1
|
Ebrahimi A, Mehrabi M, Miraghaee SS, Mohammadi P, Fatehi Kafash F, Delfani M, Khodarahmi R. Flavonoid compounds and their synergistic effects: Promising approaches for the prevention and treatment of psoriasis with emphasis on keratinocytes - A systematic and mechanistic review. Int Immunopharmacol 2024; 138:112561. [PMID: 38941673 DOI: 10.1016/j.intimp.2024.112561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Psoriasis, a chronic autoimmune skin disorder, causes rapid and excessive skin cell growth due to immune system dysfunction. Numerous studies have shown that flavonoids have anti-psoriatic effects by modulating various molecular mechanisms involved in inflammation, cytokine production, keratinocyte proliferation, and more. This study reviewed experimental data reported in scientific literature and used network analysis to identify the potential biological roles of flavonoids' targets in treating psoriasis. 947 records from Web of Sciences, ScienceDirect database, Scopus, PubMed, and Cochrane library were reviewed without limitations until June 26, 2023. 66 articles were included in the systematic review. The ten genes with the highest scores, including interleukin (IL)-10, IL-12A, IL-1β, IL-6, Tumor necrosis factor-α (TNF-α), Janus kinase 2 (JAK 2), Jun N-terminal kinase (JUN), Proto-oncogene tyrosine-protein kinase Src (SRC), Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and Signal transducer and activator of transcription 3 (STAT3), were identified as the hub genes. KEGG pathway analysis identified connections related to inflammation and autoimmune responses, which are key characteristics of psoriasis. IL-6, STAT3, and JUN's presence in both hub and enrichment genes suggests their important role in flavonoid's effect on psoriasis. This comprehensive study highlights how flavonoids can target biological processes in psoriasis, especially when combined for enhanced effectiveness.
Collapse
Affiliation(s)
- Ali Ebrahimi
- Department of Dermatology, Hajdaie Dermatology Clinic, School of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Masomeh Mehrabi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Seyyed Shahram Miraghaee
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Fatehi Kafash
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohana Delfani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Li Y, Liu X, Lu F, Li H, Zhang J, Zhang Y, Li W, Wang W, Yang M, Ma Z, Zhang H, Zhou X, Xu Y, He Z, Sun J, Zhang T, Jiang Q. Natural Amino Acid-Bearing Carbamate Prodrugs of Daidzein Increase Water Solubility and Improve Phase II Metabolic Stability for Enhanced Oral Bioavailability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8618-8631. [PMID: 38569082 DOI: 10.1021/acs.jafc.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Daidzein (DAN) is an isoflavone, and it is often found in its natural form in soybean and food supplements. DAN has poor bioavailability owing to its extremely low water solubility and first-pass metabolism. Herein, we hypothesized that a bioactivatable natural amino acid-bearing carbamate prodrug strategy could increase the water solubility and metabolic stability of DAN. To test our hypothesis, nine amino acid prodrugs of DAN were designed and synthesized. Compared with DAN, the optimal prodrug (daidzein-4'-O-CO-N-isoleucine, D-4'-I) demonstrated enhanced water solubility and improved phase II metabolic stability and activation to DAN in plasma. In addition, unlike the passive transport of DAN, D-4'-I maintained high permeability via organic anion-transporting polypeptide 2B1 (OATP2B1)-mediated transport. Importantly, D-4'-I increased the oral bioavailability by 15.5-fold, reduced the gender difference, and extended the linear absorption capacity in the pharmacokinetics of DAN in rats. Furthermore, D-4'-I exhibited dose-dependent protection against liver injury. Thus, the natural amino acid-bearing carbamate prodrug strategy shows potential in increasing water solubility and improving phase II metabolic stability to enhance the oral bioavailability of DAN.
Collapse
Affiliation(s)
- Yingchao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan Eastern Road, Shenyang, Liaoning 110032, China
| | - Xiaoyu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Farong Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Huichao Li
- Shenyang Sinochem Agrochemicals R&D Co., Ltd., Shenyang 110021, P.R. China
| | - Jiaming Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Yawei Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Wenchao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Weiping Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Miaomiao Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Zhining Ma
- Kangya of Ningxia Pharmaceutical Co., Ltd., Ningxia 750002, P.R. China
| | - Hui Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaomian Zhou
- School of Life and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Youjun Xu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Tianhong Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Bansal K, Singh V, Mishra S, Bajpai M. Articulating the Pharmacological and Nanotechnological Aspects of Genistein: Current and Future Prospectives. Curr Pharm Biotechnol 2024; 25:807-824. [PMID: 38902930 DOI: 10.2174/0113892010265344230919170611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 06/22/2024]
Abstract
Throughout the past several centuries, herbal constituents have been the subject of scientific interest and the latest research into their therapeutic potential is underway. Genistein is a soy-derived isoflavone found in huge amounts in soy, along with the plants of the Fabaceae family. Scientific studies have demonstrated the beneficial effects of genistein on various health conditions. Genistein presents a broad range of pharmacological activities, including anticancer, neuroprotective, cardioprotective, antiulcer, anti-diabetic, wound healing, anti-bacterial, antiviral, skin, and radioprotective effects. However, the hydrophobic nature of genistein results in constrained absorption and restricts its therapeutic potential. In this review, the number of nanocarriers for genistein delivery has been explored, such as polymeric nanoparticles, nanostructured lipid carriers, solid lipid nanoparticles, liposomes, micelles, transferosomes, and nanoemulsions and nanofibers. These nano-formulations of genistein have been utilized as a potential strategy for various disorders, employing a variety of ex vivo, in vitro, and in vivo models and various administration routes. This review concluded that genistein is a potential therapeutic agent for treating various diseases, including cancer, neurodegenerative disorders, cardiovascular disorders, obesity, diabetes, ulcers, etc., when formulated in suitable nanocarriers.
Collapse
Affiliation(s)
- Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Vanshita Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Samiksha Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
4
|
Qiu ZC, Zhang FX, Hu XL, Zhang YY, Tang ZL, Zhang J, Yang L, Wong MS, Chen JX, Xiao HH. Genistein Modified with 8-Prenyl Group Suppresses Osteoclast Activity Directly via Its Prototype but Not Metabolite by Gut Microbiota. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227811. [PMID: 36431913 PMCID: PMC9694937 DOI: 10.3390/molecules27227811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Postmenopausal osteoporosis is a significant threat to human health globally. Genistein, a soy-derived isoflavone, is regarded as a promising anti-osteoporosis drug with the effects of promoting osteoblastogenesis and suppressing osteoclastogenesis. However, its oral bioavailability (6.8%) is limited by water solubility, intestinal permeability, and biotransformation. Fortunately, 8-prenelylated genistein (8PG), a derivative of genistein found in Erythrina Variegate, presented excellent predicted oral bioavailability (51.64%) with an improved osteoblastogenesis effect, although its effects on osteoclastogenesis and intestinal biotransformation were still unclear. In this study, an in vitro microbial transformation platform and UPLC-QTOF/MS analysis method were developed to explore the functional metabolites of 8PG. RANKL-induced RAW264.7 cells were utilized to evaluate the effects of 8PG on osteoclastogenesis. Our results showed that genistein was transformed into dihydrogenistein and 5-hydroxy equol, while 8PG metabolites were undetectable under the same conditions. The 8PG (10-6 M) was more potent in inhibiting osteoclastogenesis than genistein (10-5 M) and it down-regulated NFATC1, cSRC, MMP-9 and Cathepsin K. It was concluded that 8-prenyl plays an important role in influencing the osteoclast activity and intestinal biotransformation of 8PG, which provides evidence supporting the further development of 8PG as a good anti-osteoporosis agent.
Collapse
Affiliation(s)
- Zuo-Cheng Qiu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou 510632, China
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Xue-Ling Hu
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou 510632, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yang-Yang Zhang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Zi-Ling Tang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jie Zhang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Li Yang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou 510632, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of the Hong Kong Polytechnic University, Shenzhen, 518057, China
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- Correspondence: (J.-X.C.); (H.-H.X.); Tel.: +86-20-85221323 (J.-X.C.); +86-755-26737139 (H.-H.X.)
| | - Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of the Hong Kong Polytechnic University, Shenzhen, 518057, China
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Correspondence: (J.-X.C.); (H.-H.X.); Tel.: +86-20-85221323 (J.-X.C.); +86-755-26737139 (H.-H.X.)
| |
Collapse
|
5
|
Kikuchi T, Shigemura S, Ito Y, Saito K. Determination of human F aF g of polyphenols using allometric scaling. J Toxicol Sci 2022; 47:409-420. [PMID: 36184560 DOI: 10.2131/jts.47.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Certain polyphenols exhibit low permeability; precise prediction of their intestinal absorption is important for understanding internal exposure in humans. Intestinal availability, which represents the fraction of administered compounds that reach the portal blood (FaFg), is calculated by dividing bioavailability (F) by hepatic availability (Fh), and F is obtained from pharmacokinetic data from both intravenous (i.v.) and oral (p.o.) administration. However, human FaFg of polyphenols is hardly reported, as human i.v. data are extremely scarce. In this study, we developed an estimation method for FaFg of polyphenols in humans based on the extrapolation of rat clearance using allometric scaling (allometric scaling-based FaFg calculation method, AS- FaFgCM). First, for quercetin, for which human i.v. data have been reported, we compared the FaFg obtained by AS-FaFgCM with the traditional approach using human i.v. and p.o. data. Less than two-fold difference in FaFg values was observed between the two approaches. Next, we obtained FaFg of structurally diverse polyphenols (genistein, baicalein, resveratrol, and epicatechin) using AS-FaFgCM, demonstrating that all of them were poorly absorbable. Furthermore, to utilize the pharmacokinetic data of the total concentration, including aglycones and metabolites, we modified the AS-FaFgCM to focus on their excretion. The FaFg value of naringenin was obtained using modified AS-FaFgCM and was nearly equal to that of baicalein, a structural isomer of naringenin. This study provides quantitative information on the intestinal absorption of polyphenols using comprehensive estimation methods.
Collapse
Affiliation(s)
| | | | - Yuichi Ito
- Kao Corporation, Safety Science Research
| | | |
Collapse
|
6
|
Li R, Robinson M, Ding X, Geetha T, Al-Nakkash L, Broderick TL, Babu JR. Genistein: A focus on several neurodegenerative diseases. J Food Biochem 2022; 46:e14155. [PMID: 35460092 DOI: 10.1111/jfbc.14155] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases are caused by the progressive loss of function or structure of nerve cells in the central nervous system. The most common neurodegenerative diseases include Alzheimer's disease, Huntington's disease, motor neuron disease, and Parkinson's disease. Although the physical or mental symptoms of neurodegenerative disease may be relieved by various treatment combinations, there are currently no strategies to directly slow or prevent neurodegeneration. Given the demographic evidence of a rapidly growing aging population and the associated prevalence of these common neurodegenerative diseases, it is paramount to develop safe and effective ways to protect against neurodegenerative diseases. Most neurodegenerative diseases share some common etiologies such as oxidative stress, neuroinflammation, and mitochondrial dysfunction. Genistein is an isoflavone found in soy products that have been shown to exhibit antioxidant, anti-inflammation, and estrogenic properties. Increasing evidence indicates the protective potential of genistein in neurodegenerative disorders. In this review, we aim to provide an overview of the role that genistein plays in delaying the development of neurodegenerative disease. PRACTICAL APPLICATIONS: Genistein is a naturally occurring isoflavone found mainly in soybean, but also green peas, legumes, and peanuts. Genistein is found to pass through the blood-brain barrier and possess a neuroprotective effect. In this review, we discuss studies in support of these actions and the underlying biological mechanisms. Together, these data indicate that genistein may hold neuroprotective effects in either delaying the onset or relieving the symptoms of neurodegenerative disease.
Collapse
Affiliation(s)
- Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
| | - Megan Robinson
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
| | - Xiaowen Ding
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA
| | - Layla Al-Nakkash
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - Tom L Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
7
|
Ke DYJ, El-Sahli S, Wang L. The Potential of Natural Products in the Treatment of Triple-Negative Breast Cancer. Curr Cancer Drug Targets 2021; 22:388-403. [PMID: 34970954 DOI: 10.2174/1568009622666211231140623] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks receptors for targeted therapy. Consequently, chemotherapy is currently the mainstay of systemic treatment options. However, the enrichment of cancer stem cells (CSC, a subpopulation with stem-cell characteristics and tumor-initiating propensity) promotes chemo-resistance and tumorigenesis, resulting in cancer recurrence and relapse. Furthermore, toxic side effects of chemotherapeutics reduce patient wellbeing. Natural products, specifically compounds derived from plants, have the potential to treat TNBC and target CSCs by inhibiting CSC signaling pathways. Literature evidence from six promising compounds were reviewed, including sulforaphane, curcumin, genistein, resveratrol, lycopene, and epigallocatechin-3-gallate. These compounds have been shown to promote cell cycle arrest and apoptosis in TNBC cells. They also could inhibit the epithelial-mesenchymal transition (EMT) that plays an important role in metastasis. In addition, those natural compounds have been found to inhibit pathways important for CSCs, such as NF-κB, PI3K/Akt/mTOR, Notch 1, Wnt/β-catenin, and YAP. Clinicals trials conducted on these compounds have shown varying degrees of effectiveness. Epidemiological case-control studies for the compounds commonly consumed in certain human populations have also been summarized. While in vivo and in vitro data are promising, further basic and clinical investigations are required. Likely, natural products in combination with other drugs may hold great potential to improve TNBC treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
- Danny Yu Jia Ke
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- The Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Sara El-Sahli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- The Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- The Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
8
|
Enhancement of the Topical Bioavailability and Skin Whitening Effect of Genistein by Using Microemulsions as Drug Delivery Carriers. Pharmaceuticals (Basel) 2021; 14:ph14121233. [PMID: 34959634 PMCID: PMC8703605 DOI: 10.3390/ph14121233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
Genistein, the most abundant isoflavone of the soy-derived phytoestrogen compounds, is a potent antioxidant and inhibitor of tyrosine kinase, which can inhibit UVB-induced skin carcinogenesis in hairless mice and UVB-induced erythema on human skin. In current study, genistein-loaded microemulsions were developed by using the various compositions of oil, surfactants, and co-surfactants and used as a drug delivery carrier to improve the solubility, peremability, skin whitening, and bioavailbility of genistein. The mean droplet size and polydispersity index of all formulations was less than 100 nm and 0.26 and demonstrated the formation of microemulsions. Similarly, various studies, such as permeation, drug skin deposition, pharmacokinetics, skin whitening test, skin irritation, and stability, were also conducted. The permeability of genistein was significantly affected by the composition of microemulsion formulation, particular surfactnat, and cosurfactant. In-vitro permeation study revealed that both permeation rate and deposition amount in skin were significantly increased from 0.27 μg/cm2·h up to 20.00 μg/cm2·h and 4.90 up to 53.52 μg/cm2, respectively. In in-vivo whitening test, the change in luminosity index (ΔL*), tended to decrease after topical application of genistein-loaded microemulsion. The bioavailability was increased 10-fold by topical administration of drug-loaded microemulsion. Conclusively, the prepared microemulsion has been enhanced the bioavailability of genistein and could be used for clinical purposes.
Collapse
|
9
|
Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, Ahmad B, Atif M, Mubarak MS, Sytar O, Zhilina OM, Garsiya ER, Smeriglio A, Trombetta D, Pons DG, Martorell M, Cardoso SM, Razis AFA, Sunusi U, Kamal RM, Rotariu LS, Butnariu M, Docea AO, Calina D. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3268136. [PMID: 34336089 PMCID: PMC8315847 DOI: 10.1155/2021/3268136] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Genistein is an isoflavone first isolated from the brooming plant Dyer's Genista tinctoria L. and is widely distributed in the Fabaceae family. As an isoflavone, mammalian genistein exerts estrogen-like functions. Several biological effects of genistein have been reported in preclinical studies, such as the antioxidant, anti-inflammatory, antibacterial, and antiviral activities, the effects of angiogenesis and estrogen, and the pharmacological activities on diabetes and lipid metabolism. The purpose of this review is to provide up-to-date evidence of preclinical pharmacological activities with mechanisms of action, bioavailability, and clinical evidence of genistein. The literature was researched using the most important keyword "genistein" from the PubMed, Science, and Google Scholar databases, and the taxonomy was validated using The Plant List. Data were also collected from specialized books and other online resources. The main positive effects of genistein refer to the protection against cardiovascular diseases and to the decrease of the incidence of some types of cancer, especially breast cancer. Although the mechanism of protection against cancer involves several aspects of genistein metabolism, the researchers attribute this effect to the similarity between the structure of soy genistein and that of estrogen. This structural similarity allows genistein to displace estrogen from cellular receptors, thus blocking their hormonal activity. The pharmacological activities resulting from the experimental studies of this review support the traditional uses of genistein, but in the future, further investigations are needed on the efficacy, safety, and use of nanotechnologies to increase bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-, 23561 Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-, Pakistan
| | | | - Bashir Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar-, 25120 KPK, Pakistan
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Oxana Mihailovna Zhilina
- Department of Organic Chemistry, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Ekaterina Robertovna Garsiya
- Department of Pharmacognosy, Botany and Technology of Phytopreparations, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional (GMOT), Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears (UIB), Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma 07122, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepción 4070386, Chile
| | - Susana M Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, PMB 3011 Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, PMB 7156 Dutse Jigawa State, Nigeria
| | - Lia Sanda Rotariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
10
|
Donovan MG, Selmin OI, Doetschman TC, Romagnolo DF. Epigenetic Activation of BRCA1 by Genistein In Vivo and Triple Negative Breast Cancer Cells Linked to Antagonism toward Aryl Hydrocarbon Receptor. Nutrients 2019; 11:nu11112559. [PMID: 31652854 PMCID: PMC6893467 DOI: 10.3390/nu11112559] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancers (TNBC) are the most aggressive and lethal breast cancers (BC). The aryl hydrocarbon receptor (AHR) is often overexpressed in TNBC, and its activation results in the epigenetic silencing of BRCA1, which is a necessary factor for the transcriptional activation of estrogen receptor (ER)α. The dietary isoflavone genistein (GEN) modulates BRCA1 CpG methylation in BC cells. The purpose of this study was to investigate the effect of GEN on BRCA1 epigenetic regulation and AHR activity in vivo and TNBC cells. Mice were administered a control or GEN-enriched (4 and 10 ppm) diet from gestation through post-natal day 50. Mammary tissue was analyzed for changes in BRCA1 regulation and AhR activity. TNBC cells with constitutively hypermethylated BRCA1 (HCC38) and MCF7 cells were used. Protein levels and mRNA expression were measured by Western blot and real-time PCR, respectively. BRCA1 promoter occupancy and CpG methylation were analyzed by chromatin immunoprecipitation and methylation-specific PCR, respectively. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. GEN administered in the diet dose-dependently decreased basal Brca1 methylation and AHR activity in the mammary gland of adult mice. HCC38 cells were found to overexpress constitutively active AHR in parallel with BRCA1 hypermethylation. The treatment of HCC38 cells with GEN upregulated BRCA1 protein levels, which was attributable to decreased CpG methylation and AHR binding at BRCA1 exon 1a. In MCF7 cells, GEN prevented the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-dependent localization of AHR at the BRCA1 gene. These effects were consistent with those elicited by control AHR antagonists galangin (GAL), CH-223191, and α-naphthoflavone. The pre-treatment with GEN sensitized HCC38 cells to the antiproliferative effects of 4-hydroxytamoxifen. We conclude that the dietary compound GEN may be effective for the prevention and reversal of AHR-dependent BRCA1 hypermethylation, and the restoration of ERα-mediated response, thus imparting the sensitivity of TNBC to antiestrogen therapy.
Collapse
Affiliation(s)
- Micah G Donovan
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA.
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA.
| | - Ornella I Selmin
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA.
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Thomas C Doetschman
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA.
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA.
| | - Donato F Romagnolo
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA.
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
11
|
Katyayan KK, Hui YH. An evaluation of metabolite profiling of six drugs using dried blood spot. Xenobiotica 2019; 49:1458-1469. [DOI: 10.1080/00498254.2019.1572938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | - Yu-Hua Hui
- Drug Disposition, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
12
|
Ronis MJ, Gomez-Acevedo H, Shankar K, Sharma N, Blackburn M, Singhal R, Mercer KE, Badger TM. EB 2017 Article: Soy protein isolate feeding does not result in reproductive toxicity in the pre-pubertal rat testis. Exp Biol Med (Maywood) 2019; 243:695-707. [PMID: 29763383 DOI: 10.1177/1535370218771333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The isoflavone phytoestrogens found in the soy protein isolate used in soy infant formulas have been shown to have estrogenic actions in the developing male reproductive tract resulting in reproductive toxicity. However, few studies have examined potential estrogenicity of soy protein isolate as opposed to that of pure isoflavones. In this study, we fed weanling male Sprague-Dawley rats a semi-purified diet with casein or soy protein isolate as the sole protein source from postnatal day 21 to 33. Additional groups were fed casein or soy protein isolate and treated s.c. with 10 µg/kg/d estradiol via osmotic minipump. Estradiol treatment reduced testis, prostate weights, and serum androgen concentrations ( P < 0.05). Soy protein isolate had no effect. Estradiol up-regulated 489 and down-regulated 1237 testicular genes >1.5-fold ( P < 0.05). In contrast, soy protein isolate only significantly up-regulated expression of 162 genes and down-regulated 16 genes. The top 30 soy protein isolate-up-regulated genes shared 93% concordance with estradiol up-regulated genes. There was little overlap between soy protein isolate down-regulated genes and those down-regulated by estradiol treatment. Functional annotation analysis revealed significant differences in testicular biological processes affected by estradiol or soy protein isolate. Estradiol had major actions on genes involved in reproductive processes including down-regulation of testicular steroid synthesis and expression of steroid receptor activated receptor (Star) and cytochrome P450 17α-hydroxylase/(Cyp17a1). In contrast, soy protein isolate primarily affected pathways associated with macromolecule modifications including ubiquitination and histone methylation. Our results indicate that rather than acting as a weak estrogen in the developing testis, soy protein isolate appears to act as a selective estrogen receptor modulator with little effect on reproductive processes. Impact statement Soy protein isolate (SPI) is the sole protein used to make soy-based infant formulas. SPI contains phytoestrogens, which are structurally similar to estradiol. These phytoestrogens, daidzein, genistein, and equol, fit the definition of endocrine-disrupting compounds, and at high concentrations, have estrogenic actions resulting in reproductive toxicity in the developing male, when provided as isolated chemicals. However, few animal studies have examined the potential estrogenicity of SPI as opposed to pure isoflavones. In this study, SPI feeding did not elicit an estrogenic response in the testis nor any adverse outcomes including reduced testicular growth, or androgen production during early development in rats when compared to those receiving estradiol. These findings are consistent with emerging data showing no differences in reproductive development in males and female children that received breast milk, cow's milk formula, or soy infant formula during the postnatal feeding period.
Collapse
Affiliation(s)
- Martin Jj Ronis
- 1 Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center - New Orleans, LA 70112, USA
| | - Horacio Gomez-Acevedo
- 2 Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kartik Shankar
- 3 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| | - Neha Sharma
- 4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| | | | - Rohit Singhal
- 4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| | - Kelly E Mercer
- 3 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| | - Thomas M Badger
- 3 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| |
Collapse
|
13
|
Tyagi N, Song YH, De R. Recent progress on biocompatible nanocarrier-based genistein delivery systems in cancer therapy. J Drug Target 2018; 27:394-407. [PMID: 30124078 DOI: 10.1080/1061186x.2018.1514040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diets with naturally occuring chemopreventive agents are showing good potentials in serving dual purposes: firstly, for maintaining health, and secondly, for emerging as most puissant cost-effective strategy against chronic diseases like cancer. Genistein, one of the active soy isoflavone, is gaining attention due to its ability to impede carcinogenic processes by regulating wide range of associated molecules and signalling mechanisms. Epidemiologic and preclinical evidences suggest that sufficient consumption of soy-based food having genistein can be correlated to the reduction of cancer risk. However, certain adverse effects like poor oral bioavailability, low aqueous solubility and inefficient pharmacokinetics have pushed it down in the list of phytoconstituents currently undergoing successful clinical trials. In order to maximise the utilisation of therapeutic benefits of this phytoestrogen, suitable drug carrier designs are required. Recently, nanocarriers, mainly composed of polymeric materials, are progressively and innovatively exploited with the aim to improve pharmacokinetics and pharmacodynamics of genistein. Here, we have briefly reviewed (a) the targeted molecular mechanisms of geinstein, (b) nanopolymeric approaches opted so far in designing carriers and (c) the reasons behind their restricted clinical applications. Finally, some mechanism-based approaches are proposed presenting genistein as the future paradigm in cancer therapy.
Collapse
Affiliation(s)
- Nisha Tyagi
- a Department of Chemistry , Gwangju Institute of Science and Technology (GIST) , Gwangju , South Korea
| | - Yo Han Song
- a Department of Chemistry , Gwangju Institute of Science and Technology (GIST) , Gwangju , South Korea
| | - Ranjit De
- a Department of Chemistry , Gwangju Institute of Science and Technology (GIST) , Gwangju , South Korea
| |
Collapse
|
14
|
Genistein: Its role in metabolic diseases and cancer. Crit Rev Oncol Hematol 2017; 119:13-22. [PMID: 29065980 DOI: 10.1016/j.critrevonc.2017.09.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/23/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Genistein is an isoflavone present in soy and is known to have multiple molecular effects, such as the inhibition of inflammation, promotion of apoptosis, and modulation of steroidal hormone receptors and metabolic pathways. Since these molecular effects impact carcinogenesis, cancer propagation, obesity, osteoporosis, and metabolic syndromes, genistein plays an important role in preventing and treating common disorders. The role of genistein has not been adequately evaluated in all these clinical settings. This review summarizes some of the known molecular effects of genistein and its potential role in health maintenance and treatment.
Collapse
|
15
|
Lee JA, Ha SK, Kim YC, Choi I. Effects of friedelin on the intestinal permeability and bioavailability of apigenin. Pharmacol Rep 2017; 69:1044-1048. [PMID: 28939344 DOI: 10.1016/j.pharep.2017.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/29/2017] [Accepted: 04/13/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although apigenin possesses diverse pharmacological activities, its utilization as a bioactive substance is limited by poor oral bioavailability. The aim of this study was to improve the bioavailability of apigenin by co-administration of friedelin. METHODS To achieve this, the intestinal permeability of apigenin in the absence or presence of friedelin was investigated in both Caco-2 cells and single-pass rat intestinal perfusion models. RESULTS The apparent permeability coefficients (Papp) of apigenin in the presence of friedelin were substantially increased by 1.63- and 1.60-fold in Caco-2 cells and single-pass rat intestinal perfusion models, respectively. Such increases in the Papp indicated that friedelin could significantly enhance the absorption of apigenin into the body. The increased bioavailability of apigenin in rats following the oral administration of apigenin 50mg/kg body weight with friedelin 50mg/kg body weight was further confirmed by increases in the peak concentration of apigenin (Cmax), elimination half-life (T1/2) and area under the plasma concentration-time curve (AUC). CONCLUSIONS Friedelin suppressed ATPase activity of P-glycoprotein (P-gp) indicated that the improved bioavailability of apigenin may be ascribed to P-gp inhibition by the co-administered friedelin.
Collapse
Affiliation(s)
- Jin-Ah Lee
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Anyangpangyoro, Seongnam, Gyeonggi, Republic of Korea
| | - Sang Keun Ha
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Anyangpangyoro, Seongnam, Gyeonggi, Republic of Korea
| | - Young-Chan Kim
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Anyangpangyoro, Seongnam, Gyeonggi, Republic of Korea
| | - Inwook Choi
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Anyangpangyoro, Seongnam, Gyeonggi, Republic of Korea.
| |
Collapse
|
16
|
Pharmacokinetics of isoflavones from soy infant formula in neonatal and adult rhesus monkeys. Food Chem Toxicol 2016; 92:165-76. [PMID: 27084109 DOI: 10.1016/j.fct.2016.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Consumption of soy infant formula represents a unique exposure scenario in which developing children ingest a mixture of endocrine-active isoflavones along with a substantial portion of daily nutrition. Genistein and daidzein were administered as glucoside conjugates to neonatal rhesus monkeys in a fortified commercial soy formula at 5, 35, and 70 days after birth. A single gavage dosing with 10 mg/kg bw genistein and 6 mg/kg bw daidzein was chosen to represent the upper range of typical daily consumption and to facilitate complete pharmacokinetic measurements for aglycone and total isoflavones and equol. Adult monkeys were also gavaged with the same formula solution at 2.8 and 1.6 mg/kg bw genistein and daidzein, respectively, and by IV injection with isoflavone aglycones (5.2 and 3.2 mg/kg bw, respectively) to determine absolute bioavailability. Significant differences in internal exposure were observed between neonatal and adult monkeys, with higher values for dose-adjusted AUC and Cmax of the active aglycone isoflavones in neonates. The magnitude and frequency of equol production by the gut microbiome were also significantly greater in adults. These findings are consistent with immaturity of metabolic and/or physiological systems in developing non-human primates that reduces total clearance of soy isoflavones from the body.
Collapse
|
17
|
van Bree BWJ, Lenaers E, Nabben M, Briedé JJ, Jörgensen JA, Schaart G, Schrauwen P, Hoeks J, Hesselink MKC. A genistein-enriched diet neither improves skeletal muscle oxidative capacity nor prevents the transition towards advanced insulin resistance in ZDF rats. Sci Rep 2016; 6:22854. [PMID: 26973284 PMCID: PMC4789602 DOI: 10.1038/srep22854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/26/2016] [Indexed: 01/07/2023] Open
Abstract
Genistein, a natural food compound mainly present in soybeans, is considered a potent antioxidant and to improve glucose homeostasis. However, its mechanism of action remains poorly understood. Here, we analyzed whether genistein could antagonize the progression of the hyperinsulinemic normoglycemic state (pre-diabetes) toward full-blown T2DM in Zucker Diabetic Fatty (ZDF) rats by decreasing mitochondrial oxidative stress and improving skeletal muscle oxidative capacity. Rats were assigned to three groups: (1) lean control (CNTL), (2) fa/fa CNTL, and (3) fa/fa genistein (GEN). GEN animals were subjected to a 0.02% (w/w) genistein-enriched diet for 8 weeks, whereas CNTL rats received a standard diet. We show that genistein did not affect the overall response to a glucose challenge in ZDF rats. In fact, genistein may exacerbate glucose intolerance as fasting glucose levels were significantly higher in fa/fa GEN (17.6 ± 0.7 mM) compared with fa/fa CNTL animals (14.9 ± 1.4 mM). Oxidative stress, established by electron spin resonance (ESR) spectroscopy, carbonylated protein content and UCP3 levels, remained unchanged upon dietary genistein supplementation. Furthermore, respirometry measurements revealed no effects of genistein on mitochondrial function. In conclusion, dietary genistein supplementation did not improve glucose homeostasis, alleviate oxidative stress, or augment skeletal muscle metabolism in ZDF rats.
Collapse
Affiliation(s)
- Bianca W J van Bree
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ellen Lenaers
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Miranda Nabben
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Jacco J Briedé
- Department of Toxicogenomics, GROW School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Johanna A Jörgensen
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Gert Schaart
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Patrick Schrauwen
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Joris Hoeks
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Matthijs K C Hesselink
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
18
|
Risk assessment for peri- and post-menopausal women taking food supplements containing isolated isoflavones. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4246] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
19
|
Sun L, Zhao T, Ju T, Wang X, Li X, Wang L, Zhang L, Yu G. A Combination of Intravenous Genistein Plus Mg2+ Enhances Antihypertensive Effects in SHR by Endothelial Protection and BKCa Channel Inhibition. Am J Hypertens 2015; 28:1114-20. [PMID: 25714131 DOI: 10.1093/ajh/hpv005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/12/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The effects of combining genistein (GST) plus magnesium (Mg) upon the development of hypertension were examined in 28 twelve-week-old male spontaneous hypertension rats (SHRs). Four experimental groups were tested: SHR (0.9% NaCl and DMSO), SHR + GST (0.9% NaCl and GST 5mg/kg/day), SHR + Mg (Mg(2+) 0.75 mmol/kg/day and DMSO), and SHR + GST + Mg (Mg(2+) 0.75 mmol/kg/day and GST 5mg/kg/day). A group of normotensive genetic control, Wistar-Kyoto (WKY) rats were also included for comparison. Drugs were administrated intravenously daily for 30 days. METHODS Systolic blood pressure (SBP) and heart rate were measured by tail-cuff plethysmography every five days. Vascular tone of mesenteric arteries was examined by an isometric force transducer. Big-conductance calcium-activated potassium channel (BKCa) currents were detected by whole-cell patch-clamp techniques. RESULTS SBP in SHRs was significantly elevated vs. that in WKY rats. GST or Mg lowered SBP of SHRs. Their combination enhanced antihypertensive effects, as indicated by significantly lowered SBP and shorter onset times. GST or Mg individually improved endothelial dysfunction of SHRs. However, again their combination enhanced endothelial protection, nearly restoring maximal relaxation responses to those seen in WKY. BKCa currents in SHRs were increased compared with WKY rats. GST, Mg, and their combination restored BKCa currents to those of WKY rats. CONCLUSIONS The combination of GST and Mg produces antihypertensive effects and improvement of endothelial dysfunction, which are substantially greater than that when either is used individually. These results suggest a novel and feasible protocol for the prevention and treatment of hypertension and related cardio- and cerebro-vascular diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Tingting Zhao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ting Ju
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xiaoran Wang
- Department of Physiology, Harbin Medical University, Harbin 150086, China
| | - Xiaoli Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Lei Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Liming Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China;
| | - Guichun Yu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
20
|
Islam MA, Hooiveld GJEJ, van den Berg JHJ, Boekschoten MV, van der Velpen V, Murk AJ, Rietjens IMCM, van Leeuwen FXR. Plasma bioavailability and changes in PBMC gene expression after treatment of ovariectomized rats with a commercial soy supplement. Toxicol Rep 2015; 2:308-321. [PMID: 28962364 PMCID: PMC5598277 DOI: 10.1016/j.toxrep.2014.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 11/02/2022] Open
Abstract
The health effects of soy supplementation in (post)menopausal women are still a controversial issue. The aim of the present study was to establish the effect of the soy isoflavones (SIF) present in a commercially available supplement on ovariectomized rats and to investigate whether these rats would provide an adequate model to predict effects of SIF in (post)menopausal women. Two dose levels (i.e. 2 and 20 mg/kg b.w.) were used to characterize plasma bioavailability, urinary and fecal concentrations of SIF and changes in gene expression in peripheral blood mononuclear cells (PBMC). Animals were dosed at 0 and 48 h and sacrificed 4 h after the last dose. A clear dose dependent increase of SIF concentrations in plasma, urine and feces was observed, together with a strong correlation in changes in gene expression between the two dose groups. All estrogen responsive genes and related biological pathways (BPs) that were affected by the SIF treatment were regulated in both dose groups in the same direction and indicate beneficial effects. However, in general no correlation was found between the changes in gene expression in rat PBMC with those in PBMC of (post)menopausal women exposed to a comparable dose of the same supplement. The outcome of this short-term study in rats indicates that the rat might not be a suitable model to predict effects of SIF in humans. Although the relative exposure period in this rat study is comparable with that of the human study, longer repetitive administration of rats to SIF may be required to draw a final conclusion on the suitability of the rat a model to predict effects of SIF in humans.
Collapse
Key Words
- BPs, biological pathways
- Bioavailability
- DMSO, dimethyl sulfoxide
- Dose effect
- E2, estradiol
- ECM, extracellular matrix
- EREs, estrogen-responsive elements
- ERs, estrogen receptors
- GSEA, gene set enrichment analysis
- Gene expression
- HD, high dose
- HPLC, high performance liquid chromatography
- KEGG, kyoto encyclopedia of genes and genomes
- LD, low dose
- MDS, multidimensional scaling
- NCBI, National Center for Biotechnology Information
- PBMC, peripheral blood mononuclear cells
- SIF, soy isoflavones
- Soy supplementation
- Species differences
- UPC, universal expression code
Collapse
Affiliation(s)
- Mohammed A Islam
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Guido J E J Hooiveld
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, The Netherlands
| | | | - Mark V Boekschoten
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, The Netherlands
| | - Vera van der Velpen
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, The Netherlands.,Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Albertinka J Murk
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - F X Rolaf van Leeuwen
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| |
Collapse
|
21
|
Panizzon GP, Bueno FG, Ueda-Nakamura T, Nakamura CV, Dias Filho BP. Preparation of Spray-Dried Soy Isoflavone-Loaded Gelatin Microspheres for Enhancement of Dissolution: Formulation, Characterization and in Vitro Evaluation. Pharmaceutics 2014; 6:599-615. [PMID: 25494200 PMCID: PMC4279135 DOI: 10.3390/pharmaceutics6040599] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/30/2014] [Accepted: 11/14/2014] [Indexed: 11/25/2022] Open
Abstract
The most bioactive soy isoflavones (SI), daidzein (DAI) and genistein (GEN) have poor water solubility, which reduces their bioavailability and health benefits and limits their use in industry. The goal of this study was to develop and characterize a new gelatin matrix to microencapsulate DAI and GEN from soy extract (SE) by spray drying, in order to obtain solid dispersions to overcome solubility problems and to allow controlled release. The influences of 1:2 (MP2) and 1:3 (MP3) SE/polymer ratios on the solid state, yield, morphology, encapsulation efficiency, particle size distribution, release kinetics and cumulative release were evaluated. Analyses showed integral microparticles and high drug content. MP3 and MP2 yield were 43.6% and 55.9%, respectively, with similar mean size (p > 0.05), respectively. X-ray diffraction revealed the amorphous solid state of SE. In vitro release tests showed that dissolution was drastically increased. The results indicated that SE microencapsulation might offer a good system to control SI release, as an alternative to improve bioavailability and industrial applications.
Collapse
Affiliation(s)
- Gean Pier Panizzon
- Pharmaceutical Sciences Postgraduate Program, Department of Pharmacy, State University of Maringá, Av. Colombo, 5790, Maringá, 87020-900, PR, Brazil.
| | - Fernanda Giacomini Bueno
- Pharmaceutical Sciences Postgraduate Program, Department of Pharmacy, State University of Maringá, Av. Colombo, 5790, Maringá, 87020-900, PR, Brazil.
| | - Tânia Ueda-Nakamura
- Pharmaceutical Sciences Postgraduate Program, Department of Pharmacy, State University of Maringá, Av. Colombo, 5790, Maringá, 87020-900, PR, Brazil.
| | - Celso Vataru Nakamura
- Pharmaceutical Sciences Postgraduate Program, Department of Pharmacy, State University of Maringá, Av. Colombo, 5790, Maringá, 87020-900, PR, Brazil.
| | - Benedito Prado Dias Filho
- Pharmaceutical Sciences Postgraduate Program, Department of Pharmacy, State University of Maringá, Av. Colombo, 5790, Maringá, 87020-900, PR, Brazil.
| |
Collapse
|
22
|
Velderrain-Rodríguez GR, Palafox-Carlos H, Wall-Medrano A, Ayala-Zavala JF, Chen CYO, Robles-Sánchez M, Astiazaran-García H, Alvarez-Parrilla E, González-Aguilar GA. Phenolic compounds: their journey after intake. Food Funct 2014; 5:189-97. [PMID: 24336740 DOI: 10.1039/c3fo60361j] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant foods are rich in phenolic compounds (PCs) that display multifaceted bioactions in health promotion and disease prevention. To exert their bioactivity, they must be delivered to and absorbed in the gastrointestinal (GI) tract, transported in circulation, and reach the target tissues. During the journey from ingestion to target tissues and final excretion, PCs are subjected to modifications by many factors during their absorption, deposition, metabolism and excretion (ADME) and consequently their bioefficacy may be modified. Consistent with all nutrients in foods, PCs must first be released from the food matrix through mechanical, chemical, and enzymatic forces to facilitate absorption along the GI tract, particularly in the upper small intestine section. Further, glycosylation of PCs directs the route of their absorption with glycones being transported through active transportation and aglycones through passive diffusion. After enteral absorption, the majority of PCs are extensively transformed by the detoxification system in enterocytes and liver for excretion in bile, feces, and urine. The journey of PCs from consumption to excretion appears to be comparable to many synthetic medications, but with some dissimilarities in their fate and bioactivity after phase I and II metabolism. The overall bioavailability of PCs is determined mainly by chemical characteristics, bioaccessibility, and ADME. In this review, factors accounting for variation in PCs bioavailability are discussed because this information is crucial for validation of the health benefits of PCs and their mechanism of action.
Collapse
Affiliation(s)
- G R Velderrain-Rodríguez
- Research Center for Food & Development (CIAD), AC., Carretera a la Victoria Km 0.6, Hermosillo (83000), Sonora, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chinigarzadeh A, Kassim NM, Muniandy S, Salleh N. Genistein-induced fluid accumulation in ovariectomised rats' uteri is associated with increased cystic fibrosis transmembrane regulator expression. Clinics (Sao Paulo) 2014; 69:111-9. [PMID: 24519202 PMCID: PMC3912340 DOI: 10.6061/clinics/2014(02)07] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/18/2013] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE High genistein doses have been reported to induce fluid accumulation in the uteri of ovariectomised rats, although the mechanism underlying this effect remains unknown. Because genistein binds to the oestrogen receptor and the cystic fibrosis transmembrane regulator mediates uterine fluid secretion, we hypothesised that this genistein effect involves both the oestrogen receptor and cystic fibrosis transmembrane regulator. METHODS Ovariectomised adult female Sprague-Dawley rats were treated with 25, 50, or 100 mg/kg/day genistein for three consecutive days with and without the ER antagonist ICI 182780. One day after the final drug injection, the animals were humanely sacrificed, and the uteri were removed for histology and cystic fibrosis transmembrane regulator mRNA and protein expression analysis using real-time polymerase chain reaction and Western blotting, respectively. The cystic fibrosis transmembrane regulator protein distribution was analysed visually by immunohistochemistry. RESULTS The histological analysis revealed an increase in the circumference of the uterine lumen with increasing doses of genistein, which was suggestive of fluid accumulation. Moreover, genistein stimulated a dose-dependent increase in the expression of cystic fibrosis transmembrane regulator protein and mRNA, and high-intensity cystic fibrosis transmembrane regulator immunostaining was observed at the apical membrane of the luminal epithelium following 50 and 100 mg/kg/day genistein treatment. The genistein-induced increase in uterine luminal circumference and cystic fibrosis transmembrane regulator expression was antagonised by treatment with ICI 182780. CONCLUSION Genistein-induced luminal fluid accumulation in ovariectomised rats' uteri involves the oestrogen receptor and up-regulation of cystic fibrosis transmembrane regulator expression, and these findings reveal the mechanism underlying the effect of this compound on changes in fluid volume in the uterus after menopause.
Collapse
Affiliation(s)
- Asma Chinigarzadeh
- University of Malaya, Faculty of Medicine, Department of Physiology, Kuala Lumpur, Malaysia, University of Malaya, Faculty of Medicine, Department of Physiology, Kuala Lumpur/Malaysia
| | - Normadiah M Kassim
- University of Malaya, Faculty of Medicine, Department of Anatomy, Kuala Lumpur, Malaysia, University of Malaya, Faculty of Medicine, Department of Anatomy, Kuala Lumpur/Malaysia
| | - Sekaran Muniandy
- University of Malaya, Faculty of Medicine, Department of Molecular Medicine, Kuala Lumpur, Malaysia, University of Malaya, Faculty of Medicine, Department of Molecular Medicine, Kuala Lumpur/Malaysia
| | - Naguib Salleh
- University of Malaya, Faculty of Medicine, Department of Physiology, Kuala Lumpur, Malaysia, University of Malaya, Faculty of Medicine, Department of Physiology, Kuala Lumpur/Malaysia
| |
Collapse
|
24
|
Liu W, Kulkarni K, Hu M. Gender-dependent differences in uridine 5'-diphospho-glucuronosyltransferase have implications in metabolism and clearance of xenobiotics. Expert Opin Drug Metab Toxicol 2013; 9:1555-69. [DOI: 10.1517/17425255.2013.829040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Grabowski T, Jaroszewski JJ, Piotrowski W, Sasinowska-Motyl M. Method of variability optimization in pharmacokinetic data analysis. Eur J Drug Metab Pharmacokinet 2013; 39:111-9. [PMID: 23780910 PMCID: PMC4048666 DOI: 10.1007/s13318-013-0145-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/30/2013] [Indexed: 11/11/2022]
Abstract
For many drugs administered per os, high variability in the concentration–time (C–T) values from first sampling to the phase of distribution may cause difficulty in pharmacokinetic analysis. Therefore, the aim of this study was to propose a method of transformation of C–T data, which would allow significantly reducing the standard deviation (SD) value of observed concentrations, without a statistically significant influence on the value of the mean for each sampling point in group. In the presented study, the lowest value of relative standard deviation of concentrations observed in the elimination phase and the value of precision of the used analytical method, were used to optimize the arithmetic, geometric means, median, and the value of SD obtained after single oral administration of itraconazole in human subjects. Non-compartmental modeling was used to estimate pharmacokinetic parameters. The analysis of SD pharmacokinetic parameters after C–T value optimization indicated more than twice the lower value of SD. After transforming the itraconazole data, lower variability of concentration data gives more selective pharmacokinetics profile in absorption and early distribution phase.
Collapse
|
26
|
Yang Z, Kulkarni K, Zhu W, Hu M. Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anticancer Agents Med Chem 2013; 12:1264-80. [PMID: 22583407 DOI: 10.2174/187152012803833107] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 12/11/2022]
Abstract
Genistein, one of the most active natural flavonoids, exerts various biological effects including chemoprevention, antioxidation, antiproliferation and anticancer. More than 30 clinical trials of genistein with various disease indications have been conducted to evaluate its clinical efficacy. Based on many animals and human pharmacokinetic studies, it is well known that the most challenge issue for developing genistein as a chemoprevention agent is the low oral bioavailability, which may be the major reason relating to its ambiguous therapeutic effects and large interindividual variations in clinical trials. In order to better correlate pharmacokinetic to pharmacodynamics results in animals and clinical studies, an in-depth understanding of pharmacokinetic behavior of genistein and its ADME properties are needed. Numerous in vitro/in vivo ADME studies had been conducted to reveal the main factors contributing to the low oral bioavailability of genistein. Therefore, this review focuses on summarizing the most recent progress on mechanistic studies of genistein ADME and provides a systemic view of these processes to explain genistein pharmacokinetic behaviors in vivo. The better understanding of genistein ADME property may lead to development of proper strategy to improve genistein oral bioavailability via mechanism-based approaches.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
27
|
Kulkarni KH, Yang Z, Tao N, Hu M. Effects of estrogen and estrus cycle on pharmacokinetics, absorption, and disposition of genistein in female Sprague-Dawley rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7949-56. [PMID: 22757747 PMCID: PMC4030716 DOI: 10.1021/jf204755g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Genistein is an active soy isoflavone with anticancer activities, but it is unknown why it has a higher oral bioavailability in female than in male rats. Our study determined the effects of estrus cycle on genistein's oral bioavailability. Female rats with various levels of estrogen were orally administered with genistein or used in a four-site rat intestinal perfusion experiment. Rats in "proestrus" group (with elevated estrogen) had significantly reduced (57% decrease, p < 0.05) oral bioavailability of total genistein (aglycone + conjugates) than those in "metoestrus" group (with basal level of estrogen). Female ovariectomized rats, due to lack of estrogen, showed oral bioavailability of total genistein similar to the "metoestrus" group but higher (155% increase, p < 0.05) than the "proestrus" group. On the basis of intestinal perfusion studies, the increased bioavailability was partially attributed to the higher (>100% increase, p < 0.05) hepatic disposition via glucuronidation and possibly more efficient enterohepatic recycling of genistein in the "metoestrus" group. Furthermore, chronic exogenous supplementation of estradiol in ovariectomized rats significantly reduced (77%, p < 0.05) the oral bioavailability of total genistein, mostly via increased sulfation (>10-fold) in liver, to a level comparable to those in the "proestrus" group. In conclusion, the oral bioavailability of total genistein was inversely proportional to elevated estrogen levels in female rats, which is partially mediated through the regulation of hepatic enzymes responsible disposition of genistein.
Collapse
Affiliation(s)
| | | | | | - Ming Hu
- Author to whom correspondence should be addressed [Tel: (713) 795-8320; Fax: (713) 795-8305. ]
| |
Collapse
|
28
|
Yang Z, Zhu W, Gao S, Yin T, Jiang W, Hu M. Breast cancer resistance protein (ABCG2) determines distribution of genistein phase II metabolites: reevaluation of the roles of ABCG2 in the disposition of genistein. Drug Metab Dispos 2012; 40:1883-93. [PMID: 22736306 DOI: 10.1124/dmd.111.043901] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It was recently proposed that the improved oral bioavailability of genistein aglycone and conjugates in Bcrp1(-/-) mice is mainly due to increased intestinal absorption of aglycone and subsequent elevated exposure to conjugation enzymes. Here we tested this proposed mechanism and found that intestinal absorption of genistein aglycone did not increase in Bcrp1(-/-) mice compared with wild-type mice using an in situ mouse intestinal perfusion model and that inhibition of breast cancer resistance protein (BCRP) in Caco-2 cells also did not significantly increase permeability or intracellular concentration of aglycone. Separately, we showed that 5- to 10-fold increases in exposures of conjugates and somewhat lower fold increases (<2-fold) in exposures of aglycone were apparent after both oral and intraperitoneal administration in Bcrp1(-/-) mice. In contrast, the intestinal and biliary excretion of genistein conjugates significantly decreased in Bcrp1(-/-) mice without corresponding changes in aglycone excretion. Likewise, inhibition of BCRP functions in Caco-2 cells altered polarized excretion of genistein conjugates by increasing their basolateral excretion. We further found that genistein glucuronides could be hydrolyzed back to genistein, whereas sulfates were stable in blood. Because genistein glucuronidation rates were 110% (liver) and 50% (colon) higher and genistein sulfation rates were 40% (liver) and 42% (colon) lower in Bcrp1(-/-) mice, the changes in genistein exposures are not mainly due to changes in enzyme activities. In conclusion, improved bioavailability of genistein and increased plasma area under the curve of its conjugates in Bcrp1(-/-) mice is due to altered distribution of genistein conjugates to the systemic circulation.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
29
|
Mahmood J, Jelveh S, Calveley V, Zaidi A, Doctrow SR, Hill RP. Mitigation of lung injury after accidental exposure to radiation. Radiat Res 2011; 176:770-80. [PMID: 22013884 DOI: 10.1667/rr2562.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is a serious need to develop effective mitigators against accidental radiation exposures. In radiation accidents, many people may receive nonuniform whole-body or partial-body irradiation. The lung is one of the more radiosensitive organs, demonstrating pneumonitis and fibrosis that are believed to develop at least partially because of radiation-induced chronic inflammation. Here we addressed the crucial questions of how damage to the lung can be mitigated and whether the response is affected by irradiation to the rest of the body. We examined the widely used dietary supplement genistein given at two dietary levels (750 or 3750 mg/kg) to Fischer rats irradiated with 12 Gy to the lung or 8 Gy to the lung + 4 Gy to the whole body excluding the head and tail (whole torso). We found that genistein had promising mitigating effects on oxidative damage, pneumonitis and fibrosis even at late times (36 weeks) when drug treatment was initiated 1 week after irradiation and stopped at 28 weeks postirradiation. The higher dose of genistein showed no greater beneficial effect. Combined lung and whole-torso irradiation caused more lung-related severe morbidity resulting in euthanasia of the animals than lung irradiation alone.
Collapse
Affiliation(s)
- J Mahmood
- Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, and the Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Mahmood J, Jelveh S, Calveley V, Zaidi A, Doctrow SR, Hill RP. Mitigation of radiation-induced lung injury by genistein and EUK-207. Int J Radiat Biol 2011; 87:889-901. [PMID: 21675818 DOI: 10.3109/09553002.2011.583315] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE We examined the effects of genistein and/or Eukarion (EUK)-207 on radiation-induced lung damage and investigated whether treatment for 0-14 weeks (wks) post-irradiation (PI) would mitigate late lung injury. MATERIALS AND METHODS The lungs of female Sprague-Dawley (SD) rats were irradiated with 10 Gy. EUK-207 was delivered by infusion and genistein was delivered as a dietary supplement starting immediately after irradiation (post irradiation [PI]) and continuing until 14 wks PI. Rats were sacrificed at 0, 4, 8, 14 and 28 wks PI. Breathing rate was monitored and lung fibrosis assessed by lung hydroxyproline content at 28 wks. DNA damage was assessed by micronucleus (MN) assay and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels. The expression of the cytokines Interleukin (IL)-1α, IL-1β, IL-6, Tumor necrosis factor (TNF)-α and Transforming growth factor (TGF)-β1, and macrophage activation were analyzed by immunohistochemistry. RESULTS Increases in breathing rate observed in the irradiated rats were significantly reduced by both drug treatments during the pneumonitis phase and the later fibrosis phase. The drug treatments decreased micronuclei (MN) formation from 4-14 wks but by 28 wks the MN levels had increased again. The 8-OHdG levels were lower in the drug treated animals at all time points. Hydroxyproline content and levels of activated macrophages were decreased at 28 wks in all drug treated rats. The treatments had limited effects on the expression of the cytokines. CONCLUSION Genistein and EUK-207 can provide partial mitigation of radiation-induced lung damage out to at least 28 wks PI even after cessation of treatment at 14 wks PI.
Collapse
Affiliation(s)
- Javed Mahmood
- Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, and the Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Barnes S, Prasain J, D'Alessandro T, Arabshahi A, Botting N, Lila MA, Jackson G, Janle EM, Weaver CM. The metabolism and analysis of isoflavones and other dietary polyphenols in foods and biological systems. Food Funct 2011; 2:235-44. [PMID: 21779561 DOI: 10.1039/c1fo10025d] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Polyphenols in dietary and botanical matrices are usually present as simple and complex O-glycosides. In fermented dietary materials, the glycosidic moiety is removed and accompanied in some cases by more complex changes to the polyphenol. As for most xenobiotics, polyphenols undergo phase II conjugation in the intestinal wall during their absorption from the gut. In contrast, a few polyphenols, such as puerarin in the kudzu vine, are C-glycosides and are stable in the gut and during absorption, distribution and excretion. Large bowel bacteria reduce polyphenol aglycones, causing opening of the heterocyclic B-ring and ring cleavage. The products are mostly absorbed and enter the bloodstream. Phase I and II metabolism events occur in the intestine and the liver - most polyphenols predominantly circulate as β-glucuronides and sulfate esters with very little as the aglycones, the presumed active forms. In addition, metabolism can occur in non-hepatic tissues and cells including breast tumor cells that have variable amounts of cytochrome P450s, sulfatase and sulfotransferase activities. Inflammatory cells produce chemical oxidants (HOCl, HOBr, ONO(2)(-)) that will react with polyphenols. The isoflavones daidzein and genistein and the flavonol quercetin form mono- and dichlorinated products in reaction with HOCl. Genistein is converted to 3'-nitrogenistein in the lung tissue of lipopolysaccharide-treated rats. Whereas polyphenols that can be converted to quinones or epoxides react with glutathione (GSH) to form adducts, chlorinated isoflavones do not react with GSH; instead, they are converted to β-glucuronides and are excreted in bile. Analysis of polyphenols and their metabolites is routinely carried out with great sensitivity, specificity and quantification by LC-tandem mass spectrometry. Critical questions about the absorption and tissue uptake of complex polyphenols such as the proanthocyanins can be answered by labeling these polyphenols with (14)C-sucrose in plant cell culture and then purifying them for use in animal experiments. The (14)C signature is quantified using accelerator mass spectrometry, a technique capable of detecting one (14)C atom in 10(15) carbon atoms. This permits the study of the penetration of the polyphenols into the interstitial fluid, the fluid that is actually in contact with non-vascular cells.
Collapse
Affiliation(s)
- Stephen Barnes
- Department of Pharmacology & Toxicology, MCLM 452, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
PAMPA permeability, plasma protein binding, blood partition, pharmacokinetics and metabolism of formononetin, a methoxylated isoflavone. Food Chem Toxicol 2011; 49:1056-62. [DOI: 10.1016/j.fct.2011.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 01/11/2023]
|
33
|
Andrade JE, Twaddle NC, Helferich WG, Doerge DR. Absolute bioavailability of isoflavones from soy protein isolate-containing food in female BALB/c mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4529-36. [PMID: 20225898 PMCID: PMC4094339 DOI: 10.1021/jf9039843] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Soy isoflavones, genistein and daidzein, are widely consumed in soy-based foods and dietary supplements for their putative health benefits; however, evidence for potential adverse effects has been obtained from experimental animal studies. An important prerequisite for understanding the pharmacodynamics of isoflavones is better information about pharmacokinetics and bioavailability. This study determined the bioavailability of genistein and daidzein in a mouse model by comparing plasma pharmacokinetics of their aglycone and conjugated forms following administration of identical doses (1.2 mg/kg genistein and 0.55 mg/kg daidzein) by either an intravenous injection (IV) or gavage of the aglycones in 90% aqueous solution vs a bolus administration of equimolar doses delivered in a food pellet prepared using commercial soy protein isolate (SPI) as the isoflavone source. The bioavailability of genistein and daidzein was equivalent for the gavage and dietary routes of administration despite the use of isoflavone aglycones in the former and SPI-derived glucosides in the latter. While absorption of total isoflavones was nearly quantitative from both oral routes [>84% of areas under the curve (AUCs) for IV], presystemic and systemic phase II conjugation greatly attenuated internal exposures to the receptor-active aglycone isoflavones (9-14% for genistein and 29-34% for daidzein based on AUCs for IV). These results show that SPI is an efficient isoflavone delivery vehicle capable of providing significant proportions of the total dose into the circulation in the active aglycone form for distribution to receptor-bearing tissues and subsequent pharmacological effects that determine possible health benefits and/or risks.
Collapse
Affiliation(s)
- Juan E. Andrade
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois 61801
| | - Nathan C. Twaddle
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - William G. Helferich
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois 61801
- Corresponding authors [(D.R.D.) telephone (870) 543-7943, fax (870) 543-7720, ; (W.G.H.) telephone (217) 244-5414, fax (217) 244-9522, ;]
| | - Daniel R. Doerge
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
- Corresponding authors [(D.R.D.) telephone (870) 543-7943, fax (870) 543-7720, ; (W.G.H.) telephone (217) 244-5414, fax (217) 244-9522, ;]
| |
Collapse
|
34
|
Yang Z, Zhu W, Gao S, Xu H, Wu B, Kulkarni K, Singh R, Tang L, Hu M. Simultaneous determination of genistein and its four phase II metabolites in blood by a sensitive and robust UPLC-MS/MS method: Application to an oral bioavailability study of genistein in mice. J Pharm Biomed Anal 2010; 53:81-9. [PMID: 20378296 DOI: 10.1016/j.jpba.2010.03.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/07/2010] [Accepted: 03/08/2010] [Indexed: 11/26/2022]
Abstract
The purpose of this research was to develop a sensitive and reproducible UPLC-MS/MS method to simultaneously quantify genistein, genistein-7-O-glucuronide (G-7-G), genistein-4'-O-glucuronide (G-4'-G), genistein-4'-O-sulfate (G-4'-S) and genistein-7-O-sulfate (G-7-S) in mouse blood samples. After the method was fully validated over a wide linear range, it was applied to quantify the levels of genistein and its metabolites in a mouse bioavailability study. The linear response range was 19.5-10,000 nM for genistein, 12.5-3200 nM for G-7-G, 20-1280 nM for G-4'-G, 1.95-2000 nM for G-4'-S, and 1.56-3200 nM for G-7-S, respectively. The lower limit of quantification (LLOQ) was 4.88, 6.25, 5, 0.98 and 0.78 nM for genistein, G-7-G, G-4'-G, G-4'-S and G-7-S, respectively. Only 20 microl mouse blood sample from i.v. and p.o. administration were needed for analysis because of the high sensitivity of the method. The intra- and inter-day variance is less than 15% and accuracy is within 85-115%. The analysis was finished within 4.5 min. The applicability of this assay was demonstrated and successfully applied for bioavailability study in FVB mouse after i.v. and p.o. administration of 20mg/kg of genistein, and its oral bioavailability was approximately 23.4%.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sepehr E, Cooke GM, Robertson P, Gilani GS. Effect of glycosidation of isoflavones on their bioavailability and pharmacokinetics in aged male rats. Mol Nutr Food Res 2009; 53 Suppl 1:S16-26. [PMID: 19437481 DOI: 10.1002/mnfr.200800170] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There are limited reports on the bioavailability and pharmacokinetics of isoflavones in elderly humans and aged animals. The present study was conducted to assess the effect of glycosidation of isoflavones on their bioavailability and pharmacokinetics in aged (20 month old) male Fischer-344 (F-344) rats. The F-344 rat, developed by the National Institute on Aging, is an inbred rat model that is commonly used for aging studies and resembles many features of aging humans. Three sources of isoflavones; Novasoy (a commercial supplement), a mixture of synthetic aglycons (daidzein, genistein and glycitein), and a mixture of synthetic glucosides (daidzin, genistin, and glycitin) were tested. Following administration, blood samples were collected at different times (0-48 h post-oral gavage and 0-8 h post-IV dosing). Plasma isoflavones and 7-hydroxy-3-(4'-hydroxyphenyl)-chroman (a metabolite of daidzein) were measured by LC/MS. The extent of absorption was determined by comparing the area under the curve (AUC) of the plasma-concentration time curve after intravenous (IV) administration with that following oral administration. The extent of bioavailability was then calculated as: %bioabailability = (AUC(or)/AUC(IV))x(Dose(IV)/Dose(or))x100. Bioavailabilities for genistein were significantly (p = 0.013) higher for the aglycon (35 +/- 9%) compared with the glucoside forms (11 +/- 3%). In contrast, the bioavailabilities for glycitein were significantly (p = 0.011) higher in Novasoy (27 +/- 13%) and the glucoside form (21 +/- 10%) compared with the aglycon (8 +/- 3%). No significant differences in the bioavailability of daidzein were observed in aged rats dosed with aglycon, glucoside or Novasoy. However, aged rats were able to produce equol as early as 8 h post-dosing. In summary, the source of isoflavones had significant effects on genistein and glycitein bioavailability in aged male rats.
Collapse
Affiliation(s)
- Estatira Sepehr
- Health Canada, Health Products and Food Branch, Nutrition Research Division, Banting Research Centre, Tunney's Pasture, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
36
|
Wang SWJ, Kulkarni KH, Tang L, Wang JR, Yin T, Daidoji T, Yokota H, Hu M. Disposition of flavonoids via enteric recycling: UDP-glucuronosyltransferase (UGT) 1As deficiency in Gunn rats is compensated by increases in UGT2Bs activities. J Pharmacol Exp Ther 2009; 329:1023-31. [PMID: 19264971 DOI: 10.1124/jpet.108.147371] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Flavonoids have poor bioavailabilities largely because of metabolism via UDP-glucuronosyltransferases (UGTs). This study aims to further understand the functions of UGT in metabolizing genistein and apigenin, two compounds metabolized more extensively in the gut than in the liver. Because Gunn rats are deficient in UGT1As, we determined whether this deficiency would result in less flavonoid glucuronidation, using rat intestinal perfusion model and microsomes prepared from rat liver and intestine. In yeast-expressed rat UGT isoforms, rat UGT1A isoforms (especially UGT1A7) were mainly responsible for flavonoid metabolism. In perfusion studies, the two flavonoids were rapidly absorbed at comparable rates, but the intestinal excretions of glucuronides in Gunn rats compared with Wistar rats were not only comparable for genistein but also were higher (p < 0.05) for apigenin, suggesting up-regulation of UGT isoforms in Gunn rats. To determine the possible compensatory UGT isoforms, we first verified that UGT1A activities were significantly lower (p < 0.05) in Gunn rats by using UGT1A-specific probes 7-ethyl-10-hydroxycamptothecin (SN-38) and prunetin. We then demonstrated using UGT2B probes testosterone, ezetimibe, and indomethacin that UGT2B activities were usually significantly higher in Gunn rats. In addition, testosterone was metabolized much faster in liver microsomes than in intestinal microsomes, and in microsomes prepared from Gunn rats compared with Wistar rats. In conclusion, flavonoids are efficiently metabolized by UGT1A-deficient Gunn rats because of compensatory up-regulation of intestinal UGT2Bs and hepatic anion efflux transporters, which increases their disposition and limits their oral bioavailabilities.
Collapse
Affiliation(s)
- Stephen W J Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund St., University of Houston, Houston, TX 77204, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Food flavonoid aryl hydrocarbon receptor-mediated agonistic/antagonistic/synergic activities in human and rat reporter gene assays. Anal Chim Acta 2008; 637:337-45. [PMID: 19286049 DOI: 10.1016/j.aca.2008.09.054] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 09/24/2008] [Accepted: 09/24/2008] [Indexed: 02/01/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor mediating the adverse effects of dioxins and polycyclic aromatic hydrocarbons (PAHs). In this study, we investigated the genetic-, time-, dose-, species- and tissue-dependent AhR-mediated agonistic/antagonistic activities of three food flavonoids: quercetin, chrysin and genistein. To that end, four stably transfected cell lines were used in cell-based luciferase reporter gene assays: three lines were transformed with the ptKLuc vector harbouring four dioxin-responsive elements (DREs) upstream of the thymidine kinase promoter and the luciferase gene (HepG2-Luc, T-47D-Luc and H4IIE-ULg). The fourth is a patented cell line transformed with a different construct: H4IIE DR-CALUX((R)). Both H4IIE cells were compared for their genetic construction. Human hepatoma (HepG2-Luc) and human breast tumour (T-47D-Luc) cells were compared for tissue-dependent effects. Rat hepatoma (H4IIE-ULg) and human hepatoma (HepG2-Luc) cells were compared for species-dependent activities. We concluded that quercetin, chrysin and genistein act in a time-, dose-, species- and tissue-specific way. For example, genistein displayed agonistic activities when exposed to rat hepatoma cells during 6h but not after 24h. Flavonoids displayed agonistic/antagonistic activities in human breast tumour cells, depending on the exposure time, while in human hepatoma cells, only antagonistic activities of flavonoids were measured. In addition, we report, in all the cells, a synergy between an isoflavone and two food contaminants; the 2,3,7,8-tetrachlorodibenzo-p-dioxin and 3-methylcholanthrene, a PAH. In rat cells, this synergy occurred when cells were exposed to flavonoids and contaminant for 6h, while it was observed in human cells only after 24h.
Collapse
|
38
|
Sepehr E, Cooke G, Robertson P, Gilani GS. Bioavailability of soy isoflavones in rats Part I: application of accurate methodology for studying the effects of gender and source of isoflavones. Mol Nutr Food Res 2007; 51:799-812. [PMID: 17576640 DOI: 10.1002/mnfr.200700083] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are limited and controversial reports about the effects of gender and source of isoflavones on their bioavailability. Moreover, several previous studies have not used appropriate methodology to determine the bioavailability of soy isoflavones, which requires comparing the area under the plasma concentration-time curve after both oral and intravenous injection (IV) administration. Therefore, the present study was conducted to determine the bioavailability of isoflavones from different sources following both oral and IV administration in male and female rats. Three sources of isoflavones; Novasoy (a commercial supplement), a mixture of synthetic aglycones (daidzein, genistein and glycitein) and a mixture of synthetic glucosides (daidzin, genistin and glycitin) were tested. Following administration, blood samples were collected at several time points (0, 10, 30 min and 1, 2, 8, 24, 48 h post oral gavage and 0, 10, 30, 45 min and 1, 2, 3, 4, 8 h post-IV dosing) and plasma isoflavones were measured by LC/MS. Bioavailability values for daidzein, genistein and glycitein were significantly (p <0.05) higher (up to sevenfold) in Novasoy and the glucoside forms of isoflavones compared with those of the aglycone forms. Moreover, significant (p <0.05) gender differences in the bioavailability of 7-hydroxyl-3-(4'-hydroxyphenyl)-chroman (a metabolite of daidzein), glycitein and daidzein were observed for Novasoy, with higher values in male rats. In summary, the source of isoflavones and the sex of rats had significant effects on isoflavone bioavailability.
Collapse
Affiliation(s)
- Estatira Sepehr
- Health Canada, Health Products and Food Branch, Nutrition Research Division, Banting Research Centre, Tunney's Pasture, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
39
|
Steensma A, Faassen-Peters MAW, Noteborn HPJM, Rietjens IMCM. Bioavailability of genistein and its glycoside genistin as measured in the portal vein of freely moving unanesthetized rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:8006-12. [PMID: 17032002 DOI: 10.1021/jf060783t] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The present study describes an in vivo bioavailability experiment for genistein and its glycoside genistin, either as pure compounds or from a soy protein isolate extract, using freely moving unanesthetized rats with a cannulation in the portal vein. The results show that genistein is readily bioavailable, being observed in portal vein plasma at the first point of detection at 15 min after dosing. The AUC(0-24h) values for total genistein and its conjugates were 54, 24, and 13 microM h for genistein, genistin, and an enriched protein soy extract, respectively. These results indicate that the bioavailability of genistein is higher for the aglycon than for its glycoside. Genistin is partly absorbed in its glycosidic form. It is concluded that bioavailability studies based on portal vein plasma levels contribute to insight into the role of the intestine and liver in deglycosylation and uptake characteristics of glycosylated flavonoids.
Collapse
Affiliation(s)
- Aukje Steensma
- RIKILT--Institute for Food Safety, Bornsesteeg 45, 6700 AE Wageningen, The Netherlands
| | | | | | | |
Collapse
|
40
|
Wang SWJ, Chen J, Jia X, Tam VH, Hu M. Disposition of flavonoids via enteric recycling: structural effects and lack of correlations between in vitro and in situ metabolic properties. Drug Metab Dispos 2006; 34:1837-48. [PMID: 16882763 DOI: 10.1124/dmd.106.009910] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study is to determine the importance of coupling of efflux transporters and metabolic enzymes in the intestinal disposition of six isoflavones (genistein, daidzein, formononetin, glycitein, biochanin A, and prunetin), and to determine how isoflavone structural differences affect the intestinal disposition. A rat intestinal perfusion model was used, together with rat intestinal and liver microsomes. In the intestinal perfusion model, significant absorption and excretion differences were found between isoflavones and their respective glucuronides (p <0.05), with prunetin being the most rapidly absorbed and formononetin glucuronides being the most excreted in the small intestine. In contrast, glucuronides were excreted very little in the colon. In an attempt to account for the differences, we measured the glucuronidation rates of six isoflavones in microsomes prepared from rat intestine and liver. Using multiple regression analysis, intrinsic clearance (CL(int)) and other enzyme kinetic parameters (V(max) and K(m)) were determined using appropriate kinetic models based on Akaike's information criterion. The kinetic parameters were dependent on the isoflavone used and the types of microsomes. To determine how metabolite excretion rates are controlled, we plotted excretion rates versus calculated microsomal rates (at 10 microM), CL(int) values, K(m) values, or V(max) values, and the results indicated that excretion rates were not controlled by any of the kinetic parameters. In conclusion, coupling of intestinal metabolic enzymes and efflux transporters affects the intestinal disposition of isoflavones, and structural differences of isoflavones, such as having methoxyl groups, significantly influenced their intestinal disposition.
Collapse
Affiliation(s)
- Stephen W J Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | | | | | | | | |
Collapse
|
41
|
Moon YJ, Sagawa K, Frederick K, Zhang S, Morris ME. Pharmacokinetics and bioavailability of the isoflavone biochanin A in rats. AAPS J 2006; 8:E433-42. [PMID: 17025260 PMCID: PMC2761049 DOI: 10.1208/aapsj080351] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 01/28/2006] [Indexed: 11/30/2022] Open
Abstract
Biochanin A (BCA) is a dietary isoflavone present in legumes, most notably red clover, and in many herbal dietary supplements. BCA has been reported to have chemopreventive properties and is metabolized to the isoflavone genistein (GEN), BCA conjugates, and GEN conjugates. The metabolites may contribute to the chemopreventive effects of BCA. The absorption, metabolism, and disposition of BCA have not been determined in rats. Our objective was to evaluate the pharmacokinetics and metabolism of BCA in rats. Male Sprague-Dawley rats were administered BCA by intravenous injection (1 and 5 mg/kg), by intraperitoneal injection (5 and 50 mg/kg), and orally (5 and 50 mg/kg). Plasma and bile samples were enzymatically hydrolyzed in vitro to determine conjugate concentrations for BCA and GEN. Equilibrium dialysis was used to determine protein binding. The BCA and GEN concentrations in plasma, urine, and bile were determined by liquid chromatography-tandem mass spectrometry (LC/MS/MS). The pharmacokinetic parameters of BCA were analyzed by noncompartmental analysis. Significant levels of BCA conjugates and GEN conjugates were detected in plasma and bile. Both BCA and GEN were found to have a high clearance and a large apparent volume of distribution; the bioavailability of both was poor (<4%). Reentry peaks were evident after oral administration of both BCA and GEN, suggesting enterohepatic cycling. The free fraction of BCA in rat plasma was 1.5%. A 2-compartment model that included both linear and nonlinear clearance terms and enterohepatic recirculation best described the plasma data. This represents the first evaluation of the dose-dependent pharmacokinetics and metabolism of BCA in rats.
Collapse
Affiliation(s)
- Young Jin Moon
- />Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 517 Hochstetter Hall, 14260-1200 Amherst, NY
| | - Kazuko Sagawa
- />Pfizer Global Research and Development, 06340 Groton, CT
| | | | - Shuzhong Zhang
- />Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 517 Hochstetter Hall, 14260-1200 Amherst, NY
| | - Marilyn E. Morris
- />Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 517 Hochstetter Hall, 14260-1200 Amherst, NY
| |
Collapse
|
42
|
Key PE, Finglas PM, Coldham N, Botting N, Oldfield MF, Wood R. An international quality assurance scheme for the quantitation of daidzein and genistein in food, urine and plasma. Food Chem 2006. [DOI: 10.1016/j.foodchem.2005.02.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Asymptotics and bioavailability in a 17-compartment pharmacokinetic model with enterohepatic circulation and remetabolization. Math Biosci 2006; 203:19-36. [PMID: 16616213 DOI: 10.1016/j.mbs.2006.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 12/23/2005] [Accepted: 02/21/2006] [Indexed: 11/26/2022]
Abstract
A 17-compartment linear pharmacokinetic model is designed, describing the complex process of enterohepatic circulation as a superposition of the net (remetabolizationfree) enterohepatic circulation, and remetabolization with subsequent intestinal absorption of the parent drug. Basically, the model is built by doubling the model describing the circulation of the parent drug in the body, so that the remetabolizable metabolite circulates in a model of the same structure as does the parent compound. The two submodels are cross-connected with arrows denoting the transition of the particular substance into the complementary part of the complex model. Asymptotic properties of the model are investigated, in particular, explicit formulas for its pharmacokinetic endpoints are given using the elements of its transition probability matrix. Conversely, taking account of the effect of bile cannulation, intravenous, intraportal and oral administration of the drug, as well as of the intravenous and intraportal administration of the remetabolizable metabolite, the transition probabilities of the system are determined in terms of certain measurable pharmacokinetic endpoints and the flow rates through the kidneys, liver and the cardiac output. Finally, the influence of the enterohepatic circulation and remetabolization process on bioavailability is examined. In particular, the inclusion-exclusion formula is derived, expressing its joint efficiency (defined as the relative increase of bioavailability) by means of the efficiencies of the net enterohepatic circulation and of the remetabolization process.
Collapse
|
44
|
Schlosser PM, Borghoff SJ, Coldham NG, David JA, Ghosh SK. Physiologically-based pharmacokinetic modeling of genistein in rats, Part I: Model development. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2006; 26:483-500. [PMID: 16573635 DOI: 10.1111/j.1539-6924.2006.00743.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Genistein is a phytoestrogen-a plant-derived compound that binds to and activates the estrogen receptor-occurring at high levels in soy beans and food products, leading to widespread human exposure. The numerous scientific publications available describing genistein's dosimetry, mechanisms of action, and identified or putative health effects in both experimental animals and humans make it ideal for examination as an example of endocrine-active compound (EAC). We developed a physiologically-based pharmacokinetic (PBPK) model to quantify the internal, target-tissue dosimetry of genistein in adult rats. Complexities of the model include enterohepatic circulation, binding of both genistein and its conjugates to plasma proteins, and the multiple compartments used to describe transport through the bile duct and gastrointestinal tract. Other aspects of the model are simple perfusion-limited transport to the tissue groups and first-order rates of metabolism, uptake, and excretion. We describe here the model structure and initial calibration of the model by fitting to a large data set for Wistar rats. The model structure can be readily extrapolated to describe genistein dosimetry in humans or modified to describe the dosimetry of other phytoestrogens and phenolic EACs. The model does a fair job of capturing the pharmacokinetics. Although it does not describe the interindividual variability and we have not identified a single set of parameters that provide a good fit to the data for both oral and intravenous exposures, we believe it provides a good initial attempt at PBPK modeling for genistein, which can serve as a template for other phytoestrogens and in the design of future experiments and research that can be used to fill data gaps and better estimate model parameters.
Collapse
Affiliation(s)
- Paul M Schlosser
- CIIT Centers for Health Research, Research Triangle Park, NC 27711, USA.
| | | | | | | | | |
Collapse
|
45
|
Ullmann U, Metzner J, Frank T, Cohn W, Riegger C. Safety, tolerability, and pharmacokinetics of single ascending doses of synthetic genistein (Bonistein) in healthy volunteers. Adv Ther 2005; 22:65-78. [PMID: 15943224 DOI: 10.1007/bf02850186] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Genistein, an isoflavone and phytoestrogen predominantly found in soy, is considered a potentially safe therapeutic option to prevent postmenopausal bone loss. A novel purified product consisting of 99.4% synthetic genistein aglycone was investigated in a phase 1 clinical study to assess safety and tolerability in healthy volunteers as well as to obtain pharmacokinetic data. Single oral doses of 30, 60, 150, or 300 mg were administered to 40 healthy volunteers in this prospective, randomized, open-label and sequential-group study. Tolerability of the different genistein doses was very good. No clinically significant effects on vital signs, ECG, and clinical laboratory parameters were observed. Genistein was rapidly absorbed and the kinetic profiles revealed a one-peak plasma concentration-time course. Mean Cmax values of 252.0, 605.0, 1518.0, and 1808.0 ng/mL were observed after 4.0 to 6.0 hours. The mean terminal elimination half-lives were calculated to be 7.7, 7.5, 8.1, and 10.2 hours resulting in mean AUCs(0-infinity) of 2761.8, 8022.3, 21655.0, and 27537.8 ngxhr/mL. Linear regression of the dose-normalized AUCs(0-infinity) was not significantly different from zero, whereas the analysis for Cmax showed significance. Based on consecutive administration of single oral doses of genistein, dose linearity was assumed for extent of absorption [AUC(0-infinity)] for all doses (30-300 mg) and for rate of absorption (Cmax) up to 150 mg. At the highest dose the intestinal rate of absorption of genistein seemed to be limited. Genistein was safe and well tolerated in the dose range investigated and showed nearly dose-linear pharmacokinetic characteristics.
Collapse
Affiliation(s)
- Uwe Ullmann
- DSM Nutritional Products Ltd, Research & Development Human Nutrition & Health, CH-4303 Kaiseraugst, Switzerland
| | | | | | | | | |
Collapse
|
46
|
Prasain JK, Wang CC, Barnes S. Mass spectrometric methods for the determination of flavonoids in biological samples. Free Radic Biol Med 2004; 37:1324-50. [PMID: 15454273 DOI: 10.1016/j.freeradbiomed.2004.07.026] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 07/15/2004] [Accepted: 07/22/2004] [Indexed: 11/29/2022]
Abstract
There is an ever-increasing interest in the biological effects of the bioflavonoids, members of the large group of plant polyphenols. Because of the aromatic character of these compounds, they have been analyzed by several chromatographic methods. In the case of high-performance liquid chromatography, they are readily detected by their ultraviolet absorbance or electrochemical properties. More evidence that the bioflavonoids undergo extensive metabolism during uptake from the gut and distribution around the body and in specific tissues is accumulating. In addition, free radical products at sites of inflammatory processes react with bioflavonoids and their metabolites, generating important new compounds of as yet unknown properties. For these reasons, careful examination of the chemical nature of bioflavonoids and their products in biological systems is absolutely required. Combination of mass spectrometry with the various chromatographic methods has proved to be highly successful in this regard. This review of the literature on the bioflavonoids is focused on the methods that are currently available for their qualitative and quantitative analysis by mass spectrometry and covers the period 2001-2003. Emphasis is placed on the description and value of existing methods, followed by an examination of emerging technologies.
Collapse
Affiliation(s)
- Jeevan K Prasain
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
47
|
Chen J, Lin H, Hu M. Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model. Cancer Chemother Pharmacol 2004; 55:159-69. [PMID: 15455178 DOI: 10.1007/s00280-004-0842-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2004] [Accepted: 04/12/2004] [Indexed: 12/24/2022]
Abstract
The purposes of this study were to determine the effect of structural change on the intestinal disposition of isoflavones and to elucidate the mechanisms responsible for transport of phase II isoflavone conjugates. Transport and metabolism of six isoflavones (i.e., genistein, daidzein, glycitein, formononetin, biochanin A, and prunetin) were studied in the human intestinal Caco-2 model and mature Caco-2 cell lysate. Glucuronides were the main metabolites in intact Caco-2 cells for all isoflavones except prunetin, which was mainly sulfated. In addition, the 7-hydroxy group was the main site for glucuronidation whereas the 4'-hydroxy group was only one of the possible sites for sulfation. Glucuronidated isoflavones (except biochanin A) were preferably excreted to the basolateral side, whereas sulfated metabolites (except genistein and glycitein) were mainly excreted into the apical side. Polarized excretion of most isoflavone conjugates was inhibited by the multidrug resistance-related protein (MRP) inhibitor leukotriene C(4) (0.1 micro M) and the organic anion transporter (OAT) inhibitor estrone sulfate (10 micro M). When formation and excretion rates of isoflavones were determined simultaneously, the results showed that formation served as the rate-limiting step for all isoflavone conjugates (both glucuronides and sulfates) except for genistein glucuronide, which had comparable excretion and formation rates. In conclusion, the intestinal disposition of isoflavones was structurally dependent, polarized, and mediated by MRP and OAT. Formation generally served as the rate-limiting step in the cellular excretion of conjugated isoflavones in the Caco-2 cell culture model.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman 99164-6510, USA
| | | | | |
Collapse
|