1
|
Mo BT, Guo H, Li GC, Cao LL, Gong XL, Huang LQ, Wang CZ. Discovery of Insect Attractants Based on the Functional Analyses of Female-Biased Odorant Receptors and Their Orthologs in Two Closely Related Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19408-19421. [PMID: 38039319 DOI: 10.1021/acs.jafc.3c05368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Olfaction plays an instrumental role in host plant selection by phytophagous insects. Helicoverpa assulta and Helicoverpa armigera are two closely related moth species with different host plant ranges. In this study, we first comparatively analyzed the function of 11 female-biased odorant receptors (ORs) and their orthologs in the two species by the Drosophila T1 neuron expression system and then examined the electroantennography responses of the two species to the most effective OR ligands. Behavioral assays using a Y-tube olfactometer indicate that guaiene, the primary ligand of HassOR21-2 and HarmOR21-2, only attracts the females, while benzyl acetone, the main ligand of HassOR35 and HarmOR35, attracts both sexes of the two species. Oviposition preference experiments further confirm that guaiene and benzyl acetone are potent oviposition attractants for the mated females of both species. These findings deepen our understanding of the olfactory coding mechanisms of host plant selection in herbivorous insects and provide valuable attractants for managing pest populations.
Collapse
Affiliation(s)
- Bao-Tong Mo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin-Lin Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin-Lin Gong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Cao S, Shi C, Wang B, Xiu P, Wang Y, Liu Y, Wang G. Evolutionary shifts in pheromone receptors contribute to speciation in four Helicoverpa species. Cell Mol Life Sci 2023; 80:199. [PMID: 37421463 PMCID: PMC11072504 DOI: 10.1007/s00018-023-04837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023]
Abstract
Male moths utilize their pheromone communication systems to distinguish potential mates from other sympatric species, which contributes to maintaining reproductive isolation and even drives speciation. The molecular mechanisms underlying the evolution of pheromone communication systems are usually studied between closely-related moth species for their similar but divergent traits associated with pheromone production, detection, and/or processing. In this study, we first identified the functional differentiation in two orthologous pheromone receptors, OR14b, and OR16, in four Helicoverpa species, Helicoverpa armigera, H. assulta, H. zea, and H. gelotopoeon. To understand the substrate response specificity of these two PRs, we performed all-atom molecular dynamics simulations of OR14b and OR16 based on AlphaFold2 structural prediction, and molecular docking, allowing us to predict a few key amino acids involved in substrate binding. These candidate residues were further tested and validated by site-directed mutagenesis and functional analysis. These results together identified two hydrophobic amino acids at positions 164 and 232 are the determinants of the response specificity of HarmOR14b and HzeaOR14b to Z9-14:Ald and Z9-16:Ald by directly interacting with the substrates. Interestingly, in OR16 orthologs, we found that position 66 alone determines the specific binding of Z11-16:OH, likely via allosteric interactions. Overall, we have developed an effective integrated method to identify the critical residues for substrate selectivity of ORs and elucidated the molecular mechanism of the diversification of pheromone recognition systems.
Collapse
Affiliation(s)
- Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Chen Shi
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Provincial International Science and Technology Cooperation Base On Engineering Biology, International Campus of Zhejiang University, Haining, 314499, China.
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
3
|
Tian L, Wang X, Wang Y, Gu X, Li X, An S, Yin X, Bai S. Rearing Host Dependency of Ovariole Number and Body Size in Campoletis chlorideae Uchida (Hymenoptera: Ichneumonidae). INSECTS 2023; 14:insects14050483. [PMID: 37233111 DOI: 10.3390/insects14050483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Campoletis chlorideae has great biocontrol potential against some major noctuid pests. In order to achieve the commercial development and utilization of C. chlorideae, this study focused on the effect of rearing host species and larval instars on the ovariole number and body size of this wasp. Firstly, the morphology of the reproductive system and ovarioles of female wasps were observed. The number of ovarioles displayed great variability and asymmetry between bilateral ovaries. Moreover, the effect of four host species on ovariole number and body size of C. chlorideae were studied. The wasps had a larger ovariole number and body size when reared in Helicoverpa armigera. Additionally, the ovariole number and body size were larger when reared in the third instar larvae than in the first or second instar larvae of H. armigera. There was a strong positive correlation between the ovariole number and body size of C. chlorideae. The ovariole number and body size of the wasp could be improved under optimized artificial rearing conditions. According to these results, body size combined with ovariole number can be used as an important index to evaluate the quality of C. chlorideae. This study provides important clues for the development and application of biocontrol using C. chlorideae.
Collapse
Affiliation(s)
- Liangheng Tian
- Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiongya Wang
- Institute of Biology Co., Ltd., Henan Academy of Sciences, Zhengzhou 450008, China
| | - Yu Wang
- Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaohang Gu
- Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xin Li
- Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiheng An
- Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Sufen Bai
- Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
4
|
The Genetic Basis of Gene Expression Divergence in Antennae of Two Closely Related Moth Species, Helicoverpa armigera and Helicoverpa assulta. Int J Mol Sci 2022; 23:ijms231710050. [PMID: 36077444 PMCID: PMC9456569 DOI: 10.3390/ijms231710050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The closely related species Helicoverpa armigera (H. armigera) and Helicoverpa assulta (H. assulta) have different host plant ranges and share two principal components of sex pheromones but with reversed ratios. The antennae are the main olfactory organ of insects and play a crucial role in host plant selection and mate seeking. However, the genetic basis for gene expression divergence in the antennae of the two species is unclear. We performed an allele-specific expression (ASE) analysis in the antennal transcriptomes of the two species and their F1 hybrids, examining the connection between gene expression divergence and phenotypic differences. The results show that the proportion of genes classified as all cis was higher than that of all trans in males and reversed in females. The contribution of regulatory patterns to gene expression divergence in males was less than that in females, which explained the functional differentiation of male and female antennae. Among the five groups of F1 hybrids, the fertile males from the cross of H. armigera female and H. assulta male had the lowest proportion of misexpressed genes, and the inferred regulatory patterns were more accurate. By using this group of F1 hybrids, we discovered that cis-related regulations play a crucial role in gene expression divergence of sex pheromone perception-related proteins. These results are helpful for understanding how specific changes in the gene expression of olfactory-related genes can contribute to rapid evolutionary changes in important olfactory traits in closely related moths.
Collapse
|
5
|
Rios DA, Specht A, Roque-Specht VF, Sosa-Gómez DR, Fochezato J, Malaquias JV, Gonçalves GL, Moreira GR. Helicoverpa armigera and Helicoverpa zea hybridization: constraints, heterosis, and implications for pest management. PEST MANAGEMENT SCIENCE 2022; 78:955-964. [PMID: 34729903 DOI: 10.1002/ps.6705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The invasion of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) into the New World has made it possible for this pest to hybridize with a native American species, H. zea (Boddie), under natural conditions. We investigated the viability and development of hybrids of these two Helicoverpa species. We reared the parental species and evaluated crosses between H. armigera males and H. zea females and vice versa, two intercrosses between hybrids, and eight backcrosses between hybrids and parental species. We estimated the length of immature stages, fecundity, survival, sex ratio, and heterosis. RESULTS Although hybridization occcurred, with heterosis during the development of immatures, reproductive incompatibilities also were observed between the parental species and between hybrids from subsequent crosses. The interspecific crosses between hybrids and backcrosses confirmed the possibility of introgression events and their perpetuation in field populations. The results indicate that hybridization events are favored at high population levels, while at low population levels the 'species identities' will be maintained. CONCLUSIONS The possibility of interspecific gene flow and its perpetuation through successive crosses and backcrosses suggests several recommenations for management. Populations of both species should be maintained at an equilibrium level to reduce the chance of interspecific crosses, which are presumably more likely to occur during pest outbreaks. The existence of hybridization and resistance to different active pesticide ingredients should be monitored. All practices related to managing the resistance of these pests to chemical and biological insecticides should be systematized to reduce the chance of selecting for resistant individuals.
Collapse
Affiliation(s)
- Danielly Am Rios
- Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, Brazil
| | | | | | | | - Júlia Fochezato
- Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Gislene L Gonçalves
- Departamento de Recursos Ambientales, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica, Chile
| | - Gilson Rp Moreira
- Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
6
|
Wang XY, Cai DZ, Li X, Bai SF, Yan FM. Identification and Physicochemical Properties of the Novel Hemolysin(s) From Oral Secretions of Helicoverpa armigera (Lepidoptera: Noctuidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:12. [PMID: 34750634 PMCID: PMC8575691 DOI: 10.1093/jisesa/ieab082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Hemolysins cause the lysis of invading organisms, representing major humoral immunity used by invertebrates. Hemolysins have been discovered in hemolymph of Helicoverpa armigera larvae as immune factors. As oral immunity is great important to clear general pathogens, we presumed that hemolysins may be present in oral secretions (OS). To confirm this hypothesis, we conducted four testing methods to identify hemolysin(s) in larval OS of H. armigera, and analyzed physicochemical properties of the hemolysin in comparison with hemolytic melittin of Apis mellifera (L.) (Hymenoptera: Apidae) venom. We found hemolysin(s) from OS of H. armigera for the first time, and further identified in other lepidopteran herbivores. It could be precipitated by ammonium sulfate, which demonstrates that the hemolytic factor is proteinaceous. Labial gland showed significantly higher hemolytic activity than gut tissues, suggesting that hemolysin of OS is mainly derived from saliva secreted by labial glands. Physicochemical properties of hemolysin in caterpillar's OS were different from bee venom. It was noteworthy that hemolytic activity of OS was only partially inhibited even at 100°C. Hemolytic activity of OS was not inhibited by nine tested carbohydrates contrary to bee venom melittin. Moreover, effects of metal ions on hemolytic activity were different between OS and bee venom. We conclude that there is at least a novel hemolysin in OS of herbivorous insects with proposed antibacterial function, and its hemolytic mechanism may be different from melittin. Our study enriches understanding of the potential role of hemolysins in insect immunity and provides useful data to the field of herbivorous insect-pathogen research.
Collapse
Affiliation(s)
- Xiong-Ya Wang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Dong-Zhang Cai
- Department of Conservation of Natural Resources, National Nature Reserve Administration of Henan Jigongshan Mountain, Xinyang, Henan, 464000, China
| | - Xin Li
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Su-Fen Bai
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Feng-Ming Yan
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| |
Collapse
|
7
|
Sun L, Hou W, Zhang J, Dang Y, Yang Q, Zhao X, Ma Y, Tang Q. Plant Metabolites Drive Different Responses in Caterpillars of Two Closely Related Helicoverpa Species. Front Physiol 2021; 12:662978. [PMID: 33967833 PMCID: PMC8098809 DOI: 10.3389/fphys.2021.662978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
The host acceptances of insects can be determined largely by detecting plant metabolites using insect taste. In the present study, we investigated the gustatory sensitivity and feeding behaviors of two closely related caterpillars, the generalist Helicoverpa armigera (Hübner) and the specialist H. assulta (Guenée), to different plant metabolites by using the single sensillum recording technique and the dual-choice assay, aiming to explore the contribution of plant metabolites to the difference of diet breadth between the two species. The results depicted that the feeding patterns of caterpillars for both plant primary and secondary metabolites were significantly different between the two Helicoverpa species. Fructose, glucose, and proline stimulated feedings of the specialist H. assulta, while glucose and proline had no significant effect on the generalist H. armigera. Gossypol and tomatine, the secondary metabolites of host plants of the generalist H. armigera, elicited appetitive feedings of this insect species but drove aversive feedings of H. assulta. Nicotine and capsaicin elicited appetitive feedings of H. assulta, but drove aversive feedings of H. armigera. For the response of gustatory receptor neurons (GRNs) in the maxillary styloconic sensilla of caterpillars, each of the investigated primary metabolites induced similar responding patterns between the two Helicoverpa species. However, four secondary metabolites elicited different responding patterns of GRNs in the two species, which is consistent with the difference of feeding preferences to these compounds. In summary, our results of caterpillars’ performance to the plant metabolites could reflect the difference of diet breadth between the two Helicoverpa species. To our knowledge, this is the first report showing that plant secondary metabolites could drive appetitive feedings in a generalist insect species, which gives new insights of underscoring the adaptation mechanism of herbivores to host plants.
Collapse
Affiliation(s)
- Longlong Sun
- The Institute of Chemical Ecology and College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wenhua Hou
- The Institute of Chemical Ecology and College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jiajia Zhang
- The Institute of Chemical Ecology and College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuli Dang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Qiuyun Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xincheng Zhao
- The Institute of Chemical Ecology and College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ying Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Qingbo Tang
- The Institute of Chemical Ecology and College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
8
|
Zhu J, Tian K, Reilly CA, Qiu X. Capsaicinoid metabolism by the generalist Helicoverpa armigera and specialist H. assulta: Species and tissue differences. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:164-174. [PMID: 31973854 DOI: 10.1016/j.pestbp.2019.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/17/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Helicoverpa armigera and H. assulta are two of the few insects that can feed on hot pepper fruits. Capsaicin and dihydrocapsaicin (i.e., capsaicinoids) are the principal pungent compounds in hot peppers. To explore possible molecular mechanisms of adaptation that allow these two species to consume capsaicinoids, the capacity of the three detoxification tissues (fat body, midgut, and Malpighian tubule) of the two pests, to metabolically degrade capsaicin and dihydrocapsaicin, was compared. The results showed that capsaicin and dihydrocapsaicin were metabolized by crude enzyme preparations from all three tissues of the two pests. Five metabolites of capsaicin, and five metabolites of dihydrocapsaicin were identified. Tissue and species differences in the degree of capsaicin and dihydrocapsaicin metabolism were observed. The specialist H. assulta had an overall greater capacity to degrade the capsaicinoids compared to the generalist H. armigera. Further, the midgut was the most significant contributor to capsaicinoid metabolism. The notably high specific activity in Malpighian tubules of H. armigera also further highlights the significance of this organ in xenobiotic detoxification. Alkyl hydroxylation and dehydrogenation were the main pathways for the oxidative biotransformation of both capsaicin and dihydrocapsaicin by cytochrome P450s. This study provides evidence that enhanced metabolic decomposition of capsaicinoids may be an adaptation explaining dietary preferences for Capsicum fruits by these two pests.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
9
|
A two-step DNA barcoding approach for delimiting moth species: moths of Dongling Mountain (Beijing, China) as a case study. Sci Rep 2018; 8:14256. [PMID: 30250036 PMCID: PMC6155206 DOI: 10.1038/s41598-018-32123-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/05/2018] [Indexed: 01/24/2023] Open
Abstract
DNA barcoding, based on a fragment of cytochrome c oxidase I (COI) mtDNA, is as an effective molecular tool for identification, discovery, and biodiversity assessment for most animals. However, multiple gene markers coupled with more sophisticated analytical approaches may be necessary to clarify species boundaries in cases of cryptic diversity or morphological plasticity. Using 339 moths collected from mountains surrounding Beijing, China, we tested a pipeline consisting of two steps: (1) rapid morphospecies sorting and screening of the investigated fauna with standard COI barcoding approaches; (2) additional analyses with multiple molecular markers for those specimens whose morphospecies and COI barcode grouping were incongruent. In step 1, 124 morphospecies were delimited into 116 barcode units, with 90% of the conflicts being associated with specimens identified to the genus Hypena. In step 2, 55 individuals representing all 12 Hypena morphospecies were analysed using COI, COII, 28S, EF-1a, Wgl sequences or their combinations with the BPP (Bayesian Phylogenetics and Phylogeography) multigene species delimitation method. The multigene analyses supported the delimitation of 5 species, consistent with the COI analysis. We conclude that a two-step barcoding analysis pipeline is able to rapidly characterize insect biodiversity and help to elucidate species boundaries for taxonomic complexes without jeopardizing overall project efficiency by substantially increasing analytical costs.
Collapse
|
10
|
Cui WC, Wang B, Guo MB, Liu Y, Jacquin-Joly E, Yan SC, Wang GR. A receptor-neuron correlate for the detection of attractive plant volatiles in Helicoverpa assulta (Lepidoptera: Noctuidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 97:31-39. [PMID: 29698698 DOI: 10.1016/j.ibmb.2018.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/01/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Plant volatiles are vital cues in the location of hosts for feeding and oviposition for Lepidoptera moths. The noctuid Helicoverpa assulta is a typical polyphagous moth, regarded as a good model for studying the olfactory reception of plant volatiles. In this study, four full-length genes encoding odorant receptors HassOR24, HassOR40, HassOR41, and HassOR55 expressed in antenna in H. assulta were functionally characterized. The highly expressed HassOR40 was narrowly tuned to a few structurally-related plant volatiles: geranyl acetate, geraniol and nerolidol. By systematically analyzing responses of single neuron in both trichoid sensilla and basiconic sensilla using single sensillum recording, the specific neuron B in one type of short trichoid sensilla was found to be mainly activated by the same chemicals as HassOR40 with high sensitivity, and with no significant difference between male and female neurons. Thus, a clear "receptor-neuron" relationship in H. assulta was demonstrated here, suggesting that HassOR40/HassOrco are expressed in neuron B of short trichoid sensilla. The active tobacco volatile nerolidol, recognized by this receptor-neuron line, elicits significant behavioral attraction of both sexes in H. assulta adults. The results indicate that we identified a receptor-neuron route for the peripheral coding of a behaviorally relevant host volatile in H. assulta.
Collapse
Affiliation(s)
- Wei-Chan Cui
- College of Forestry, Northeast Forestry University, 150040 Harbin, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Meng-Bo Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | | | - Shan-Chun Yan
- College of Forestry, Northeast Forestry University, 150040 Harbin, China.
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China.
| |
Collapse
|
11
|
Jasso-Martínez JM, Machkour-M’Rabet S, Vila R, Rodríguez-Arnaiz R, Castañeda-Sortibrán AN. Molecular evidence of hybridization in sympatric populations of the Enantia jethys complex (Lepidoptera: Pieridae). PLoS One 2018; 13:e0197116. [PMID: 29771959 PMCID: PMC5957354 DOI: 10.1371/journal.pone.0197116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/26/2018] [Indexed: 11/19/2022] Open
Abstract
Hybridization events are frequently demonstrated in natural butterfly populations. One interesting butterfly complex species is the Enantia jethys complex that has been studied for over a century; many debates exist regarding the species composition of this complex. Currently, three species that live sympatrically in the Gulf slope of Mexico (Enantia jethys, E. mazai, and E. albania) are recognized in this complex (based on morphological and molecular studies). Where these species live in sympatry, some cases of interspecific mating have been observed, suggesting hybridization events. Considering this, we employed a multilocus approach (analyses of mitochondrial and nuclear sequences: COI, RpS5, and Wg; and nuclear dominant markers: inter-simple sequence repeat (ISSRs) to study hybridization in sympatric populations from Veracruz, Mexico. Genetic diversity parameters were determined for all molecular markers, and species identification was assessed by different methods such as analyses of molecular variance (AMOVA), clustering, principal coordinate analysis (PCoA), gene flow, and PhiPT parameters. ISSR molecular markers were used for a more profound study of hybridization process. Although species of the Enantia jethys complex have a low dispersal capacity, we observed high genetic diversity, probably reflecting a high density of individuals locally. ISSR markers provided evidence of a contemporary hybridization process, detecting a high number of hybrids (from 17% to 53%) with significant differences in genetic diversity. Furthermore, a directional pattern of hybridization was observed from E. albania to other species. Phylogenetic study through DNA sequencing confirmed the existence of three clades corresponding to the three species previously recognized by morphological and molecular studies. This study underlines the importance of assessing hybridization in evolutionary studies, by tracing the lineage separation process that leads to the origin of new species. Our research demonstrates that hybridization processes have a high occurrence in natural populations.
Collapse
Affiliation(s)
- Jovana M. Jasso-Martínez
- Laboratorio de Genética y Evolución, Departamento de Biología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Salima Machkour-M’Rabet
- Laboratorio de Ecología Molecular y Conservación, Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Chetumal, Quintana Roo, Mexico
- * E-mail: (ANCS); (SMM)
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Rosario Rodríguez-Arnaiz
- Laboratorio de Genética y Evolución, Departamento de Biología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - América Nitxin Castañeda-Sortibrán
- Laboratorio de Genética y Evolución, Departamento de Biología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- * E-mail: (ANCS); (SMM)
| |
Collapse
|
12
|
Wang Y, Ma Y, Zhou DS, Gao SX, Zhao XC, Tang QB, Wang CZ, van Loon JJA. Higher plasticity in feeding preference of a generalist than a specialist: experiments with two closely related Helicoverpa species. Sci Rep 2017; 7:17876. [PMID: 29259307 PMCID: PMC5736596 DOI: 10.1038/s41598-017-18244-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/07/2017] [Indexed: 11/23/2022] Open
Abstract
Herbivorous insects have been categorized as generalists or specialists depending on the taxonomic relatedness of the plants they use as food or oviposition substrates. The plasticity in host plant selection behavior of species belonging to the two categories received little attention. In the present work, fifth instar caterpillars of the generalist herbivore Helicoverpa armigera and its closely related species, the specialist Helicoverpa assulta, were fed on common host plants or artificial diet, after which their feeding preference was assessed individually by using dual - and triple- plant choice assays. Results show both the two Helicoverpa species have a preference hierarchy for host plants. Compared to the fixed preference hierarchy of the specialist H. assulta, the generalist H. armigera exhibited extensive plasticity in feeding preference depending on the host plant experienced during larval development. Whereas the specialist H. assulta exhibited a rigid preference in both dual and triple-plant choice assays, our findings demonstrate that the generalist H. armigera expressed stronger preferences in the dual-plant choice assay than in the triple-plant choice assay. Our results provide additional evidence supporting the neural constraints hypothesis which predicts that generalist herbivores make less accurate decisions than specialists when selecting plants.
Collapse
Affiliation(s)
- Yan Wang
- The Institute of Chemical Ecology & College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ying Ma
- The Institute of Chemical Ecology & College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | | | - Su-Xia Gao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Xin-Cheng Zhao
- The Institute of Chemical Ecology & College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qing-Bo Tang
- The Institute of Chemical Ecology & College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Liu J, Huang W, Chi H, Wang C, Hua H, Wu G. Effects of elevated CO 2 on the fitness and potential population damage of Helicoverpa armigera based on two-sex life table. Sci Rep 2017; 7:1119. [PMID: 28442723 PMCID: PMC5430755 DOI: 10.1038/s41598-017-01257-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 03/29/2017] [Indexed: 01/10/2023] Open
Abstract
We evaluated the direct effects of three different atmospheric CO2 concentrations (380 ppm, 550 ppm and 750 ppm) on the population parameters of the cotton bollworm, Helicoverpa armigera fed an artificial diet. The life history and fitness of H. armigera were analyzed using an age-stage, two-sex life table. Our results showed significantly longer larval durations and lower female pupal weight under elevated CO2 than under ambient CO2. Additionally, the fecundity of H. armigera was lower under elevated CO2 than under ambient CO2. H. armigera reared under elevated CO2 conditions showed lower intrinsic and finite rates of increase but higher net consumption and finite consumption rates than H. armigera reared under ambient CO2 conditions. According to population projections, a much smaller total population size and reduced consumption capacities would be expected in an elevated CO2 atmosphere due to higher mortality and lower growth rate compared with ambient CO2 levels. These results indicate that the fitness of and potential damage caused by H. armigera would be affected by increased CO2 relative to ambient CO2 concentrations. Additional studies on the long-term direct and indirect effects of elevated CO2 levels on H. armigera are still needed.
Collapse
Affiliation(s)
- Jinping Liu
- Hubei Key Laboratory of Insect Resource Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenkun Huang
- State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hsin Chi
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Ömer Halisdemir University, Niğde, Turkey
| | - Chonghui Wang
- Hubei Key Laboratory of Insect Resource Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongxia Hua
- Hubei Key Laboratory of Insect Resource Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gang Wu
- Hubei Key Laboratory of Insect Resource Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Dong J, Wang K, Li Y, Wang S. Lethal and sublethal effects of cyantraniliprole on Helicoverpa assulta (Lepidoptera: Noctuidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 136:58-63. [PMID: 28187832 DOI: 10.1016/j.pestbp.2016.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/02/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
Cyantraniliprole is a novel anthranilic diamide insecticide registered for the control of many sucking and chewing insect pests including the oriental tobacco budworm, Helicoverpa assulta (Guenée), which is an important lepidopteran pest of tobacco in China. This study determined the lethal and sublethal effects of cyantraniliprole on a treated parental generation and on an untreated offspring generation of H. assulta. Cyantraniliprole was incorporated in the diet of 3rd-instar larvae of the parental generation. Cyantraniliprole was highly toxic to the parental generation: after a 72-h feeding period, the LC50 was 0.176mg/L. Cyantraniliprole tended to increase the developmental time of parental larvae, and the LC30 significantly reduced the pupation rate and the pupal weight. Cyantraniliprole also significantly decreased the intrinsic rate of increase (rm) and finite rate of increase (λ), and increased the doubling time (Dt). Treatment of the parental generation with the LC30 decreased the pupal weight and adult fecundity, and increased adult deformity in the parental and offspring generations. Cyantraniliprole did not significantly affect the pupal period, the percentage of females, or adult longevity in either generation. These results suggest that both the lethal and sublethal effects of cyantraniliprole might suppress H. assulta population growth by reducing the insect's survival, development, and reproduction.
Collapse
Affiliation(s)
- Junfeng Dong
- Forestry College, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Kai Wang
- Forestry College, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Yang Li
- Forestry College, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Shaoli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
15
|
Xu M, Dong JF, Wu H, Zhao XC, Huang LQ, Wang CZ. The Inheritance of the Pheromone Sensory System in Two Helicoverpa Species: Dominance of H. armigera and Possible Introgression from H. assulta. Front Cell Neurosci 2017; 10:302. [PMID: 28119570 PMCID: PMC5222888 DOI: 10.3389/fncel.2016.00302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/20/2016] [Indexed: 11/13/2022] Open
Abstract
Hybridization of sympatric closely related species may sometimes lead to introgression and speciation. The sister species Helicoverpa armigera and Helicoverpa assulta both use (Z)-11-hexadecenal and (Z)-9-hexadecenal as sex pheromone components but in reversed ratios. Female H. armigera and male H. assulta could hybridize and produce fertile male hybrids, which can then backcross with females of the two parent species to get backcross lines in the laboratory. In this study, we compared the olfactory responses to pheromone compounds in the periphery and in the antennal lobes (ALs) of males of the two species, as well as of their hybrids and backcrosses. Single-sensillum recordings were carried out to explore characteristics of male-specific sensilla on the antennae, and in vivo calcium imaging combined with digital 3D-reconstruction was used to describe what happens in the macroglomerular complex (MGC) of the AL. The results show that the population ratio of the two male-specific types of olfactory sensory neurons responding to two sex pheromone components are controlled by a major gene, and that the allele of H. armigera is dominant. Consistently, the study of the representative areas activated by sex pheromone components in the ALs further support the dominance of H. armigera. However, the topological structure of the MGC in the hybrid was similar but not identical to that in H. armigera. All subtypes of male-specific sensilla identified in the two species were found in the male hybrids and backcrosses. Moreover, two new subtypes with broader response spectra (the expanded A subtype and the expanded C subtype) emerged in the hybrids. Based on the inheritance pattern of the pheromone sensory system, we predict that when hybridization of female H. armigera and male H. assulta occurs in the field, male hybrids would readily backcross with female H. armigera, and introgression might occur from H. assulta into H. armigera through repeated backcrossing.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Jun-Feng Dong
- College of Forestry, Henan University of Science and Technology Luoyang, China
| | - Han Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University Zhengzhou, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
16
|
Summer diapause induced by high temperatures in the oriental tobacco budworm: ecological adaptation to hot summers. Sci Rep 2016; 6:27443. [PMID: 27271223 PMCID: PMC4895216 DOI: 10.1038/srep27443] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
Summer diapause in Helicoverpa assulta (Hübner), which prolongs the pupal stage, particularly in males, is induced by high temperatures. In the laboratory, 3rd-, 4th-, 6th-instar and prepupal larvae were exposed to high temperatures – 33 and 35 °C with a photoperiod of LD16:8 – until pupation to induce summer diapause. The results showed that the incidence of summer diapause was influenced by temperature, stage exposed, and sex. The higher the temperature, the more often summer diapause was attained. Sixth-instar and prepupal larvae were the sensitive stages for summer diapause induction. H. assulta summer-diapausing pupae needed diapause development to resume development when temperatures became favorable. Furthermore, both body mass and energy storage capacity (lipid and glycogen) were significantly affected by diapause rather than sex, and were significantly higher in summer-diapausing pupae than in non-diapausing pupae. In addition, the body mass loss and respiration rate showed that the rate of metabolism in the summer-diapausing pupae was consistently lower than in non-diapausing pupae, which were significantly affected by diapause and pupal age. We conclude that summer diapause in H. assulta is a true diapause, and H. assulta has evolved mechanisms to accumulate energy storage and to lower its metabolism to adapt to hot summers.
Collapse
|
17
|
Qin L, Pan LL, Liu SS. Further insight into reproductive incompatibility between putative cryptic species of the Bemisia tabaci whitefly complex. INSECT SCIENCE 2016; 23:215-24. [PMID: 27001484 DOI: 10.1111/1744-7917.12296] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2015] [Indexed: 05/26/2023]
Abstract
The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), with its global distribution and extensive genetic diversity, is now known to be a complex of over 35 cryptic species. However, a satisfactory resolution of the systematics of this species complex is yet to be achieved. Here, we designed experiments to examine reproductive compatibility among species with different levels of mitochondrial cytochrome oxidase I (mtCOI) divergence. The data show that putative species with mtCOI divergence of >8% between them consistently exhibited complete reproductive isolation. However, two of the putative species, Asia II 9 and Asia II 3, with mtCOI divergence of 4.47% between them, exhibited near complete reproductive compatibility in one direction of their cross, and partial reproductive compatibility in the other direction. Together with some recent reports on this topic from the literature, our data indicates that, while divergence in the mtCOI sequences provides a valid molecular marker for species delimitation in most clades, more genetic markers and more sophisticated molecular phylogeny will be required to achieve adequate delimitation of all species in this whitefly complex. While many attempts have been made to examine the reproductive compatibility among genetic groups of the B. tabaci complex, our study represents the first effort to conduct crossing experiments with putative species that were chosen with considerations of their genetic divergence. In light of the new data, we discuss the best strategy and protocols to conduct further molecular phylogenetic analysis and crossing trials, in order to reveal the overall pattern of reproductive incompatibility among species of this whitefly complex.
Collapse
Affiliation(s)
- Li Qin
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Long Pan
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Sensillar expression and responses of olfactory receptors reveal different peripheral coding in two Helicoverpa species using the same pheromone components. Sci Rep 2016; 6:18742. [PMID: 26744070 PMCID: PMC4705464 DOI: 10.1038/srep18742] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/23/2015] [Indexed: 11/08/2022] Open
Abstract
Male moths efficiently recognize conspecific sex pheromones thanks to their highly accurate and specific olfactory system. The Heliothis/Helicoverpa species are regarded as good models for studying the perception of sex pheromones. In this study, we performed a series of experiments to investigate the peripheral mechanisms of pheromone coding in two-closely related species, Helicoverpa armigera and H. assulta. The morphology and distribution patterns of sensilla trichoidea are similar between the two species when observed at the scanning electron microscope, but their performances are different. In H. armigera, three functional types of sensilla trichoidea (A, B and C) were found to respond to different pheromone components, while in H. assulta only two types of such sensilla (A and C) could be detected. The response profiles of all types of sensilla trichoidea in the two species well matched the specificities of the pheromone receptors (PRs) expressed in the same sensilla, as measured in voltage-clamp experiments. The expressions of PRs in neighboring olfactory sensory neurons (OSNs) within the same trichoid sensillum were further confirmed by in situ hybridization. Our results show how the same pheromone components can code for different messages at the periphery of two Helicoverpa species.
Collapse
|
19
|
Characteristics of morphology, electrophysiology, and central projections of two sensilla styloconica in Helicoverpa assulta larvae. Neuroreport 2015; 26:703-11. [DOI: 10.1097/wnr.0000000000000413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Song SV, Downes S, Parker T, Oakeshott JG, Robin C. High nucleotide diversity and limited linkage disequilibrium in Helicoverpa armigera facilitates the detection of a selective sweep. Heredity (Edinb) 2015; 115:460-70. [PMID: 26174024 DOI: 10.1038/hdy.2015.53] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/01/2015] [Accepted: 05/06/2015] [Indexed: 11/09/2022] Open
Abstract
Insecticides impose extreme selective pressures on populations of target pests and so insecticide resistance loci of these species may provide the footprints of 'selective sweeps'. To lay the foundation for future genome-wide scans for selective sweeps and inform genome-wide association study designs, we set out to characterize some of the baseline population genomic parameters of one of the most damaging insect pests in agriculture worldwide, Helicoverpa armigera. To this end, we surveyed nine Z-linked loci in three Australian H. armigera populations. We find that estimates of π are in the higher range among other insects and linkage disequilibrium decays over short distances. One of the surveyed loci, a cytochrome P450, shows an unusual haplotype configuration with a divergent allele at high frequency that led us to investigate the possibility of an adaptive introgression around this locus.
Collapse
Affiliation(s)
- S V Song
- Department of Genetics, University of Melbourne and Bio21 Institute, Melbourne, Victoria, Australia
| | - S Downes
- Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Narrabri, New South Wales, Australia
| | - T Parker
- Agriculture Flagship, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Narrabri, New South Wales, Australia
| | - J G Oakeshott
- Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - C Robin
- Department of Genetics, University of Melbourne and Bio21 Institute, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Li ZQ, Zhang S, Luo JY, Wang CY, Lv LM, Dong SL, Cui JJ. Transcriptome comparison of the sex pheromone glands from two sibling Helicoverpa species with opposite sex pheromone components. Sci Rep 2015; 5:9324. [PMID: 25792497 PMCID: PMC4366804 DOI: 10.1038/srep09324] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/17/2015] [Indexed: 11/25/2022] Open
Abstract
Differences in sex pheromone component can lead to reproductive isolation. The sibling noctuid species, Helicoverpa armigera and Helicoverpa assulta, share the same two sex pheromone components, Z9-16:Ald and Z11-16:Ald, but in opposite ratios, providing an typical example of such reproductive isolation. To investigate how the ratios of the pheromone components are differently regulated in the two species, we sequenced cDNA libraries from the pheromone glands of H. armigera and H. assulta. After assembly and annotation, we identified 108 and 93 transcripts putatively involved in pheromone biosynthesis, transport, and degradation in H. armigera and H. assulta, respectively. Semi-quantitative RT-PCR, qRT-PCR, phylogenetic, and mRNA abundance analyses suggested that some of these transcripts involved in the sex pheromone biosynthesis pathways perform. Based on these results, we postulate that the regulation of desaturases, KPSE and LPAQ, might be key factor regulating the opposite component ratios in the two sibling moths. In addition, our study has yielded large-scale sequence information for further studies and can be used to identify potential targets for the bio-control of these species by disrupting their sexual communication.
Collapse
Affiliation(s)
- Zhao-Qun Li
- 1] State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China [2] College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Shuai Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Jun-Yu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Chun-Yi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Li-Min Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Shuang-Lin Dong
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Jin-Jie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| |
Collapse
|
22
|
Berg BG, Zhao XC, Wang G. Processing of Pheromone Information in Related Species of Heliothine Moths. INSECTS 2014; 5:742-61. [PMID: 26462937 PMCID: PMC4592608 DOI: 10.3390/insects5040742] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 11/16/2022]
Abstract
In heliothine moths, the male-specific olfactory system is activated by a few odor molecules, each of which is associated with an easily identifiable glomerulus in the primary olfactory center of the brain. This arrangement is linked to two well-defined behavioral responses, one ensuring attraction and mating behavior by carrying information about pheromones released by conspecific females and the other inhibition of attraction via signal information emitted from heterospecifics. The chance of comparing the characteristic properties of pheromone receptor proteins, male-specific sensory neurons and macroglomerular complex (MGC)-units in closely-related species is especially intriguing. Here, we review studies on the male-specific olfactory system of heliothine moths with particular emphasis on five closely related species, i.e., Heliothis virescens, Heliothis subflexa, Helicoverpa zea, Helicoverpa assulta and Helicoverpa armigera.
Collapse
Affiliation(s)
- Bente G Berg
- Department of Psychology, Norwegian University of Science and Technology, Trondheim 7489, Norway.
| | - Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
23
|
|
24
|
Tang QB, Huang LQ, Wang CZ, Tang QB, Zhan H, van Loon JJA. Inheritance of electrophysiological responses to leaf saps of host- and nonhost plants in two Helicoverpa species and their hybrids. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 86:19-32. [PMID: 24599618 DOI: 10.1002/arch.21154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The polyphagous cotton bollworm Helicoverpa armigera (Hübner) and the oligophagous oriental tobacco budworm Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae) display contrasting heritable feeding preferences for cotton and pepper leaves. In this study, electrophysiological response patterns to cotton and pepper leaf saps in gustatory sensilla styloconica on the maxillae of these two species, their reciprocal F1 hybrids, and backcrossed lines were investigated using the tip recording technique. The identity of the neurons responding to the two leaf saps has been established using action potential waveform analysis. The two plant leaf saps elicited neural activity in at least six of the eight taste neurons innervating the lateral and medial sensilla styloconica of the parental species and crosses. Discriminant analysis of this multineural input predicted that correct classification occurred in 87 - 92% of the cases. Differences in taste neuron responses between insect lines to the two plant saps were consistent with differences in feeding preference behaviors. Comparisons of taste neuron response patterns of parental species, F1 hybrids and backcrosses indicate that autosomal loci contributed to the difference in gustatory response patterns between the two Helicoverpa species with the H. armigera derived alleles being partly dominant to those carried by H. assulta. These findings contribute to the understanding of gustatory codes for preference and provide insight into taste evolution of lepidopteran insects.
Collapse
Affiliation(s)
- Qing-Bo Tang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, The Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
25
|
Li H, Zhang H, Guan R, Miao X. Identification of differential expression genes associated with host selection and adaptation between two sibling insect species by transcriptional profile analysis. BMC Genomics 2013; 14:582. [PMID: 23984865 PMCID: PMC3765734 DOI: 10.1186/1471-2164-14-582] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/14/2013] [Indexed: 02/03/2023] Open
Abstract
Background Cotton bollworm (Helicoverpa armigera) and oriental tobacco budworm (Helicoverpa assulta) are noctuid sibling species. Under artificial manipulation, they can mate and produce fertile offspring. As serious agricultural insect pests, cotton bollworms are euryphagous insects, but oriental tobacco budworms are oligophagous insects. To identify the differentially expressed genes that affect host recognition and host adaptation between the two species, we constructed digital gene expression tag profiles for four developmental stages of the two species. High-throughput sequencing results indicated that we have got more than 23 million 17nt clean tags from both species, respectively. The number of unique clean tags was nearly same in both species (approximately 357,000). Results According to the gene annotation results, we identified 83 and 68 olfaction related transcripts from H. armigera and H. assulta, respectively. At the same time, 1137 and 1138 transcripts of digestion enzymes were identified from the two species. Among the olfaction related transcripts, more odorant binding protein and G protein-coupled receptor were identified in H. armigera than in H. assulta. Among the digestion enzymes, there are more detoxification enzyme, e.g. P450, carboxypeptidase and ATPase in H. assulta than in H. armigera. These differences partially explain that because of the narrow host plant range of H. assulta, more detoxification enzymes would help them increase the food detoxification and utilization efficiency. Conclusions This study supplied some differentially expressed genes affecting host selection and adaptation between the two sibling species. These genes will be useful information for studying on the evolution of host plant selection. It also provides some important target genes for insect species-specific control by RNAi technology.
Collapse
Affiliation(s)
- Haichao Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | | | | | | |
Collapse
|
26
|
Sun YL, Huang LQ, Pelosi P, Wang CZ. Expression in antennae and reproductive organs suggests a dual role of an odorant-binding protein in two sibling Helicoverpa species. PLoS One 2012; 7:e30040. [PMID: 22291900 PMCID: PMC3264552 DOI: 10.1371/journal.pone.0030040] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/08/2011] [Indexed: 11/24/2022] Open
Abstract
Odorant-binding proteins (OBPs) mediate both perception and release of semiochemicals in insects. These proteins are the ideal targets for understanding the olfactory code of insects as well as for interfering with their communication system in order to control pest species. The two sibling Lepidopteran species Helicoverpa armigera and H. assulta are two major agricultural pests. As part of our aim to characterize the OBP repertoire of these two species, here we focus our attention on a member of this family, OBP10, particularly interesting for its expression pattern. The protein is specifically expressed in the antennae of both sexes, being absent from other sensory organs. However, it is highly abundant in seminal fluid, is transferred to females during mating and is eventually found on the surface of fertilised eggs. Among the several different volatile compounds present in reproductive organs, OBP10 binds 1-dodecene, a compound reported as an insect repellent. These results have been verified in both H. armigera and H. assulta with no apparent differences between the two species. The recombinant OBP10 binds, besides 1-dodecene, some linear alcohols and several aromatic compounds. The structural similarity of OBP10 with OBP1 of the mosquito Culex quinquefasciatus, a protein reported to bind an oviposition pheromone, and its affinity with 1-dodecene suggest that OBP10 could be a carrier for oviposition deterrents, favouring spreading of the eggs in these species where cannibalism is active among larvae.
Collapse
Affiliation(s)
- Ya-Lan Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Paolo Pelosi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Biology of Crop Plants, University of Pisa, Pisa, Italy
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Zhang YF, Huang LQ, Ge F, Wang CZ. Tarsal taste neurons of Helicoverpa assulta (Guenée) respond to sugars and amino acids, suggesting a role in feeding and oviposition. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1332-1340. [PMID: 21771596 DOI: 10.1016/j.jinsphys.2011.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/20/2011] [Accepted: 06/20/2011] [Indexed: 05/31/2023]
Abstract
Helicoverpa assulta and Helicoverpa armigera are sibling species with different host-plant ranges. We have previously reported electrophysiological and behavioral responses of H.armigera to sugars and amino acids. Here we describe a parallel study performed on H. assulta and compare the results obtained with the two species. In females, fourteen gustatory chemosensilla, identified on one ventrolateral side of the fifth tarsomere were stimulated with sucrose, glucose, fructose, maltose, myo-inositol, and the twenty common amino acids, using the tip-recording technique. The taste receptor neurons in eight chemosensilla were identified sensitive to the sugars, myo-inositol, Lys, Glu, Arg, Trp, and Ser which all induced proboscis extension reflex (PER) when tarsi were stimulated. There was a positive correlation between electrophysiological activities and PER responses triggered by sucrose. No stimulatory effect on oviposition was observed with sugar or amino acid mixtures. In males, three chemosensilla showed responses to the four sugars, but generally weaker than in females. The major difference of the two species was the variety of amino acids triggering electrophysiological responses. The stimulatory effect of sugars and amino acids on H.assulta was also generally weaker than that on H. armigera.
Collapse
Affiliation(s)
- Yun-Feng Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
28
|
Liu Z, Scheirs J, Heckel DG. Trade-offs of host use between generalist and specialist Helicoverpa sibling species: adult oviposition and larval performance. Oecologia 2011; 168:459-69. [PMID: 21863244 DOI: 10.1007/s00442-011-2103-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 08/01/2011] [Indexed: 11/30/2022]
Abstract
Much attention has been paid to the question of the relative importance of female behaviour versus larval feeding capacities in determining the host range of herbivorous insects. Host-use trade-offs displayed by generalist and specialist sister species of the genus Helicoverpa were evaluated to examine the relationship between maternal choice and offspring performance. The prediction of optimal oviposition theory, that females will choose to lay eggs on plants on which their offspring perform best as larvae, was tested by measuring oviposition preference and larval performance of Helicoverpa armigera and H. assulta on tobacco, sunflower, and hot pepper. These two measures were more highly correlated in the specialist H. assulta. Both species exhibited the same oviposition preference ranking: tobacco > sunflower > hot pepper. H. armigera larvae preferred sunflower, followed by tobacco and hot pepper; while H. assulta larvae preferred tobacco to sunflower and hot pepper, consistent with their mothers' oviposition preference. Duration of the total period from egg to adult emergence for each species was significantly shorter on the host plant preferred by the larvae. H. assulta had shorter larval duration and higher relative growth rate than H. armigera on tobacco and hot pepper, and vice versa for sunflower, indicating species differences in host utilization. Thus, while only the specialist H. assulta displayed the predicted optimal oviposition pattern, females of both species show the least preference for the plant on which their offspring perform worst. Selection for optimal oviposition may be stronger on the specialist, which has fewer choices and lower lifetime fecundity than the generalist.
Collapse
Affiliation(s)
- Zhudong Liu
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | | | | |
Collapse
|
29
|
Xu J, De Barro PJ, Liu SS. Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. BULLETIN OF ENTOMOLOGICAL RESEARCH 2010; 100:359-366. [PMID: 20178675 DOI: 10.1017/s0007485310000015] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The worldwide distribution and extensive genetic diversity of the whitefly Bemisia tabaci has long been recognized. However, whether B. tabaci is a complex species or a species complex has been a subject of debate. Recent phylogenetic analyses suggest that B. tabaci is a cryptic species complex composed of at least 24 morphologically indistinguishable species. Here, we conducted crossing experiments and demonstrated reproductive incompatibility among three of the 24 putative species. Our data and those of previously reported crossing experiments among various putative species of B. tabaci were collated to reveal the pattern of reproductive isolation. The combined results provide strong support to the proposition that B. tabaci is a cryptic species complex.
Collapse
Affiliation(s)
- J Xu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | |
Collapse
|
30
|
Wang HL, Ming QL, Zhao CH, Wang CZ. Genetic basis of sex pheromone blend difference between Helicoverpa armigera (Hübner) and Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae). JOURNAL OF INSECT PHYSIOLOGY 2008; 54:813-817. [PMID: 18405915 DOI: 10.1016/j.jinsphys.2008.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 05/26/2023]
Abstract
The two closely related moth species, Helicoverpa armigera and H. assulta, are sympatric in China. Both species use a mixture of (Z)-11-hexadecenal (Z11-16:Ald) and (Z)-9-hexadecenal (Z9-16:Ald) as their sex pheromones but in widely different ratios. Hybridization and backcrossing experiments between H. armigera and H. assulta were conducted and sex pheromone compositions of the parent species, their F(1) hybrids and backcrosses were compared to study the genetic basis of the production of their sex pheromone blend composition. Results show that the difference in sex pheromone blend ratios of these Helicoverpa species is mainly controlled by an autosomal locus with two alleles, with the allele from H. armigera being almost completely dominant over that derived from H. assulta.
Collapse
Affiliation(s)
- Hong-Lei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, China
| | | | | | | |
Collapse
|
31
|
Tian SP, Zhang JH, Wang CZ. Cloning and characterization of two Campoletis chlorideae ichnovirus vankyrin genes expressed in parasitized host Helicoverpa armigera. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:699-707. [PMID: 17512002 DOI: 10.1016/j.jinsphys.2007.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2006] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 05/15/2023]
Abstract
Polydnaviruses, symbionts of parasitic ichneumonid (ichnoviruses, IVs) and braconid (bracoviruses, BVs), are injected into hosts along with wasp eggs. Within the host, PDV genes are expressed and their products function to alter lepidopteran host physiology and enable endoparasitoid development. In the present study, we describe two Campoletis chlorideae ichnovirus (CcIV) viral ankyrin (vankyrin) genes and their transcription. The CcIV vankyrin genes possess ankyrin repeat domains that resemble the inhibitory domains of the Drosophila melanogaster NF-kappaB transcription factor inhibitor (IkappaB) cactus. The expression of CcIV vankyrin genes could be detected in Helicoverpa armigera during the whole course of parasitization with two expression peaks, 30 min post-parasitization (p.p.) and 2 days p.p. Our data indicate that the CcIV vankyrin genes are differentially expressed in the tissues of parasitized hosts and both are mainly expressed in hemocytes. The temporal and spatial variation in expression of the two CcIV vankyrin genes suggests that CcIV vankyrin genes could be involved in early protection of parasitoid eggs from host cellular immune response by suppressing NF-kappaB signaling cascades, thereby altering development and immune responses of parasitized lepidopteran hosts.
Collapse
Affiliation(s)
- Shen-Peng Tian
- State Key Laboratory of Integrated Management of Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | |
Collapse
|
32
|
Ming QL, Yan YH, Wang CZ. Mechanisms of premating isolation between Helicoverpa armigera (Hübner) and Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae). JOURNAL OF INSECT PHYSIOLOGY 2007; 53:170-8. [PMID: 17240394 DOI: 10.1016/j.jinsphys.2006.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Revised: 11/23/2006] [Accepted: 11/27/2006] [Indexed: 05/13/2023]
Abstract
Helicoverpa armigera and Helicoverpa assulta are sympatric sibling species, and in the laboratory they can interbreed and produce viable offspring. To assess the contributions of temporal barriers and sexual barriers to premating isolation, we investigated both the temporal rhythms of calling behavior and pheromone titers of H. armigera and H. assulta females and the behavioral responses of males to conspecific and heterospecific calling females in a wind tunnel. Both H. armigera and H. assulta females called throughout the scotophase, and there was more calling during the second half of the scotophase than during the first half. Maximal pheromone titer and maximal calling activity in H. armigera synchronously occurred at the sixth hour into the scotophase, whereas, in H. assulta, the maximal pheromone titer occurred 2 h before the peak of calling. Pheromone blend ratios of the two species were opposite and, within each species, changes in the ratio within the scotophase and at different ages were relatively small. Males of both H. armigera and H. assulta responded strongly to their conspecific calling females in the wind tunnel and completed the whole courtship sequence. In contrast, they did not land and had no copulation attempts in response to heterospecific calling females. These results show that the two species do not have obvious temporal differences in calling behavior and pheromone production, and the specificity of sex pheromone blend emitted by females plays a key role in their premating isolation. In addition, we summarized the potential isolation mechanisms of H. armigera and H. assulta.
Collapse
Affiliation(s)
- Qing-Lei Ming
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | | | | |
Collapse
|
33
|
Wang C. Interpretation of the biological species concept from interspecific hybridization of two Helicoverpa species. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0029-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Zhao XC, Yan YH, Wang CZ. Behavioral and electrophysiological responses of Helicoverpa assulta, H. armigera (Lepidoptera: Noctuidae), their F1 hybrids and backcross progenies to sex pheromone component blends. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:1037-47. [PMID: 16736191 DOI: 10.1007/s00359-006-0141-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 05/06/2006] [Accepted: 05/07/2006] [Indexed: 10/24/2022]
Abstract
Two sibling species, Helicoverpa assulta and Helicoverpa armigera both use (Z)-9-hexadecenal and (Z)-11-hexadecenal as their sex pheromone components but in almost reversed ratios, 93:7 and 3:97, respectively. H. assulta and H. armigera males performed upwind flight in response to the H. assulta sex pheromone blend (93:7). H. armigera responded strongly to the H. armigera blend (3:97), whereas H. assulta males remained inactive upon exposure to this blend. Both species gave clear dose-dependent electrophysiological responses to (Z)-11-hexadecenal. However, (Z)-9-hexadecenal evoked strong dose-dependent electrophysiological responses in H. assulta males but not in H. armigera. The two male F1 hybrids exhibited similar behavioral responses to two sex pheromone blends and electrophysiological responses to two pheromone components as H. armigera males. This indicated that H. armigera genes appear dominant in determining the behavioral response and electrophysiological responses. Behavioral and electrophysiological responses of backcrosses of male F1 hybrids (H. armigera female x H. assulta male) with female H. assulta and H. armigera were close to that of H. assulta and H. armigera, respectively. However, backcrosses of female F1 hybrids (H. assulta female x H. armigera male) with male H. assulta and H. armigera showed reduced behavioral responses but normal electrophysiological responses compared to males of the respective parental line.
Collapse
Affiliation(s)
- Xin-Cheng Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, The Chinese Academy of Sciences, Beijing 100080, China
| | | | | |
Collapse
|
35
|
Zhao XC, Dong JF, Tang QB, Yan YH, Gelbic I, Van Loon JJA, Wang CZ. Hybridization between Helicoverpa armigera and Helicoverpa assulta (Lepidoptera: Noctuidae): development and morphological characterization of F1 hybrids. BULLETIN OF ENTOMOLOGICAL RESEARCH 2005; 95:409-16. [PMID: 16197561 DOI: 10.1079/ber2005372] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Reciprocal hybridizations between Helicoverpa armigera (Hübner) and Helicoverpa assulta (Guenée) were studied. The cross between females of H. armigera and males of H. assulta yielded only fertile males and sterile individuals lacking an aedeagus, valva or ostium bursae. A total of 492 larvae of the F1 generation were obtained and 374 of these completed larval development and pupated. Only 203 pupae were morphologically normal males, the remaining 171 pupae were malformed. Larvae and pupae that gave rise to morphologically abnormal adults exhibited longer development times. Sterility was not only associated with malformed external sex organs, but also a range of abnormalities of the internal reproductive system: (i) loss of internal reproductive organs, (ii) with one to three copies of an undeveloped bursa copulatrix; or (iii) with one or two undeveloped testes. Normal male hybrid adults showed higher flight activity in comparison with males of both species. In contrast, the cross between females of H. assulta and males of H. armigera yielded morphologically normal offspring (80 males and 83 females). The interaction of the Z-chromosome from H. assulta with autosomes from H. armigera might result in morphological abnormalities found in hybrids and backcrosses, and maternal-zygotic incompatibilities might contribute to sex bias attributed to hybrid inviability.
Collapse
Affiliation(s)
- X-C Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100039, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Testes and chromosomes in interspecific hybrids betweenHelicoverpa armigera (Hübner) andHelicoverpa assulta (Guenée). CHINESE SCIENCE BULLETIN-CHINESE 2005. [DOI: 10.1007/bf03183695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Wang HL, Zhao CH, Wang CZ. Comparative study of sex pheromone composition and biosynthesis in Helicoverpa armigera, H. assulta and their hybrid. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:575-583. [PMID: 15857763 DOI: 10.1016/j.ibmb.2005.01.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 01/28/2005] [Accepted: 01/28/2005] [Indexed: 05/24/2023]
Abstract
Two Helicoverpa species, H. armigera and H. assulta use (Z)-11-hexadecenal and (Z)-9-hexadecenal as their sex attractant pheromone components but in opposite ratios. Since both female and male interspecific hybrids produced by female H. assulta and male H. armigera have been obtained in our laboratory, we can make a comparative study of sex pheromone composition and biosynthesis in the two species and their hybrid. With GC and GC-MS analyses using single gland extracts, the ratio of (Z)-9-hexadecenal to (Z)-11-hexadecenal was determined as 2.1:100 in H. armigera, and 1739:100 in H. assulta. The hybrid has a ratio of 4.0: 100, which is closer to that of H. armigera, but significantly different from H. armigera. We investigated pheromone biosynthesis with labeling experiments, using various fatty acid precursors in H. armigera, H. assulta and the hybrid. In H. armigera, (Z)-11-hexadecenal is produced by delta11 desaturation of palmitic acid, followed by reduction and terminal oxidation; (Z)-9-hexadecenal results from delta11 desaturation of stearic acid, followed by one cycle of chain shortening, reduction and terminal oxidation. delta11 desaturase is the unique desaturase for the production of the two pheromone components. In our Chinese strain of H. assulta, palmitic acid is used as the substrate to form both the major pheromone component, (Z)-9-hexadecenal and the minor one, (Z)-11-hexadecenal. Our data suggest that delta9 desaturase is the major desaturase, and delta11 desaturase is responsible for the minor component in H. assulta, which is consistent with previous work. However, the weak chain shortening acting on (Z)-9 and (Z)-11-octadecenoic acid, which is present in the pheromone glands, does occur in this species to produce (Z)-7 and (Z)-9-hexadecenoic acid. In the hybrid, the major pheromone component, (Z)-11-hexadecenal is produced by delta11 desaturation of palmitic acid, followed by reduction and terminal oxidation. The direct fatty acid precursor of the minor component, (Z)-9-hexadecenoic acid is mainly produced by delta9 desaturation of palmitic acid, but also by delta11 desaturation of stearic acid and one cycle of chain shortening. The greater relative amounts of (Z)-9-hexadecenal in the hybrid are due to the fact that both palmitic and stearic acids are used as substrates, whereas only stearic acid is used as substrate in H. armigera. The evolutionary relationships between the desaturases in several Helicoverpa species are also discussed in this paper.
Collapse
Affiliation(s)
- Hong-Lei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | |
Collapse
|
38
|
Yin L, Wang C, Qin J. Effect of the endoparasitoidCampoletis chlorideae on phenoloxidase activity inHelicoverpa armigera hemolymph. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/bf02900553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|