1
|
Faiss R, Raberin A, Brocherie F, Millet GP. Repeated-sprint training in hypoxia: A review with 10 years of perspective. J Sports Sci 2024:1-15. [PMID: 39445500 DOI: 10.1080/02640414.2024.2416821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Over the past decade, numerous studies have investigated an innovative "live low-train high" approach based on the repetition of short (<30 s) "all-out" sprints with incomplete recoveries in hypoxia; the so-called Repeated-Sprint training in Hypoxia (RSH). The aims of the present review are therefore threefold. First, this study summarizes the available evidence on putative additional performance enhancement after RSH comparing to the same training in normoxia (RSN). Second, a critical analysis of underpinning mechanisms discusses how advantages can be obtained through RSH for sea-level performance enhancement. An enhanced microcirculatory vasodilation leading to improved muscle perfusion and/or oxygenation and an increase in muscular phosphocreatine content may help explain the superiority of RSH vs. RSN. Third, the present review aims to provide guidelines for coaches, athletes and scientists to apply RSH interventions with regard to the interval duration, exercise-to-rest ratio and training volume. In conclusion, this review supports repeated-sprint training in hypoxia as an efficient (but not magic) training intervention with 77% of the controlled studies reporting an additional benefit with added hypoxia, mainly for team-, combat- and racket-sports athletes but also for all other sports (e.g. endurance) that require repeated accelerations with lesser fatigue.
Collapse
Affiliation(s)
- Raphaël Faiss
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Antoine Raberin
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance, French Institute of Sport, Paris, France
| | - Grégoire P Millet
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Bouten J, Brick M, Saboua A, Hadjadj JL, Piscione J, Margot C, Doucende G, Bourrel N, Millet GP, Brocherie F. Effects of 2 Different Protocols of Repeated-Sprint Training in Hypoxia in Elite Female Rugby Sevens Players During an Altitude Training Camp. Int J Sports Physiol Perform 2023; 18:953-959. [PMID: 37487586 DOI: 10.1123/ijspp.2023-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVES Repeated-sprint training in hypoxia (RSH) is an effective way of improving physical performance compared with similar training in normoxia. RSH efficiency relies on hypoxia severity, but also on the oxidative-glycolytic balance determined by both sprint duration and exercise-to-rest ratio. This study investigated the effect of 2 types of RSH sessions during a classic altitude camp in world-class female rugby sevens players. METHODS Sixteen players performed 5 RSH sessions on a cycle ergometer (simulated altitude: 3000 m above sea level [asl]) during a 3-week natural altitude camp (1850 m asl). Players were assigned to 2 different protocols with either a high (RSH1:3, sprint duration: 8-10 s; exercise-to-rest ratios: 1:2-1:3; n = 7) or a low exercise-to-rest ratio (RSH1:5, sprint duration: 5-15 s; exercise-to-rest ratios: 1:2-1:5; n = 9). Repeated-sprint performances (maximal and mean power outputs [PPOmax, and PPOmean]) were measured before and after the intervention, along with physiological responses. RESULTS PPOmax (962 [100] to 1020 [143] W, P = .008, Cohen d = 0.47) and PPOmean (733 [71] to 773 [91] W, P = .008, d = 0.50) increased from before to after. A significant interaction effect (P = .048, d = 0.50) was observed for PPOmean, with a larger increase observed in RSH1:3 (P = .003). No interaction effects were observed (P > .05) for the other variables. CONCLUSION A classic altitude camp with 5 RSH sessions superimposed on rugby-sevens-specific training led to an improved repeated-sprint performance, suggesting that RSH effects are not blunted by prolonged hypoxic exposure. Interestingly, using a higher exercise-to-rest ratio during RSH appears to be more effective than when applying a lower exercise-to-rest ratio.
Collapse
Affiliation(s)
- Janne Bouten
- Laboratory of Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris,France
| | - Maxime Brick
- Research Department, French Rugby Union, Marcoussis,France
| | - Antoine Saboua
- Research Department, French Rugby Union, Marcoussis,France
| | | | | | - Chloé Margot
- Institute of Sport Sciences, University of Lausanne, Lausanne,Switzerland
| | - Gregory Doucende
- Centre National d'Entraînement en Altitude, Font Romeu,France
- Laboratoire Interdisciplinaire Performance Santé en Environnement de Montagne (LIPSEM), Université de Perpignan Via Domitia, Font Romeu,France
| | - Nicolas Bourrel
- Centre National d'Entraînement en Altitude, Font Romeu,France
- Institut National du Sport (INS), Montreal, QC,Canada
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne,Switzerland
| | - Franck Brocherie
- Laboratory of Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris,France
| |
Collapse
|
3
|
Hypoxia Does Not Change Performance and Psychophysiological Responses During Repeated Cycling Sprints to Exhaustion With Short Exercise-to-Rest Ratio. Int J Sports Physiol Perform 2023; 18:213-217. [PMID: 36640773 DOI: 10.1123/ijspp.2022-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 01/15/2023]
Abstract
PURPOSE To compare the acute performance and psychophysiological responses of repeated cycling sprints to exhaustion with a short exercise-to-rest ratio (1:6), between different effort durations and inspired oxygen fractions. METHODS On separate visits, 10 active participants completed 6 repeated cycling sprint exercises to exhaustion with 3 different effort durations (5, 10, and 20 s) and 2 conditions of inspired oxygen (20.9% and 13.6%). Exercise-to-rest ratio was 1:6 for all trials (ie, 5:30, 10:60, and 20:120). Vastus lateralis muscle oxygenation (near-infrared spectroscopy), blood lactate concentration, and lower-limb and breathing discomfort, using ratings of perceived exertion, were measured. RESULTS Number of sprints and peak power output decreased while blood lactate increased (all P < .001) during 5:30 compared with 10:60 or 20:120. No condition or interaction effects were reported for blood lactate and exercise-related sensation. Muscle deoxyhemoglobin increased (P < .001) and total hemoglobin decreased (P = .002) during sprint with increasing sprint duration (no condition or interaction). CONCLUSION During repeated-sprint exercise to exhaustion with a short exercise-to-rest ratio, the psychophysiological responses did not differ between normoxia and moderate hypoxia, probably due to an extended recovery period. It means that hypoxia did not modify repeated-sprint exercise performance with a short exercise-to-rest ratio. The sprint duration was the primary underlying factor of the observed differences in performance and muscle oxygenation reported between the repeated-sprint exercise sessions.
Collapse
|
4
|
Girard O, Brocherie F, Millet GP. Effects of Altitude/Hypoxia on Single- and Multiple-Sprint Performance: A Comprehensive Review. Sports Med 2018; 47:1931-1949. [PMID: 28451905 DOI: 10.1007/s40279-017-0733-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many sport competitions, typically involving the completion of single- (e.g. track-and-field or track cycling events) and multiple-sprint exercises (e.g. team and racquet sports, cycling races), are staged at terrestrial altitudes ranging from 1000 to 2500 m. Our aim was to comprehensively review the current knowledge on the responses to either acute or chronic altitude exposure relevant to single and multiple sprints. Performance of a single sprint is generally not negatively affected by acute exposure to simulated altitude (i.e. normobaric hypoxia) because an enhanced anaerobic energy release compensates for the reduced aerobic adenosine triphosphate production. Conversely, the reduction in air density in terrestrial altitude (i.e. hypobaric hypoxia) leads to an improved sprinting performance when aerodynamic drag is a limiting factor. With the repetition of maximal efforts, however, repeated-sprint ability is more altered (i.e. with earlier and larger performance decrements) at high altitudes (>3000-3600 m or inspired fraction of oxygen <14.4-13.3%) compared with either normoxia or low-to-moderate altitudes (<3000 m or inspired fraction of oxygen >14.4%). Traditionally, altitude training camps involve chronic exposure to low-to-moderate terrestrial altitudes (<3000 m or inspired fraction of oxygen >14.4%) for inducing haematological adaptations. However, beneficial effects on sprint performance after such altitude interventions are still debated. Recently, innovative 'live low-train high' methods, in isolation or in combination with hypoxic residence, have emerged with the belief that up-regulated non-haematological peripheral adaptations may further improve performance of multiple sprints compared with similar normoxic interventions.
Collapse
Affiliation(s)
- Olivier Girard
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French Institute of Sport (INSEP), Paris, France
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Richardson AJ, Relf RL, Saunders A, Gibson OR. Similar Inflammatory Responses following Sprint Interval Training Performed in Hypoxia and Normoxia. Front Physiol 2016; 7:332. [PMID: 27536249 PMCID: PMC4971433 DOI: 10.3389/fphys.2016.00332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Sprint interval training (SIT) is an efficient intervention capable of improving aerobic capacity and exercise performance. This experiment aimed to determine differences in training adaptations and the inflammatory responses following 2 weeks of SIT (30 s maximal work, 4 min recovery; 4-7 repetitions) performed in normoxia or hypoxia. Forty-two untrained participants [(mean ± SD), age 21 ±1 years, body mass 72.1 ±11.4 kg, and height 173 ±10 cm] were equally and randomly assigned to one of three groups; control (CONT; no training, n = 14), normoxic (NORM; SIT in FiO2: 0.21, n = 14), and normobaric hypoxic (HYP; SIT in FiO2: 0.15, n = 14). Participants completed a [Formula: see text] test, a time to exhaustion (TTE) trial (power = 80% [Formula: see text]) and had hematological [hemoglobin (Hb), haematocrit (Hct)] and inflammatory markers [interleukin-6 (IL-6), tumor necrosis factor-α (TNFα)] measured in a resting state, pre and post SIT. [Formula: see text] (mL.kg(-1).min(-1)) improved in HYP (+11.9%) and NORM (+9.8%), but not CON (+0.9%). Similarly TTE improved in HYP (+32.2%) and NORM (+33.0%), but not CON (+3.4%) whilst the power at the anaerobic threshold (AT; W.kg(-1)) also improved in HYP (+13.3%) and NORM (+8.0%), but not CON (-0.3%). AT (mL.kg(-1).min(-1)) improved in HYP (+9.5%), but not NORM (+5%) or CON (-0.3%). No between group change occurred in 30 s sprint performance or Hb and Hct. IL-6 increased in HYP (+17.4%) and NORM (+20.1%), but not CON (+1.2%), respectively. TNF-α increased in HYP (+10.8%) NORM (+12.9%) and CON (+3.4%). SIT in HYP and NORM increased [Formula: see text], power at AT and TTE performance in untrained individuals, improvements in AT occurred only when SIT was performed in HYP. Increases in IL-6 and TNFα reflect a training induced inflammatory response to SIT; hypoxic conditions do not exacerbate this.
Collapse
Affiliation(s)
- Alan J Richardson
- Environmental Extremes Lab, Centre for Sport and Exercise Science and Medicine, University of Brighton Eastbourne, UK
| | - Rebecca L Relf
- Environmental Extremes Lab, Centre for Sport and Exercise Science and Medicine, University of Brighton Eastbourne, UK
| | - Arron Saunders
- Environmental Extremes Lab, Centre for Sport and Exercise Science and Medicine, University of Brighton Eastbourne, UK
| | - Oliver R Gibson
- Centre for Human Performance, Exercise, and Rehabilitation, Brunel University London Uxbridge, UK
| |
Collapse
|
6
|
McLean BD, Gore CJ, Kemp J. Application of 'live low-train high' for enhancing normoxic exercise performance in team sport athletes. Sports Med 2015; 44:1275-87. [PMID: 24849544 DOI: 10.1007/s40279-014-0204-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Hypoxic training techniques are increasingly used by athletes in an attempt to improve performance in normoxic environments. The 'live low-train high (LLTH)' model of hypoxic training may be of particular interest to athletes because LLTH protocols generally involve shorter hypoxic exposures (approximately two to five sessions per week of <3 h) than other traditional hypoxic training techniques (e.g., live high-train high or live high-train low). However, the methods employed in LLTH studies to date vary greatly with respect to exposure times, training intensities, training modalities, degrees of hypoxia and performance outcomes assessed. Whilst recent reviews provide some insight into how LLTH may be applied to enhance performance, little attention has been given to how training intensity/modality may specifically influence subsequent performance in normoxia. Therefore, this systematic review aims to evaluate the normoxic performance outcomes of the available LLTH literature, with a particular focus on training intensity and modality. DATA SOURCES AND STUDY SELECTION A systematic search was conducted to capture all LLTH studies with a matched normoxic (control) training group and the assessment of performance under normoxic conditions. Studies were excluded if no training was completed during the hypoxic exposures, or if these exposures exceeded 3 h per day. Four electronic databases were searched (PubMed, SPORTDiscus, EMBASE and Web of Science) during August 2013, and these searches were supplemented by additional manual searches until December 2013. RESULTS After the electronic and manual searches, 40 papers were deemed to meet the inclusion criteria, representing 31 separate studies. Within these 31 studies, four types of LLTH were identified: (1) continuous low-intensity training in hypoxia (CHT, n = 16), (2) interval hypoxic training (IHT, n = 4), (3) repeated sprint training in hypoxia (RSH, n = 3) and (4) resistance training in hypoxia (RTH, n = 4). Four studies also used a combination of CHT and IHT. The majority of studies reported no difference in normoxic performance between the hypoxic and normoxic training groups (n = 19), while nine reported greater improvements in the hypoxic group and three reported poorer outcomes compared with the control group. Selection of training intensity (including matching relative or absolute intensity between normoxic and hypoxic groups) was identified as a key factor in mediating the subsequent normoxic performance outcomes. Five studies included some form of normoxic training for the hypoxic group and 14 studies assessed performance outcomes not specific to the training intensity/modality completed during the training intervention. CONCLUSION Four modes of LLTH are identified in the current literature (CHT, IHT, RSH and RTH), with training mode and intensity appearing to be key factors in mediating subsequent performance responses in normoxia. Improvements in normoxic performance appear most likely following high-intensity, short-term and intermittent training (e.g., IHT, RSH). LLTH programmes should carefully apply the principles of training and testing specificity and include some high-intensity training in normoxia. For RTH, it is unclear whether the associated adaptations are greater than those of traditional (maximal) resistance training programmes.
Collapse
Affiliation(s)
- Blake D McLean
- Sport Science Department, Collingwood Football Club, Melbourne, Australia,
| | | | | |
Collapse
|
7
|
Faiss R, Girard O, Millet GP. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med 2014; 47 Suppl 1:i45-50. [PMID: 24282207 PMCID: PMC3903143 DOI: 10.1136/bjsports-2013-092741] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past two decades, intermittent hypoxic training (IHT), that is, a method where athletes live at or near sea level but train under hypoxic conditions, has gained unprecedented popularity. By adding the stress of hypoxia during 'aerobic' or 'anaerobic' interval training, it is believed that IHT would potentiate greater performance improvements compared to similar training at sea level. A thorough analysis of studies including IHT, however, leads to strikingly poor benefits for sea-level performance improvement, compared to the same training method performed in normoxia. Despite the positive molecular adaptations observed after various IHT modalities, the characteristics of optimal training stimulus in hypoxia are still unclear and their functional translation in terms of whole-body performance enhancement is minimal. To overcome some of the inherent limitations of IHT (lower training stimulus due to hypoxia), recent studies have successfully investigated a new training method based on the repetition of short (<30 s) 'all-out' sprints with incomplete recoveries in hypoxia, the so-called repeated sprint training in hypoxia (RSH). The aims of the present review are therefore threefold: first, to summarise the main mechanisms for interval training and repeated sprint training in normoxia. Second, to critically analyse the results of the studies involving high-intensity exercises performed in hypoxia for sea-level performance enhancement by differentiating IHT and RSH. Third, to discuss the potential mechanisms underpinning the effectiveness of those methods, and their inherent limitations, along with the new research avenues surrounding this topic.
Collapse
Affiliation(s)
- Raphaël Faiss
- Department of Physiology, Faculty of Biology and Medicine, Institute of Sports Sciences, University of Lausanne, , Lausanne, Switzerland
| | | | | |
Collapse
|
8
|
Girard O, Amann M, Aughey R, Billaut F, Bishop DJ, Bourdon P, Buchheit M, Chapman R, D'Hooghe M, Garvican-Lewis LA, Gore CJ, Millet GP, Roach GD, Sargent C, Saunders PU, Schmidt W, Schumacher YO. Position statement--altitude training for improving team-sport players' performance: current knowledge and unresolved issues. Br J Sports Med 2013; 47 Suppl 1:i8-16. [PMID: 24282213 PMCID: PMC3903313 DOI: 10.1136/bjsports-2013-093109] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 01/09/2023]
Abstract
Despite the limited research on the effects of altitude (or hypoxic) training interventions on team-sport performance, players from all around the world engaged in these sports are now using altitude training more than ever before. In March 2013, an Altitude Training and Team Sports conference was held in Doha, Qatar, to establish a forum of research and practical insights into this rapidly growing field. A round-table meeting in which the panellists engaged in focused discussions concluded this conference. This has resulted in the present position statement, designed to highlight some key issues raised during the debates and to integrate the ideas into a shared conceptual framework. The present signposting document has been developed for use by support teams (coaches, performance scientists, physicians, strength and conditioning staff) and other professionals who have an interest in the practical application of altitude training for team sports. After more than four decades of research, there is still no consensus on the optimal strategies to elicit the best results from altitude training in a team-sport population. However, there are some recommended strategies discussed in this position statement to adopt for improving the acclimatisation process when training/competing at altitude and for potentially enhancing sea-level performance. It is our hope that this information will be intriguing, balanced and, more importantly, stimulating to the point that it promotes constructive discussion and serves as a guide for future research aimed at advancing the bourgeoning body of knowledge in the area of altitude training for team sports.
Collapse
Affiliation(s)
- Olivier Girard
- Research and Education Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Markus Amann
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Robert Aughey
- Exercise and Active Living, Institute of Sport, Victoria University, Melbourne, Australia
- Western Bulldogs Football Club, Melbourne, Australia
| | | | - David J Bishop
- Exercise and Active Living, Institute of Sport, Victoria University, Melbourne, Australia
| | | | | | - Robert Chapman
- Department of Kinesiology, Indiana University, High Performance Department, USA Track & Field, Indianapolis, Indiana, USA
| | - Michel D'Hooghe
- Fédération Internationale de Football Association (FIFA) Medical Commission and FIFA Medical Assessment and Research Centre (F-MARC), Langerei, 71, 8000 Brugge, Belgium
| | - Laura A Garvican-Lewis
- Department of Physiology, Australian Institute of Sport, Canberra, Australia
- University of Canberra, Canberra, Australia
| | - Christopher J Gore
- Department of Physiology, Australian Institute of Sport, Canberra, Australia
- Exercise Physiology Laboratory, Flinders University, Adelaide, Australia
| | - Grégoire P Millet
- Department of Physiology—Faculty of Biology and Medicine, ISSUL—Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gregory D Roach
- Appleton Institute for Behavioural Science, Central Queensland University, Adelaide, Australia
| | - Charli Sargent
- Appleton Institute for Behavioural Science, Central Queensland University, Adelaide, Australia
| | - Philo U Saunders
- Department of Physiology, Australian Institute of Sport, Canberra, Australia
- University of Canberra, Canberra, Australia
| | - Walter Schmidt
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, Bayreuth, Germany
| | - Yorck O Schumacher
- Research and Education Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|