1
|
Ferreira R, Napoli J, Enver T, Bernardino L, Ferreira L. Advances and challenges in retinoid delivery systems in regenerative and therapeutic medicine. Nat Commun 2020; 11:4265. [PMID: 32848154 PMCID: PMC7450074 DOI: 10.1038/s41467-020-18042-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 08/01/2020] [Indexed: 12/19/2022] Open
Abstract
Retinoids regulate a wide spectrum of cellular functions from the embryo throughout adulthood, including cell differentiation, metabolic regulation, and inflammation. These traits make retinoids very attractive molecules for medical purposes. In light of some of the physicochemical limitations of retinoids, the development of drug delivery systems offers several advantages for clinical translation of retinoid-based therapies, including improved solubilization, prolonged circulation, reduced toxicity, sustained release, and improved efficacy. In this Review, we discuss advances in preclinical and clinical tests regarding retinoid formulations, specifically the ones based in natural retinoids, evaluated in the context of regenerative medicine, brain, cancer, skin, and immune diseases. Advantages and limitations of retinoid formulations, as well as prospects to push the field forward, will be presented.
Collapse
Grants
- MC_U137973817 Medical Research Council
- MR/N000838/1 Medical Research Council
- The authors would like to thank Andreia Vilaça for the illustrations and the financial support of ERA Chair project (ERA@UC, ref:669088) through EU Horizon 2020 program, the POCI-01-0145-FEDER-016390 (acronym: CANCEL STEM) and POCI-01-0145-FEDER-029414 (acronym: LIghtBRARY) projects through Compete 2020 and FCT programs, projects 2IQBIONEURO (reference: 0624_2IQBIONEURO_6_E) and NEUROATLANTIC (reference: EAPA_791/2018) co-funded by INTERREG (Atlantic program or V-A Spain-Portugal) and European fund for Regional Development (FEDER), FCT (Portugal, SFRH/BPD/102103/2014), National Funds by Foundation for Science and Technology (UID/Multi/00709/2013), “Programa Operacional do Centro, Centro 2020” through the funding of the ICON project (Interdisciplinary Challenges On Neurodegeneration; CENTRO-01-0145-FEDER-000013), EXPL/BIM-MED/0822/2013 (LB), (SFRH/BPD/94228/2013, IF/00178/2015) (RF), Cerebrovascular Disease Grant and L’Oréal-UNESCO Portugal for Women in Science for supporting this work. Authors declare there are no conflict of interests.
Collapse
Affiliation(s)
- Raquel Ferreira
- Health Sciences Research Centre (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Joseph Napoli
- Nutritional Sciences and Toxicology, University of California, 231 Morgan Hall, MC#3104, Berkeley, CA, 94720, USA
| | - Tariq Enver
- UCL Cancer Institute, University College London, London, UK
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Ghorbani F, Ghalandari B, Ghorbani F, Zamanian A. Effects of lamellar microstructure of retinoic acid loaded-matrixes on physicochemical properties, migration, and neural differentiation of P19 embryonic carcinoma cells. JOURNAL OF POLYMER ENGINEERING 2020. [DOI: 10.1515/polyeng-2020-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
In this study, retinoic acid loaded-PLGA-gelatin matrixes were prepared with both freeze-casting and freeze-drying techniques. Herein, the effect of unidirectional microstructure with tunable pores on release profile, cellular adhesion, migration, and differentiation was compared. Morphological observation determined that highly interconnected porous structure can be formed, but lamellar pore channels were observed in freeze-casting prepared constructs. The absorption ratio was increased, and the biodegradation rate was decreased as a function of the orientation of microstructure. The in-vitro release study illustrated non-Fickian release mechanism in both methods, so that erosion has predominated over diffusion. Accordingly, PLGA-gelatin scaffolds prepared with freeze-drying technique showed no adequate erosion due to the rigid structure, while freeze-casting one presented more favorable erosion. Microscopic observations of adhered P19 embryonic cells on the scaffolds showed that the freeze-casting matrixes with unidirectional pores provide a more compatible microenvironment for cell attachments and spreading. Besides, it facilitated cell migration and penetration inside the structure and may act as guidance for neuron growth. Improvement in the expression of neural genes in unidirectionally oriented pores proved the decisive role of contact guidance for nerve healing. It seems that the freeze-cast PLGA-gelatin-retinoic acid scaffolds have initial features for nerve tissue regeneration studies.
Collapse
Affiliation(s)
- Farnaz Ghorbani
- Department of Orthopedics, Shanghai Pudong Hospital , Fudan University Pudong Medical Center , 2800 Gongwei Road , Pudong , Shanghai, 201399 , China
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , China
| | - Farimah Ghorbani
- Faculty of Medicine , Islamic Azad University, Tehran Medical Sciences Branch , Tehran , Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials , Materials and Energy Research Center , Karaj , Iran
| |
Collapse
|
3
|
Anticancer effect of intracellular-delivered paclitaxel using novel pH-sensitive LMWSC-PCL di-block copolymer micelles. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Synergistic effects of retinoic acid and graphene oxide on the physicochemical and in-vitro properties of electrospun polyurethane scaffolds for bone tissue engineering. E-POLYMERS 2017. [DOI: 10.1515/epoly-2016-0304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractTissue engineering scaffolds simulate extracellular matrixes (ECMs) to promote healing processes of damaged tissues. In this investigation, ECM were simulated by retinoic acid-loaded polyurethane-graphene oxide nanofibers to regenerate bone defects. Scanning electron microscopy (SEM) micrographs, Fourier transform infrared (FTIR) spectrum and X-ray diffraction (XRD) patterns proved the synthesis of graphene oxide (GO) nanosheets. SEM micrographs of nanofibers demonstrated through the formation of homogeneous and bead free fibrous scaffolds that the diameter of fibers were reduced by decreasing the applied voltage in an electrospinning process and the addition of GO. According to the results, the addition of GO to the polyurethane (PU) solution led to an increase in mechanical strength which is the most important parameter in the hard tissue repair. The GO-containing scaffolds showed an increased wettability, swelling, biodegradation and drug release level. Release behavior in nanocomposite scaffolds followed the swelling and biodegradation mechanisms, so osteogenic expression was possible by incorporating retinoic acid (RA) in PU-GO nanofibrous scaffolds. Biological evaluations demonstrated that composite scaffolds are biocompatible and support cellular attachment in which RA-loaded samples represented better cellular spreading. In brief, nanocomposite fibers showed desired that the physicochemical, mechanical and biological properties and synergic effects of GO and RA in osteogenic activity of MG-63 cells produced favorable constructs for hard tissue engineering applications.
Collapse
|
5
|
Ghorbani F, Zamanian A, Nojehdehian H. Effects of pore orientation on in-vitro properties of retinoic acid-loaded PLGA/gelatin scaffolds for artificial peripheral nerve application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:159-172. [DOI: 10.1016/j.msec.2017.03.175] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/14/2017] [Accepted: 03/21/2017] [Indexed: 01/15/2023]
|
6
|
Mannosylated chitosan nanoparticles for delivery of antisense oligonucleotides for macrophage targeting. BIOMED RESEARCH INTERNATIONAL 2014; 2014:526391. [PMID: 25057492 PMCID: PMC4098891 DOI: 10.1155/2014/526391] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/02/2014] [Indexed: 12/11/2022]
Abstract
The therapeutic potential of antisense oligonucleotides (ASODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study focuses on designing mannosylated low molecular weight (LMW) chitosan nanoconstructs for safe ODNs delivery by macrophage targeting. Mannose groups were coupled with LMW chitosan and characterized spectroscopically. Mannosylated chitosan ODN nanoparticles (MCHODN NPs) were formulated by self-assembled method using various N/P ratio (moles of amine groups of MCH to phosphate moieties of ODNs) and characterized for gel retardation assay, physicochemical characteristics, cytotoxicity and transfection efficiency, and antisense assay. Complete complexation of MCH/ODN was achieved at charge ratio of 1:1 and above. On increasing the N/P ratio of MCH/ODN, particle size of the NPs decreased whereas zeta potential (ZV) increased. MCHODN NPs displayed much higher transfection efficiency into Raw 264.7 cells (bears mannose receptors) than Hela cells and no significant toxicity was observed at all MCH concentrations. Antisense assay revealed that reduction in lipopolysaccharide (LPS) induced serum TNF-α is due to antisense activity of TJU-2755 ODN (sequence complementary to 3′-UTR of TNF-α). These results suggest that MCHODN NPs are acceptable choice to improve transfection efficiency in vitro and in vivo.
Collapse
|
7
|
Uptake of etoposide in CT-26 cells of colorectal cancer using folate targeted dextran stearate polymeric micelles. BIOMED RESEARCH INTERNATIONAL 2014; 2014:708593. [PMID: 24689050 PMCID: PMC3932716 DOI: 10.1155/2014/708593] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 11/17/2013] [Indexed: 12/31/2022]
Abstract
Targeted drug delivery using folate receptors is one of the most interesting chemotherapeutic research areas over the past few years. A novel folate targeted copolymer was synthesized using dextran stearate coupled to folic acid. FT-IR and NMR spectroscopy were used to confirm successful conjugation. Micelles prepared using this copolymer were characterized for their particle size, zeta potential, critical micelle concentration (CMC), drug loading capacity, and release efficiency. Cytotoxicity and cellular uptake of the micelles were estimated using CT-26 colorectal carcinoma cell line. FT-IR and NMR spectroscopy confirmed production of folate grafted dextran stearate copolymer. Low CMC value indicates that the copolymers are suitable for preparation of stable micelles useful in parenteral dosage forms. Particle size and zeta potential of the targeted nanoparticles were 105.5 ± 2.0 nm and −21.2 mV, respectively. IC50 of etoposide loaded in folate grafted dextran stearate enhanced about 20-fold compared to the pure drug (0.49 ± 0.11 μg/mL versus 9.41 ± 0.52 μg/mL). It seems that etoposide loaded in micelles of folate grafted dextran stearate copolymer is promising in reducing drug resistance of colorectal cancer by boosting etoposide cellular uptake.
Collapse
|
8
|
Varshosaz J, Moazen E. Novel lectin-modified poly(ethylene-co-vinyl acetate) mucoadhesive nanoparticles of carvedilol: preparation andin vitrooptimization using a two-level factorial design. Pharm Dev Technol 2013; 19:605-17. [DOI: 10.3109/10837450.2013.819011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Arunkumar R, Harish Prashanth KV, Baskaran V. Promising interaction between nanoencapsulated lutein with low molecular weight chitosan: characterization and bioavailability of lutein in vitro and in vivo. Food Chem 2013; 141:327-37. [PMID: 23768365 DOI: 10.1016/j.foodchem.2013.02.108] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 12/31/2012] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Abstract
This study aims to develop water-soluble low molecular weight chitosan (LMWC) nanoencapsules with lutein to improve its bioavailability. Lutein-LMWC nanoencapsules were prepared, characterized and bioavailability was studied in vitro and in vivo with lutein in mixed micelles (control). The particle size ranged between 80-600 nm, which was confirmed by Atomic Force Microscope. The interaction between LMWC and lutein in nanocencapsules by (1)H and (13)C NMR showed the essentiality of water molecules to hold the lutein between LMWC chains of nanoparticle with a reversible weak bond. Bioavailability of lutein (200 μM) in vitro showed that lutein-LMWC nanoencapsules was significantly higher (27.7%) than control. Postprandial lutein level in the plasma (54.5%), liver (53.9%) and eyes (62.8%) of mice fed on nanoencapsulated lutein were higher than the control. LMWC may serve as novel carrier for enhancing the lutein bioavailability and can be suggested as the better dietary compound in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Ranganathan Arunkumar
- Carotenoids and Health Laboratory, Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Council of Scientific and Industrial Research, Mysore 570 020, Karnataka, India
| | | | | |
Collapse
|
10
|
Biofuntional nanoparticle formation and folate-targeted antitumor effect of heparin-retinoic acid conjugates. Macromol Res 2012. [DOI: 10.1007/s13233-012-0073-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Santos T, Maia J, Agasse F, Xapelli S, Ferreira L, Bernardino L. Nanomedicine boosts neurogenesis: new strategies for brain repair. Integr Biol (Camb) 2012; 4:973-81. [DOI: 10.1039/c2ib20129a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Preparation and characterization of micelles of oligomeric chitosan linked to all-trans retinoic acid. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.08.093] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Maia J, Santos T, Aday S, Agasse F, Cortes L, Malva JO, Bernardino L, Ferreira L. Controlling the neuronal differentiation of stem cells by the intracellular delivery of retinoic acid-loaded nanoparticles. ACS NANO 2011; 5:97-106. [PMID: 21171566 DOI: 10.1021/nn101724r] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The manipulation of endogenous stem cell populations from the subventricular zone (SVZ), a neurogenic niche, creates an opportunity to induce neurogenesis and influence brain regenerative capacities in the adult brain. Herein, we demonstrate the ability of polyelectrolyte nanoparticles to induce neurogenesis exclusively after being internalized by SVZ stem cells. The nanoparticles are not cytotoxic for concentrations equal or below 10 μg/mL. The internalization process is rapid, and nanoparticles escape endosomal fate in a few hours. Retinoic acid-loaded nanoparticles increase the number of neuronal nuclear protein (NeuN)-positive neurons and functional neurons responding to depolarization with KCl and expressing NMDA receptor subunit type 1 (NR1). These nanoparticles offer an opportunity for in vivo delivery of proneurogenic factors and neurodegenerative disease treatment.
Collapse
Affiliation(s)
- João Maia
- Chemical Engineering Department, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Development of a new micellar anticancer drug: Cationic polymer/vitamin A conjugate covered with hyaluronic acid. Macromol Res 2010. [DOI: 10.1007/s13233-010-0907-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Lee CM, Park JW, Kim J, Kim DW, Jeong HJ, Lee KY. Influence of histidine on the release of all-trans retinoic acid from self-assembled glycol chitosan nanoparticles. Drug Dev Ind Pharm 2010; 36:781-6. [PMID: 20136494 DOI: 10.3109/03639040903514812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE In this study, the influence of N-acetyl histidine (NAHis) on the all-trans retinoic acid (ATRA) release from the NAHis-conjugated self-assembled glycol chitosan (GC) nanoparticles was investigated. METHODS NAHis was conjugated to GC as a hydrophobic moiety to prepare the self-assembled nanoparticles, and ATRA was incorporated into the inner core of the NAHis-GC nanoparticles. The ATRA release from NAHis-GC nanoparticles was performed at 37 degrees C in a phosphate-buffered saline buffer (pH 5.5 or 7.4) for 48 hours. RESULTS At a pH of 5.5, less than 20% (w/w) of total loading amount of ATRA was released from the nanoparticles after 48 hours. In contrast, two times greater amount of ATRA was released at a pH of 7.4. The ATRA release rate from the NAHis-GC nanoparticles was significantly slower at a pH of 5.5 than at a pH of 7.4. CONCLUSION The release profiles of ATRA that was incorporated into the NAHis-GC nanoparticles were controlled by the NAHis content in the GC nanoparticles.
Collapse
Affiliation(s)
- Chang-Moon Lee
- Department of Nuclear Medicine, Chonbuk National University Medical School, Jeonju, South Korea
| | | | | | | | | | | |
Collapse
|
16
|
Duan LJ, Kim MJ, Jung JH, Chung DJ, Kim J. Synthesis of poly(L,L-lactic acid-co-lysine) and its cell compatibility evaluation as coating material on metal. Macromol Res 2010. [DOI: 10.1007/s13233-010-0809-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Jeong YI, Seo DH, Kim DG, Choi C, Jang MK, Nah JW, Park Y. Methotrexate-incorporated polymeric micelles composed of methoxy poly(ethylene glycol)-grafted chitosan. Macromol Res 2009. [DOI: 10.1007/bf03218904] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Jeong YI, Kim DG, Jang MK, Nah JW, Kim YB. All-trans retinoic acid release from surfactant-free nanoparticles of poly(DL-lactide-co-glycolide). Macromol Res 2008. [DOI: 10.1007/bf03218586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Temperature-induced release of all-trans-retinoic acid loaded in solid lipid nanoparticles for topical delivery. Macromol Res 2008. [DOI: 10.1007/bf03218581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Seo DH, Jeong YI, Kim DG, Jang MJ, Jang MK, Nah JW. Methotrexate-incorporated polymeric nanoparticles of methoxy poly(ethylene glycol)-grafted chitosan. Colloids Surf B Biointerfaces 2008; 69:157-63. [PMID: 19135342 DOI: 10.1016/j.colsurfb.2008.10.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/28/2008] [Accepted: 10/28/2008] [Indexed: 11/29/2022]
Abstract
We prepared methotrexate (MTX)-encapsulated polymeric nanoparticles using methoxy poly(ethylene glycol) (MPEG)-grafted chitosan (ChitoPEG) copolymer. MTX-encapsulated polymeric nanoparticles of ChitoPEG copolymer has around 50-300nm in particle size and showed spherical shape when observed by transmission electron microscope (TEM). In (1)H nuclear magnetic resonance (NMR) study, the specific peaks of MTX and chitosan as a drug carrying inner-core disappeared at D(2)O and only the specific peak of MPEG was observed, while specific peaks of MPEG, MTX, and chitosan appeared in DCl/D(2)O mixtures. These results indicated that MTX was complexed with chitosan and then core-shell type nanoparticles had formed in aqueous environment, i.e., MTX/chitosan complexes composed of inner-core and MPEG composed of outer-shell of the nanoparticles. Loading efficiency of MTX in the polymeric nanoparticles was 94% (w/w) of ChitoPEG-1, 91.1% (w/w) of ChitoPEG-2, 90.1% (w/w) of ChitoPEG-3 and 65.2% (w/w) of ChitoPEG-4, expectively. The higher the drug feeding ratio, the higher the drug content and the lower the loading efficiency. The higher the MPEG graft ratio in the copolymer, the lower the drug content and loading efficiency. Drug contents evaluated by (1)H NMR were the same as found by UV spectrophotometer.
Collapse
Affiliation(s)
- Dong-Hyuk Seo
- Department of Polymer Science and Engineering, Sunchon National University, Republic of Korea
| | | | | | | | | | | |
Collapse
|
21
|
Banerjee SS, Chen DH. Cyclodextrin conjugated magnetic colloidal nanoparticles as a nanocarrier for targeted anticancer drug delivery. NANOTECHNOLOGY 2008; 19:265602. [PMID: 21828683 DOI: 10.1088/0957-4484/19/26/265602] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A novel magnetic nanocarrier (CD-GAMNPs) was fabricated for targeted anticancer drug delivery by grafting cyclodextrin (CD) onto gum arabic modified magnetic nanoparticles (GAMNPs) using hexamethylene diisocyanate (HMDI) as a linker. Analyses by transmission electron microscopy (TEM) and dynamic light scattering (DLS) revealed that the product had a mean diameter of 17.1 nm and a mean hydrodynamic diameter of 44.1 nm. The CD grafting was confirmed by Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) indicated that the amount of CD grafted on the GAMNPs was 16.8 mg g(-1). The study on the loading of anticancer drug all-trans-retinoic acid (retinoic acid) revealed that the newly fabricated magnetic nanocarrier possessed a considerably higher adsorption capability as compared to GAMNPs due to the special hydrophobic cavity structure of CD, which could act as a host-guest complex with retinoic acid. Furthermore, it was found that the complexation of CD-GAMNPs with retinoic acid was exothermic and the presence of a surfactant (sodium dodecyl sulfate) led to the decrease in the inclusion of retinoic acid because the linear structure of sodium dodecyl sulfate made it easier to enter the cavity of CD as compared to less linear retinoic acid. In addition, the in vitro release profile of retinoic acid from CD-GAMNPs was characterized by an initial fast release followed by a delayed release phase.
Collapse
Affiliation(s)
- Shashwat S Banerjee
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | | |
Collapse
|
22
|
Jeong K, Lee W, Cha J, Park CR, Cho YW, Kwon IC. Regioselective succinylation and gelation behavior of glycol chitosan. Macromol Res 2008. [DOI: 10.1007/bf03218961] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Jeong YI, Kim DG, Jang MK, Nah JW. Preparation and spectroscopic characterization of methoxy poly(ethylene glycol)-grafted water-soluble chitosan. Carbohydr Res 2007; 343:282-9. [PMID: 18035341 DOI: 10.1016/j.carres.2007.10.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 10/18/2007] [Accepted: 10/25/2007] [Indexed: 11/30/2022]
Abstract
The object of this study was to test the solubility of a methoxy poly(ethylene glycol) (MPEG)-grafted chitosan copolymer in organic solvents and aqueous solution. Water-soluble chitosan with low molecular weight (LMWSC) was used in a PEG-graft copolymerization. The MPEG was conjugated to chitosan using 4-dicyclohexylcarbodimide (DCC), and N-hydroxysuccimide (NHS). Introduction of PEG was confirmed by (1)H and (13)C NMR spectroscopy and FT-IR spectroscopy. The degree of substitution (DS) of MPEG into chitosan was calculated from (1)H NMR data and also by estimating the molecular weight (MW) using gel permeation chromatography (GPC). The DS values obtained from (1)H NMR spectroscopy and GPC were similar, indicating that MPEG-grafted LMWSC was synthesized and properly characterized. Furthermore, the introduction of PEG into chitosan increases the solubility in aqueous solutions over a range of pH values (4.0-11.0) and organic solvents such as DMF, DMSO, ethanol, and acetone.
Collapse
Affiliation(s)
- Young-Il Jeong
- BioMedical Polymer Lab., Department of Nano Polymer Science and Engineering, College of Engineering, Sunchon National University, 315, Maegok-dong, Suncheon, Jeonnam 540-742, Republic of Korea
| | | | | | | |
Collapse
|