliation(s)
- Yanqiang Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China.
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Zhongkang Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Guangde Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Zhongwen Zhang
- Weifang Environmental Science Research & Design Institute, Weifang City, 26104, Shandong Province, China
| | - Dexin Zhang
- Bureau of Agriculture and Rural Affairs of Changle, Changle City, 262400, Shandong Province, China
| | - Hui Sun
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| |
Collapse
|
4
|
Maternal plasma metabolic markers of neonatal adiposity and associated maternal characteristics: The GUSTO study. Sci Rep 2020; 10:9422. [PMID: 32523012 PMCID: PMC7287081 DOI: 10.1038/s41598-020-66026-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/12/2020] [Indexed: 11/23/2022] Open
Abstract
Infant adiposity may be related to later metabolic health. Maternal metabolite profiling reflects both genetic and environmental influences and allows elucidation of metabolic pathways associated with infant adiposity. In this multi-ethnic Asian cohort, we aimed to (i) identify maternal plasma metabolites associated with infant adiposity and other birth outcomes and (ii) investigate the maternal characteristics associated with those metabolites. In 940 mother-offspring pairs, we performed gas chromatography-mass spectrometry and identified 134 metabolites in maternal fasting plasma at 26–28 weeks of gestation. At birth, neonatal triceps and subscapular skinfold thicknesses were measured by trained research personnel, while weight and length measures were abstracted from delivery records. Gestational age was estimated from first-trimester dating ultrasound. Associations were assessed by multivariable linear regression, with p-values corrected using the Benjamini-Hochberg approach. At a false discovery rate of 5%, we observed associations between 28 metabolites and neonatal sum of skinfold thicknesses (13 amino acid-related, 4 non-esterified fatty acids, 6 xenobiotics, and 5 unknown compounds). Few associations were observed with gestational duration, birth weight, or birth length. Maternal ethnicity, pre-pregnancy BMI, and diet quality during pregnancy had the strongest associations with the specific metabolome related to infant adiposity. Further studies are warranted to replicate our findings and to understand the underlying mechanisms.
Collapse
|
5
|
Romanelli L, Evandri MG. Permitted Daily Exposure for Diisopropyl Ether as a Residual Solvent in Pharmaceuticals. Toxicol Res 2018; 34:111-125. [PMID: 29686773 PMCID: PMC5903142 DOI: 10.5487/tr.2018.34.2.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 11/20/2022] Open
Abstract
Solvents can be used in the manufacture of medicinal products provided their residual levels in the final product comply with the acceptable limits based on safety data. At worldwide level, these limits are set by the “Guideline Q3C (R6) on impurities: guideline for residual solvents” issued by the ICH. Diisopropyl ether (DIPE) is a widely used solvent but the possibility of using it in the pharmaceutical manufacture is uncertain because the ICH Q3C guideline includes it in the group of solvents for which “no adequate toxicological data on which to base a Permitted Daily Exposure (PDE) was found”. We performed a risk assessment of DIPE based on available toxicological data, after carefully assessing their reliability using the Klimisch score approach. We found sufficiently reliable studies investigating subchronic, developmental, neurological toxicity and carcinogenicity in rats and genotoxicity in vitro. Recent studies also investigated a wide array of toxic effects of gasoline/DIPE mixtures as compared to gasoline alone, thus allowing identifying the effects of DIPE itself. These data allowed a comprehensive toxicological evaluation of DIPE. The main target organs of DIPE toxicity were liver and kidney. DIPE was not teratogen and had no genotoxic effects, either in vitro or in vivo. However, it appeared to increase the number of malignant tumors in rats. Therefore, DIPE could be considered as a non-genotoxic animal carcinogen and a PDE of 0.98 mg/day was calculated based on the lowest No Observed Effect Level (NOEL) value of 356 mg/m3 (corresponding to 49 mg/kg/day) for maternal toxicity in developmental rat toxicity study. In a worst-case scenario, using an exceedingly high daily dose of 10 g/day, allowed DIPE concentration in pharmaceutical substances would be 98 ppm, which is in the range of concentration limits for ICH Q3C guideline class 2 solvents. This result might be considered for regulatory decisions.
Collapse
Affiliation(s)
- Luca Romanelli
- Department of Physiology and Pharmacology Vittorio Erspamer, University of Rome Sapienza, Rome, Italy
| | | |
Collapse
|
6
|
Xie G, Hong WX, Zhou L, Yang X, Huang H, Wu D, Huang X, Zhu W, Liu J. An investigation of methyl tert‑butyl ether‑induced cytotoxicity and protein profile in Chinese hamster ovary cells. Mol Med Rep 2017; 16:8595-8604. [PMID: 29039499 PMCID: PMC5779912 DOI: 10.3892/mmr.2017.7761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 11/15/2016] [Indexed: 11/23/2022] Open
Abstract
Methyl tert-butyl ether (MTBE) is widely used as an oxygenating agent in gasoline to reduce harmful emissions. However, previous studies have demonstrated that MTBE is a cytotoxic substance that has harmful effects in vivo and in vitro. Although remarkable progress has been made in elucidating the mechanisms underlying the MTBE-induced reproductive toxicological effect in different cell lines, the precise mechanisms remain far from understood. The present study aimed to evaluate whether mammalian ovary cells were sensitive to MTBE exposure in vitro by assessing cell viability, lactate dehydrogenase (LDH) leakage, malondialdehyde (MDA) content and antioxidant enzyme activities. In addition, the effect of MTBE exposure on differential protein expression profiles was examined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. MTBE exposure induced significant effects on cell viability, LDH leakage, plasma membrane damage and the activity of antioxidant enzymes. In the proteomic analysis, 24 proteins were demonstrated to be significantly affected by MTBE exposure. Functional analysis indicated that these proteins were involved in catalytic activity, binding, structural molecule activity, metabolic processes, cellular processes and localization, highlighting the fact that the cytotoxic mechanisms resulting from MTBE exposure are complex and diverse. The altered expression levels of two representative proteins, heat shock protein family A (Hsp70) members 8 and 9, were further confirmed by western blot analysis. The results revealed that MTBE exposure affects protein expression in Chinese hamster ovary cells and that oxidative stress and altered protein levels constitute the mechanisms underlying MTBE-induced cytotoxicity. These findings provided novel insights into the biochemical mechanisms involved in MTBE-induced cytotoxicity in the reproductive system.
Collapse
Affiliation(s)
- Guangshan Xie
- Shenzhen Research Institute of Population and Family Planning, Shenzhen, Guangdong 518040, P.R. China
| | - Wen-Xu Hong
- Shenzhen Research Institute of Population and Family Planning, Shenzhen, Guangdong 518040, P.R. China
| | - Li Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Haiyan Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Desheng Wu
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Xinfeng Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Weiguo Zhu
- Department of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China
| | - Jianjun Liu
- Shenzhen Research Institute of Population and Family Planning, Shenzhen, Guangdong 518040, P.R. China
| |
Collapse
|
7
|
Badr AA, Saadat I, Saadat M. Study of liver function and expression of some detoxification genes in the male rats exposed to methyl-tertiary butyl ether. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2015.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
8
|
Yang J, Wei Q, Peng X, Peng X, Yuan J, Hu D. Relationship between Methyl Tertiary Butyl Ether Exposure and Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study among Petrol Station Attendants in Southern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13100946. [PMID: 27669281 PMCID: PMC5086685 DOI: 10.3390/ijerph13100946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 01/29/2023]
Abstract
Methyl tertiary butyl ether (MTBE)—A well known gasoline additive substituting for lead alkyls—causes lipid disorders and liver dysfunctions in animal models. However, whether MTBE exposure is a risk factor for non-alcoholic fatty liver disease (NAFLD) remains uncertain. We evaluate the possible relationship between MTBE exposure and the prevalence of NAFLD among 71 petrol station attendants in southern China. The personal exposure concentrations of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS. NAFLD was diagnosed by using abdominal ultrasonography according to the guidelines for the diagnosis and treatment of NAFLD suggested by the Chinese Hepatology Association. Demographic and clinical characteristics potentially associated with NAFLD were investigated. Mutivariate logistic regression analysis was applied to measure odds ratios and 95% confidence intervals (CI). The result showed that the total prevalence of NAFLD was 15.49% (11/71) among the study subjects. The average exposure concentrations of MTBE were 292.98 ± 154.90 μg/m3 and 286.64 ± 122.28 μg/m3 in NAFLD and non-NAFLD groups, respectively, and there was no statistically significant difference between them (p > 0.05). After adjusting for age, gender, physical exercise, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), alanine aminotransferase (ALT), white blood cell (WBC), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), the odds ratios were 1.31 (95% CI: 0.85–1.54; p > 0.05), 1.14 (95% CI: 0.81–1.32; p > 0.05), 1.52 (95% CI: 0.93–1.61; p > 0.05) in the groups (including men and women) with exposure concentrations of MTBE of 100–200 μg/m3, 200–300 μg/m3, and ≥300 μg/m3, respectively, as compared to the group (including men and women) ≤100 μg/m3. Our investigation indicates that exposure to MTBE does not seem to be a significant risk factor for the prevalence of NAFLD among petrol station attendants in southern China.
Collapse
Affiliation(s)
- Jianping Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China.
- Department of Occupational Health, Baoan Center for Disease Control and Prevention of Shenzhen, Shenzhen 518100, China.
| | - Qinzhi Wei
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Xiaochun Peng
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China.
| | - Xiaowu Peng
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China.
| | - Jianhui Yuan
- Department of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Dalin Hu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
9
|
Badr AA, Saadat M. Expression Levels of Some Detoxification Genes in Liver and Testis of Rats Exposed to a Single Dose of Methyl-Tertiary Butyl Ether. Open Access Maced J Med Sci 2016; 4:232-5. [PMID: 27335592 PMCID: PMC4908737 DOI: 10.3889/oamjms.2016.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 04/29/2016] [Accepted: 04/30/2016] [Indexed: 12/21/2022] Open
Abstract
AIM Methyl-tertiary-butyl ether (MTBE), a well-known gasoline oxygenate compound, is still used in several countries. Several studies investigated the effects of MTBE on the activity of phase II metabolism enzymes. There is no published data on the effect(s) of short-term exposure to MTBE on mRNA levels of antioxidant genes. Therefore, the present study was carried out. METHODS A total of 15 adults male Wistar rats were randomly divided into five equal experimental groups. They received a single dose of 0, 400, 800 and 1600 mg/Kg MTBE in peanut oil by gavages. The final group received no MTBE and peanut oil. After 24 hr animals were slaughtered then livers and testis were removed to extract the total RNA. Real-time PCR was done to detect the gene expressions of glutathione S-transferase family (Gstt1, Gstm1, and Gstp1). RESULTS The mRNAs levels of the examined genes neither in liver nor in testis showed a significant difference between the exposed groups and control rats. CONCLUSIONS The present data revealed that exposure to a single dose of MTBE has no significant effect on the mRNA levels of the Gstt1, Gstm1, and Gstp1 genes.
Collapse
Affiliation(s)
- Ahmad Ali Badr
- Department of Biology, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Mostafa Saadat
- Department of Biology, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| |
Collapse
|
10
|
Health Risk Assessment for Inhalation Exposure to Methyl Tertiary Butyl Ether at Petrol Stations in Southern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:204. [PMID: 26861375 PMCID: PMC4772224 DOI: 10.3390/ijerph13020204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/01/2016] [Indexed: 11/16/2022]
Abstract
Methyl tertiary butyl ether (MTBE), a well known gasoline additive, is used in China nationwide to enhance the octane number of gasoline and reduce harmful exhaust emissions, yet little is known regarding the potential health risk associated with occupational exposure to MTBE in petrol stations. In this study, 97 petrol station attendants (PSAs) in southern China were recruited for an assessment of the health risk associated with inhalation exposure to MTBE. The personal exposure levels of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS, and the demographic characteristics of the PSAs were investigated. Cancer and non-cancer risks were calculated with the methods recommended by the United States Environmental Protection Agency. The results showed that the exposure levels of MTBE in operating workers were much higher than among support staff (p < 0.01) and both were lower than 50 ppm (an occupational threshold limit value). The calculated cancer risks (CRs) at the investigated petrol stations was 0.170 to 0.240 per 106 for operating workers, and 0.026 to 0.049 per 106 for support staff, which are below the typical target range for risk management of 1 × 10−6 to 1 × 10−4; The hazard quotients (HQs) for all subjects were <1. In conclusion, our study indicates that the MTBE exposure of PSAs in southern China is in a low range which does not seem to be a significant health risk.
Collapse
|
11
|
Use of Methyl Tert-Butyl Ether for the Treatment of Refractory Intrahepatic Biliary Strictures and Bile Casts: A Modern Perspective. Case Rep Surg 2015; 2015:408175. [PMID: 26236535 PMCID: PMC4508463 DOI: 10.1155/2015/408175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 01/05/2023] Open
Abstract
Cholelithiasis is a prevalent problem in the United States with 14% or more adults affected. Definitive treatment of cholelithiasis is cholecystectomy. When cholecystectomy yields minimal resolution treatment options include expectant management of asymptomatic gallstones or endoscopic retrograde cholangiopancreatogram. We present a case of intrahepatic biliary casts where surgical option was not possible, interventional radiology was unsuccessful, and methyl tert-butyl ether was used to dissolve the biliary obstruction. Dissolution therapy of gallstones was first reported in 1722 when Vollisnieri used turpentine in vitro. While diethyl ether has excellent solubilizing capacity, its low boiling point limited its use surgically as it vaporizes immediately. Diethyl ether can expand 120-fold during warming to body temperature after injection into the biliary system making it impractical for routine use. The use of dissolution is out of favor due to the success of laparoscopic cholecystectomy. Epidemiological studies have shown the general population should have minimal concerns from passive exposure. Dissolution using MTBE remains a viable option if surgical or endoscopic options are not available. However, because of risks involved to both the patient and the staff, careful multidisciplinary team approach must be undertaken to minimize the risks and provide the best possible care to the patient.
Collapse
|
12
|
Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res 2014; 55:1553-95. [PMID: 24838141 DOI: 10.1194/jlr.r049437] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Indexed: 12/12/2022] Open
Abstract
During the last 80 years there have been extraordinary advances in our knowledge of the chemistry and biology of bile acids. We present here a brief history of the major achievements as we perceive them. Bernal, a physicist, determined the X-ray structure of cholesterol crystals, and his data together with the vast chemical studies of Wieland and Windaus enabled the correct structure of the steroid nucleus to be deduced. Today, C24 and C27 bile acids together with C27 bile alcohols constitute most of the bile acid "family". Patterns of bile acid hydroxylation and conjugation are summarized. Bile acid measurement encompasses the techniques of GC, HPLC, and MS, as well as enzymatic, bioluminescent, and competitive binding methods. The enterohepatic circulation of bile acids results from vectorial transport of bile acids by the ileal enterocyte and hepatocyte; the key transporters have been cloned. Bile acids are amphipathic, self-associate in solution, and form mixed micelles with polar lipids, phosphatidylcholine in bile, and fatty acids in intestinal content during triglyceride digestion. The rise and decline of dissolution of cholesterol gallstones by the ingestion of 3,7-dihydroxy bile acids is chronicled. Scientists from throughout the world have contributed to these achievements.
Collapse
Affiliation(s)
- Alan F Hofmann
- Department of Medicine, University of California, San Diego, San Diego, CA
| | - Lee R Hagey
- Department of Medicine, University of California, San Diego, San Diego, CA
| |
Collapse
|
13
|
Di Palma TM, Bende A. Vacuum ultraviolet photoionization and ab initio Investigations of methyl tert-butyl ether (MTBE) clusters and MTBE–water clusters. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
|
15
|
Bonventre JA, White LA, Cooper KR. Methyl tert butyl ether targets developing vasculature in zebrafish (Danio rerio) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:29-40. [PMID: 21684239 PMCID: PMC4378653 DOI: 10.1016/j.aquatox.2011.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/28/2011] [Accepted: 05/07/2011] [Indexed: 05/11/2023]
Abstract
Disruption of vascular endothelial growth factor (VEGF) signaling during early development results in abnormal angiogenesis and increased vascular lesions. Embryonic exposure to 0.625-10mM methyl tert butyl ether (MTBE), a highly water soluble gasoline additive, resulted in a dose dependent increase in pooled blood in the common cardinal vein (CCV), cranial hemorrhages and abnormal intersegmental vessels (ISVs). The EC50s for the lesions ranked in terms of likelihood to occur with MTBE exposure were: pooled blood in the CCV, 3.2 mM [95% CI: 2.2-4.7]>cranial hemorrhage, 11 mM [5.9-20.5]>abnormal ISV, 14.5 mM [6.5-32.4]. Organ systems other than the vascular system appear to develop normally, which suggests MTBE toxicity targets developing blood vessels. Equal molar concentrations (0.625-10mM) of the primary metabolites, tertiary butyl alcohol (TBA) and formaldehyde, did not result in vascular lesions, which suggested that the parent compound is responsible for the toxicity. Stage specific exposures were carried out to determine the developmental period most sensitive to MTBE vascular disruption. Embryos treated until 6-somites or treated after Prim-5 stages did not exhibit a significant increase in lesions, while embryos treated between 6-somites and Prim-5 had a significant increase in vascular lesions (p≤0.05). During the critical window for MTBE-induced vascular toxicity, expression of vegfa, vegfc, and flk1/kdr were significantly decreased 50, 70 and 40%, respectively. This is the first study to characterize disruption in vascular development following embryonic exposure to MTBE. The unique specificity of MTBE to disrupt angiogenesis may be mediated by the down regulation of critical genes in the VEGF pathway.
Collapse
Affiliation(s)
| | - Lori A. White
- Rutgers University - Department of Biochemistry and Microbiology
| | - Keith R. Cooper
- Rutgers University - Department of Biochemistry and Microbiology
- Corresponding Author Contact Information: 76 Lipman Drive, New Brunswick, NJ 08901, , Phone: (732) 932-9763, Fax: (732) 932-8965
| |
Collapse
|
16
|
Pannier A, Oehm C, Fischer AR, Werner P, Soltmann U, Böttcher H. Biodegradation of fuel oxygenates by sol–gel immobilized bacteria Aquincola tertiaricarbonis L108. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Westphal G, Krahl J, Brüning T, Hallier E, Bünger J. Ether oxygenate additives in gasoline reduce toxicity of exhausts. Toxicology 2010; 268:198-203. [DOI: 10.1016/j.tox.2009.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/14/2009] [Accepted: 12/15/2009] [Indexed: 11/28/2022]
|
18
|
Sgambato A, Iavicoli I, De Paola B, Bianchino G, Boninsegna A, Bergamaschi A, Pietroiusti A, Cittadini A. Differential toxic effects of methyl tertiary butyl ether and tert-butanol on rat fibroblasts in vitro. Toxicol Ind Health 2009; 25:141-51. [DOI: 10.1177/0748233709104867] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methyl tertiary butyl ether (MTBE) is the most widely used motor vehicle fuel oxygenate since it reduces harmful emissions due to gasoline combustion. However, the significant increase in its use in recent years has raised new questions related to its potential toxicity. In fact, although available data are somehow conflicting, there is evidence that MTBE is a toxic substance that may have harmful effects on both animals and humans and an unresolved problem is the role played by MTBE metabolites, especially tertiary butyl alcohol (TBA), in determining toxic effects due to MTBE exposure. In this study, the toxic effects of MTBE have been analyzed on a normal diploid rat fibroblast cell line (Rat-1) and compared to the effects of TBA. The results obtained suggest that both MTBE and TBA inhibit cell growth in vitro but with different mechanisms in terms of effects on the cell cycle progression and on the modulation of cell cycle regulatory proteins. In fact, MTBE caused an accumulation of cells in the S-phase of the cell cycle, whereas TBA caused an accumulation in the G0/G1-phase with different effects on the expression of cyclin D1, p27Kip1, and p53. Moreover, both MTBE and TBA were also shown to induce DNA damage, as assessed in terms of oxidative DNA damage and nuclear DNA fragmentation, that appeared to be susceptible of repair by the cell DNA-repair machinery. In conclusion, these findings suggest that both MTBE and TBA can exert, by acting through different molecular mechanisms, important biological effects on fibroblasts in vitro. Further studies are warranted to shed light on the mechanisms responsible for the observed effects and on their potential significance for the in-vivo exposure.
Collapse
Affiliation(s)
- A Sgambato
- Institute of General Pathology, “Giovanni XXIII” Cancer Research Center, Catholic University of Sacred Heart, Rome, Italy; Laboratory of Molecular Oncology, Centro di Riferimento Oncologico Regionale della Basilicata (CROB), Istituto di Ricovero e Cura a Carattere Scientifico, Rionero in Vulture, Potenza
| | - I Iavicoli
- Institute of Occupational Medicine, Catholic University of Sacred Heart, Rome, Italy
| | - B De Paola
- Institute of General Pathology, “Giovanni XXIII” Cancer Research Center, Catholic University of Sacred Heart, Rome, Italy
| | - G Bianchino
- Institute of General Pathology, “Giovanni XXIII” Cancer Research Center, Catholic University of Sacred Heart, Rome, Italy; Laboratory of Molecular Oncology, Centro di Riferimento Oncologico Regionale della Basilicata (CROB), Istituto di Ricovero e Cura a Carattere Scientifico, Rionero in Vulture, Potenza
| | - A Boninsegna
- Institute of General Pathology, “Giovanni XXIII” Cancer Research Center, Catholic University of Sacred Heart, Rome, Italy
| | - A Bergamaschi
- Institute of Occupational Medicine, Catholic University of Sacred Heart, Rome, Italy
| | - A Pietroiusti
- Department of Biopathology/Occupational Medicine, Tor Vergata University, Rome, Italy
| | - A Cittadini
- Institute of General Pathology, “Giovanni XXIII” Cancer Research Center, Catholic University of Sacred Heart, Rome, Italy; Laboratory of Molecular Oncology, Centro di Riferimento Oncologico Regionale della Basilicata (CROB), Istituto di Ricovero e Cura a Carattere Scientifico, Rionero in Vulture, Potenza
| |
Collapse
|