1
|
Mendez-Hernandez R, Braga I, Bali A, Yang M, de Lartigue G. Vagal Sensory Gut-Brain Pathways That Control Eating-Satiety and Beyond. Compr Physiol 2025; 15:e70010. [PMID: 40229922 DOI: 10.1002/cph4.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
The vagus nerve is the body's primary sensory conduit from gut to brain, traditionally viewed as a passive relay for satiety signals. However, emerging evidence reveals a far more complex system-one that actively encodes diverse aspects of meal-related information, from mechanical stretch to nutrient content, metabolic state, and even microbial metabolites. This review challenges the view of vagal afferent neurons (VANs) as simple meal-termination sensors and highlights their specialized subpopulations, diverse sensory modalities, and downstream brain circuits, which shape feeding behavior, metabolism, and cognition. We integrate recent advances from single-cell transcriptomics, neural circuit mapping, and functional imaging to examine how VANs contribute to gut-brain communication beyond satiety, including their roles in food reward and memory formation. By synthesizing the latest research and highlighting emerging directions for the field, this review provides a comprehensive update on vagal sensory pathways and their role as integrators of meal information.
Collapse
Affiliation(s)
- Rebeca Mendez-Hernandez
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Isadora Braga
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Avnika Bali
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mingxin Yang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guillaume de Lartigue
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Pena-Leon V, Perez-Lois R, Villalon M, Folgueira C, Barja-Fernández S, Prida E, Baltar J, Santos F, Fernø J, García-Caballero T, Nogueiras R, Quiñones M, Al-Massadi O, Seoane LM. Gastric GDF15 levels are regulated by age, sex, and nutritional status in rodents and humans. J Endocrinol Invest 2024; 47:1139-1154. [PMID: 37955834 DOI: 10.1007/s40618-023-02232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023]
Abstract
AIM Growth differentiation factor 15 (GDF15) is a stress response cytokine that has been proposed as a relevant metabolic hormone. Descriptive studies have shown that plasma GDF15 levels are regulated by short term changes in nutritional status, such as fasting, or in obesity. However, few data exist regarding how GDF15 levels are regulated in peripheral tissues. The aim of the present work was to study the variations on gastric levels of GDF15 and its precursor under different physiological conditions, such as short-term changes in nutritional status or overfeeding achieved by HFD. Moreover, we also address the sex- and age-dependent alterations in GDF15 physiology. METHODS The levels of gastric and plasma GDF15 and its precursor were measured in lean and obese mice, rats and humans by western blot, RT-PCR, ELISA, immunohistochemistry and by an in vitro organ culture system. RESULTS Our results show a robust regulation of gastric GDF15 production by fasting in rodents. In obesity an increase in GDF15 secretion from the stomach is reflected with an increase in circulating levels of GDF15 in rats and humans. Moreover, gastric GDF15 levels increase with age in both rats and humans. Finally, gastric GDF15 levels display sexual dimorphism, which could explain the difference in circulating GFD15 levels between males and females, observed in both humans and rodents. CONCLUSIONS Our results provide clear evidence that gastric GDF15 is a critical contributor of circulating GDF15 levels and can explain some of the metabolic effects induced by GDF15.
Collapse
Affiliation(s)
- V Pena-Leon
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - R Perez-Lois
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - M Villalon
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - C Folgueira
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - S Barja-Fernández
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - E Prida
- Translational Endocrinology Group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Spain
| | - J Baltar
- Servicio de Cirugía General y del Aparato Digestivo, CHUS7SERGAS Santiago de Compostela, Rua R Baltar s/n, 15706, Santiago de Compostela, Spain
| | - F Santos
- Servicio de Cirugía General y del Aparato Digestivo, CHUS7SERGAS Santiago de Compostela, Rua R Baltar s/n, 15706, Santiago de Compostela, Spain
| | - J Fernø
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, 5201, Bergen, Norway
| | - T García-Caballero
- Departamento de Ciencias Morfologicas, Facultad de Medicina, USC, Complejo Hospitalario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - R Nogueiras
- Departamento de Fisiología, Instituto de Investigación Sanitaria de Santiago de Compostela, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Spain, Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - M Quiñones
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Spain, Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - O Al-Massadi
- Translational Endocrinology Group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Spain.
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Spain, Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain.
| | - L M Seoane
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain.
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Spain, Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Nunez-Salces M, Li H, Young RL, Page AJ. The secretion of total and acyl ghrelin from the mouse gastric mucosa: Role of nutrients and the lipid chemosensors FFAR4 and CD36. Peptides 2021; 146:170673. [PMID: 34627956 DOI: 10.1016/j.peptides.2021.170673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
AIMS This study investigated the nutrient-mediated modulation of total ghrelin (TG) and acyl ghrelin (AG) secretion from the mouse gastric mucosa, and the role of long-chain fatty acid chemosensors, FFAR4 and CD36, in lipid-mediated modulation of TG and AG release. METHODS Ex-vivo experiments were conducted using mouse gastric mucosa to examine the effects of nutrients (D-glucose, L-phenylalanine, peptone (mixture of oligopeptides & single amino acids), D-mannitol, α-linolenic acid and fat emulsion (intralipid)) on TG and AG secretion. Additionally, inhibition of FFAR4 and CD36 on α-linolenic acid and intralipid-mediated regulation of TG and AG secretion was assessed. RESULTS TG and AG secretion were unaffected by glucose and D-mannitol. Peptone stimulated the release of TG and AG. In contrast, L-phenylalanine reduced AG secretion only. Intralipid reduced TG secretion and stimulated AG secretion, and α-linolenic acid reduced AG release, without affecting TG mobilisation. Modulation of ghrelin secretion by lipids occurred in an FFAR4 and CD36-independent manner. CONCLUSION Ghrelin secretion is modulated in a nutrient-specific manner by proteins and lipids, with TG and AG displaying independent responses to the same stimuli. In addition, FFAR4 and CD36 do not participate in modulation of TG and AG secretion by α-linolenic acid and intralipid.
Collapse
Affiliation(s)
- Maria Nunez-Salces
- Vagal Afferent Research Group, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Hui Li
- Vagal Afferent Research Group, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Richard L Young
- Intestinal Nutrient Sensing Group, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Amanda J Page
- Vagal Afferent Research Group, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.
| |
Collapse
|
4
|
Binge eating among young adults: association with sociodemographic factors, nutritional intake, dietary n-6: n-3 ratio and impulsivity. Br J Nutr 2021; 126:1431-1440. [PMID: 33441196 DOI: 10.1017/s0007114521000118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Binge eating behaviour (BE) is the major symptom of binge eating disorder (BED). This study aimed to compare the nutritional intake in the presence or absence of BE, with a particular focus on dietary n-6:n-3 ratio, to assess the association between BE and impulsivity and the mediating effect of BMI on this association. A total of 450 university students (age 18-28 years) participated. The self-administered questionnaires were a semi-quantitative FFQ and the UPPS-P Impulsive Behavior Scale and the binge eating scale. The average BE score was 11·6 (se 7·388), and 20 % of the total participants scored above the cut-off of 17, thus presenting BE with 95 % CI of 16·3, 23·7 %. Our study revealed that greater BMI, higher total energy intake, greater negative urgency and positive urgency scores were significantly associated with BE. Participants with high value of dietary n-6:n-3 ratio were 1·335 more at risk to present a BE compared with those with a lower value of this ratio (P = 0·017). The relationship between BE score and UPPS domains score was not mediated by the BMI. This is the first study reporting a link between high dietary n-6:n-3 ratio and BE as well as the fact that BE was linked to both, negative and positive urgencies, and that the association between BE and impulsivity was not mediated by BMI. These findings can help to deal more efficiently with people suffering from BE, a symptom that can precede the development of BED.
Collapse
|
5
|
Martín M, Rodríguez A, Gómez-Ambrosi J, Ramírez B, Becerril S, Catalán V, López M, Diéguez C, Frühbeck G, Burrell MA. Caloric Restriction Prevents Metabolic Dysfunction and the Changes in Hypothalamic Neuropeptides Associated with Obesity Independently of Dietary Fat Content in Rats. Nutrients 2021; 13:nu13072128. [PMID: 34206176 PMCID: PMC8308389 DOI: 10.3390/nu13072128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022] Open
Abstract
Energy restriction is a first therapy in the treatment of obesity, but the underlying biological mechanisms have not been completely clarified. We analyzed the effects of restriction of high-fat diet (HFD) on weight loss, circulating gut hormone levels and expression of hypothalamic neuropeptides. Ten-week-old male Wistar rats (n = 40) were randomly distributed into four groups: two fed ad libitum a normal diet (ND) (N group) or a HFD (H group) and two subjected to a 25% caloric restriction of ND (NR group) or HFD (HR group) for 9 weeks. A 25% restriction of HFD over 9 weeks leads to a 36% weight loss with regard to the group fed HFD ad libitum accompanied by normal values in adiposity index and food efficiency ratio (FER). This restriction also carried the normalization of NPY, AgRP and POMC hypothalamic mRNA expression, without changes in CART. Caloric restriction did not succeed in improving glucose homeostasis but reduced HFD-induced hyperinsulinemia. In conclusion, 25% restriction of HFD reduced adiposity and improved metabolism in experimental obesity, without changes in glycemia. Restriction of the HFD triggered the normalization of hypothalamic NPY, AgRP and POMC expression, as well as ghrelin and leptin levels.
Collapse
Affiliation(s)
- Marina Martín
- Department of Pathology, Anatomy and Physiology, University of Navarra, IdiSNA, 31008 Pamplona, Spain;
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain; (A.R.); (J.G.-A.); (B.R.); (S.B.); (V.C.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain; (A.R.); (J.G.-A.); (B.R.); (S.B.); (V.C.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain; (A.R.); (J.G.-A.); (B.R.); (S.B.); (V.C.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain; (A.R.); (J.G.-A.); (B.R.); (S.B.); (V.C.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain; (A.R.); (J.G.-A.); (B.R.); (S.B.); (V.C.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
| | - Miguel López
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Carlos Diéguez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008 Pamplona, Spain; (A.R.); (J.G.-A.); (B.R.); (S.B.); (V.C.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - María A. Burrell
- Department of Pathology, Anatomy and Physiology, University of Navarra, IdiSNA, 31008 Pamplona, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.L.); (C.D.)
- Correspondence: ; Tel.: +34-948-425600 (ext. 806247)
| |
Collapse
|
6
|
Martínez-García MÁ, Moncayo S, Insenser M, Álvarez-Blasco F, Luque-Ramírez M, Escobar-Morreale HF. Postprandial responses of circulating energy homeostasis mediators to single macronutrient challenges: influence of obesity and sex hormones. Food Funct 2021; 12:1051-1062. [PMID: 33443255 DOI: 10.1039/d0fo02305a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We analysed the influence of obesity, sex and sex steroids on the postprandial responses of circulating energy homeostasis mediators and their receptors to different macronutrient challenges. Seventeen women with polycystic ovary syndrome (PCOS, 8 with obesity), 17 non-hyperandrogenic control women (8 with obesity) and 19 control men (9 with obesity) were submitted, on alternate days, to isocaloric (300 kcal) oral glucose, lipid and protein loads. We evaluated serum ghrelin, leptin, soluble leptin receptor and adiponectin levels and the leukocyte gene expression of ghrelin (GHRL) and its receptor (GHSR), leptin receptor (LEPR) and adiponectin receptor 1 (ADIPOR1) during the macronutrient challenges. The postprandial responses of circulating energy homeostasis mediators were entirely different than those of their related genes. After macronutrient loads the postprandial response of serum energy homeostasis mediators showed a generalized physiological decrease that was blunted in subjects with obesity but was not influenced by sex, sex hormones or PCOS. However, gene expression of GHRL, LEPR and ADIPOR1 showed a marked increase following the ingestion of glucose compared with lipids and proteins, regardless of obesity and sex steroids. The physiological decrease after macronutrient loads, that was deregulated in obesity, did not reflect the acute leukocyte gene expression mainly after glucose, and may suggest a possible role for ghrelin, leptin and adiponectin in the postprandial inflammatory process.
Collapse
Affiliation(s)
- M Ángeles Martínez-García
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| | - Samuel Moncayo
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| | - María Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| | - Francisco Álvarez-Blasco
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| | - Manuel Luque-Ramírez
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| | - Héctor F Escobar-Morreale
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| |
Collapse
|
7
|
Klockars A, Levine AS, Head MA, Perez-Leighton CE, Kotz CM, Olszewski PK. Impact of Gut and Metabolic Hormones on Feeding Reward. Compr Physiol 2021; 11:1425-1447. [PMID: 33577129 DOI: 10.1002/cphy.c190042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ingestion of food activates a cascade of endocrine responses (thereby reflecting a contemporaneous feeding status) that include the release of hormones from the gastrointestinal (GI) tract, such as cholecystokinin (CCK), glucagonlike peptide YY (PYY), peptide PP, and oleoylethanolamide, as well as suppression of ghrelin secretion. The pancreas and adipose tissue, on the other hand, release hormones that serve as a measure of the current metabolic state or the long-term energy stores, that is, insulin, leptin, and adiponectin. It is well known and intuitively understandable that these hormones target either directly (by crossing the blood-brain barrier) or indirectly (e.g., via vagal input) the "homeostatic" brainstem-hypothalamic pathways involved in the regulation of appetite. The current article focuses on yet another target of the metabolic and GI hormones that is critical in inducing changes in food intake, namely, the reward system. We discuss the physiological basis of this functional interaction, its importance in the control of appetite, and the impact that disruption of this crosstalk has on energy intake in select physiological and pathophysiological states. We conclude that metabolic and GI hormones have a capacity to strengthen or weaken a response of the reward system to a given food, and thus, they are fundamental in ensuring that feeding reward is plastic and dependent on the energy status of the organism. © 2021 American Physiological Society. Compr Physiol 11:1425-1447, 2021.
Collapse
Affiliation(s)
- Anica Klockars
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Mitchell A Head
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | - Catherine M Kotz
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand.,Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Impact of Protein Intake in Older Adults with Sarcopenia and Obesity: A Gut Microbiota Perspective. Nutrients 2020; 12:nu12082285. [PMID: 32751533 PMCID: PMC7468805 DOI: 10.3390/nu12082285] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The continuous population increase of older adults with metabolic diseases may contribute to increased prevalence of sarcopenia and obesity and requires advocacy of optimal nutrition treatments to combat their deleterious outcomes. Sarcopenic obesity, characterized by age-induced skeletal-muscle atrophy and increased adiposity, may accelerate functional decline and increase the risk of disability and mortality. In this review, we explore the influence of dietary protein on the gut microbiome and its impact on sarcopenia and obesity. Given the associations between red meat proteins and altered gut microbiota, a combination of plant and animal-based proteins are deemed favorable for gut microbiota eubiosis and muscle-protein synthesis. Additionally, high-protein diets with elevated essential amino-acid concentrations, alongside increased dietary fiber intake, may promote gut microbiota eubiosis, given the metabolic effects derived from short-chain fatty-acid and branched-chain fatty-acid production. In conclusion, a greater abundance of specific gut bacteria associated with increased satiation, protein synthesis, and overall metabolic health may be driven by protein and fiber consumption. This could counteract the development of sarcopenia and obesity and, therefore, represent a novel approach for dietary recommendations based on the gut microbiota profile. However, more human trials utilizing advanced metabolomic techniques to investigate the microbiome and its relationship with macronutrient intake, especially protein, are warranted.
Collapse
|
9
|
Dominguez Gutierrez G, Kim J, Lee AH, Tong J, Niu J, Gray SM, Wei Y, Ding Y, Ni M, Adler C, Murphy AJ, Gromada J, Xin Y. Gene Signature of the Human Pancreatic ε Cell. Endocrinology 2018; 159:4023-4032. [PMID: 30380031 PMCID: PMC6963699 DOI: 10.1210/en.2018-00833] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022]
Abstract
The ghrelin-producing ε cell represents the fifth endocrine cell type in human pancreatic islets. The abundance of ε cells in adult pancreas is extremely low, which has hampered the investigation on the molecular pathways regulating the development and the function of this cell type. In this study, we explored the molecular features defining the function of pancreatic ε cells isolated from adult nondiabetic donors using single-cell RNA sequencing technology. We focus on transcription factors, cell surface receptors, and genes involved in metabolic pathways that contribute to regulation of cellular function. Furthermore, the genes that separate ε cells from the other islet endocrine cell types are presented. This study expands prior knowledge about the genes important for ε cell functioning during development and provides a resource to interrogate the transcriptome of this rare human islet cell type.
Collapse
Affiliation(s)
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Ann-Hwee Lee
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Jenny Tong
- Division of Endocrinology, Metabolism and Nutrition, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - JingJing Niu
- Division of Endocrinology, Metabolism and Nutrition, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Sarah M Gray
- Division of Endocrinology, Metabolism and Nutrition, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Yueming Ding
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Min Ni
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | | | - Yurong Xin
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| |
Collapse
|
10
|
Mani BK, Zigman JM. Ghrelin as a Survival Hormone. Trends Endocrinol Metab 2017; 28:843-854. [PMID: 29097101 PMCID: PMC5777178 DOI: 10.1016/j.tem.2017.10.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
Ghrelin administration induces food intake and body weight gain. Based on these actions, the ghrelin system was initially proposed as an antiobesity target. Subsequent studies using genetic mouse models have raised doubts about the role of the endogenous ghrelin system in mediating body weight homeostasis or obesity. However, this is not to say that the endogenous ghrelin system is not important metabolically or otherwise. Here we review an emerging concept in which the endogenous ghrelin system serves an essential function during extreme nutritional and psychological challenges to defend blood glucose, protect body weight, avoid exaggerated depression, and ultimately allow survival.
Collapse
Affiliation(s)
- Bharath K Mani
- Divisions of Hypothalamic Research and Endocrinology, Department of Internal Medicine, and Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9077, USA
| | - Jeffrey M Zigman
- Divisions of Hypothalamic Research and Endocrinology, Department of Internal Medicine, and Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9077, USA.
| |
Collapse
|
11
|
Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 2017; 97:411-463. [PMID: 28003328 PMCID: PMC6151490 DOI: 10.1152/physrev.00031.2014] [Citation(s) in RCA: 402] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Collapse
Affiliation(s)
- Robert E Steinert
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Lori Asarian
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christoph Beglinger
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Nori Geary
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
12
|
Chang CY, Kanthimathi MS, Tan ATB, Nesaretnam K, Teng KT. The amount and types of fatty acids acutely affect insulin, glycemic and gastrointestinal peptide responses but not satiety in metabolic syndrome subjects. Eur J Nutr 2016; 57:179-190. [PMID: 27632019 DOI: 10.1007/s00394-016-1307-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/31/2016] [Indexed: 01/17/2023]
Abstract
PURPOSE Limited clinical evidence is available on the effects of amount and types of dietary fats on postprandial insulinemic and gastrointestinal peptide responses in metabolic syndrome subjects. We hypothesized that meals enriched with designated: (1) amount of fats (50 vs 20 g), (2) fats with differing fatty acid composition (saturated, SFA; monounsaturated, MUFA or n-6 polyunsaturated fatty acids, PUFA) would affect insulinemic and gastrointestinal peptide releases in metabolic syndrome subjects. METHODS Using a randomized, crossover and double-blinded design, 15 men and 15 women with metabolic syndrome consumed high-fat meals enriched with SFA, MUFA or n-6 PUFA, or a low-fat/high-sucrose (SUCR) meal. C-peptide, insulin, glucose, gastrointestinal peptides and satiety were measured up to 6 h. RESULTS As expected, SUCR meal induced higher C-peptide (45 %), insulin (45 %) and glucose (49 %) responses compared with high-fat meals regardless of types of fatty acids (P < 0.001). Interestingly, incremental area under the curve (AUC0-120min) for glucagon-like peptide-1 was higher after SUCR meal compared with MUFA (27 %) and n-6 PUFA meals (23 %) (P = 0.01). AUC0-120min for glucose-dependent insulinotropic polypeptide was higher after SFA meal compared with MUFA (23 %) and n-6 PUFA meals (20 %) (P = 0.004). Significant meal x time interaction (P = 0.007) was observed for ghrelin, but not cholecystokinin and satiety. CONCLUSIONS The amount of fat regardless of the types of fatty acids affects insulin and glycemic responses. Both the amount and types of fatty acids acutely affect the gastrointestinal peptide release in metabolic syndrome subjects, but not satiety.
Collapse
Affiliation(s)
- Chee-Yan Chang
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya Centre for Proteomics Research (UMCPR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - M S Kanthimathi
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya Centre for Proteomics Research (UMCPR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Alexander Tong-Boon Tan
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kalanithi Nesaretnam
- Product Development and Advisory Services, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Kim-Tiu Teng
- Product Development and Advisory Services, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
13
|
de Lartigue G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J Physiol 2016; 594:5791-5815. [PMID: 26959077 DOI: 10.1113/jp271538] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/26/2016] [Indexed: 12/21/2022] Open
Abstract
This review highlights evidence for a role of the vagus nerve in the development of obesity and how targeting the vagus nerve with neuromodulation or pharmacology can be used as a therapeutic treatment of obesity. The vagus nerve innervating the gut plays an important role in controlling metabolism. It communicates peripheral information about the volume and type of nutrients between the gut and the brain. Depending on the nutritional status, vagal afferent neurons express two different neurochemical phenotypes that can inhibit or stimulate food intake. Chronic ingestion of calorie-rich diets reduces sensitivity of vagal afferent neurons to peripheral signals and their constitutive expression of orexigenic receptors and neuropeptides. This disruption of vagal afferent signalling is sufficient to drive hyperphagia and obesity. Furthermore neuromodulation of the vagus nerve can be used in the treatment of obesity. Although the mechanisms are poorly understood, vagal nerve stimulation prevents weight gain in response to a high-fat diet. In small clinical studies, in patients with depression or epilepsy, vagal nerve stimulation has been demonstrated to promote weight loss. Vagal blockade, which inhibits the vagus nerve, results in significant weight loss. Vagal blockade is proposed to inhibit aberrant orexigenic signals arising in obesity as a putative mechanism of vagal blockade-induced weight loss. Approaches and molecular targets to develop future pharmacotherapy targeted to the vagus nerve for the treatment of obesity are proposed. In conclusion there is strong evidence that the vagus nerve is involved in the development of obesity and it is proving to be an attractive target for the treatment of obesity.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- The John B. Pierce Laboratory, New Haven, CT, USA. .,Dept Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Koyama H, Iwakura H, Dote K, Bando M, Hosoda H, Ariyasu H, Kusakabe T, Son C, Hosoda K, Akamizu T, Kangawa K, Nakao K. Comprehensive Profiling of GPCR Expression in Ghrelin-Producing Cells. Endocrinology 2016; 157:692-704. [PMID: 26671185 DOI: 10.1210/en.2015-1784] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To determine the comprehensive G protein-coupled receptor (GPCR) expression profile in ghrelin-producing cells and to elucidate the role of GPCR-mediated signaling in the regulation of ghrelin secretion, we determined GPCR expression profiles by RNA sequencing in the ghrelin-producing cell line MGN3-1 and analyzed the effects of ligands for highly expressed receptors on intracellular signaling and ghrelin secretion. Expression of selected GPCRs was confirmed in fluorescence-activated cell-sorted fluorescently tagged ghrelin-producing cells from ghrelin-promoter CreERT2/Rosa-CAG-LSL-ZsGreen1 mice. Expression levels of GPCRs previously suggested to regulate ghrelin secretion including adrenergic-β1 receptor, GPR81, oxytocin receptor, GPR120, and somatostatin receptor 2 were high in MGN3-1 cells. Consistent with previous reports, isoproterenol and oxytocin stimulated the Gs and Gq pathways, respectively, whereas lactate, palmitate, and somatostatin stimulated the Gi pathway, confirming the reliability of current assays. Among other highly expressed GPCRs, prostaglandin E receptor 4 agonist prostaglandin E2 significantly stimulated the Gs pathway and ghrelin secretion. Muscarine, the canonical agonist of cholinergic receptor muscarinic 4, stimulated both the Gq and Gi pathways. Although muscarine treatment alone did not affect ghrelin secretion, it did suppress forskolin-induced ghrelin secretion, suggesting that the cholinergic pathway may play a role in counterbalancing the stimulation of ghrelin by Gs (eg, by adrenaline). In addition, GPR142 ligand tryptophan stimulated ghrelin secretion. In conclusion, we determined the comprehensive expression profile of GPCRs in ghrelin-producing cells and identified two novel ghrelin regulators, prostaglandin E2 and tryptophan. These results will lead to a greater understanding of the physiology of ghrelin and facilitate the development of ghrelin-modulating drugs.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Cell Line, Tumor
- Colforsin/pharmacology
- Dinoprostone/pharmacology
- Gastric Mucosa/cytology
- Gastric Mucosa/drug effects
- Gastric Mucosa/metabolism
- Gene Expression Profiling
- Ghrelin/drug effects
- Ghrelin/metabolism
- Hormones/pharmacology
- Immunohistochemistry
- Isoproterenol/pharmacology
- Lactic Acid/pharmacology
- Mice
- Mice, Transgenic
- Muscarine/pharmacology
- Muscarinic Agonists/pharmacology
- Oxytocics/pharmacology
- Oxytocin/pharmacology
- Palmitates/pharmacology
- RNA, Messenger/metabolism
- Receptor, Muscarinic M4/agonists
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Oxytocin/drug effects
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/agonists
- Receptors, Somatostatin/drug effects
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Sequence Analysis, RNA
- Somatostatin/pharmacology
- Tryptophan/pharmacology
Collapse
Affiliation(s)
- Hiroyuki Koyama
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Hiroshi Iwakura
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Katsuko Dote
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Mika Bando
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Hiroshi Hosoda
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Hiroyuki Ariyasu
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Toru Kusakabe
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Choel Son
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kiminori Hosoda
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Takashi Akamizu
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kenji Kangawa
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kazuwa Nakao
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
15
|
Zigman JM, Bouret SG, Andrews ZB. Obesity Impairs the Action of the Neuroendocrine Ghrelin System. Trends Endocrinol Metab 2016; 27:54-63. [PMID: 26542050 PMCID: PMC4814209 DOI: 10.1016/j.tem.2015.09.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 01/08/2023]
Abstract
Ghrelin is a metabolic hormone that promotes energy conservation by regulating appetite and energy expenditure. Although some studies suggest that antagonizing ghrelin function attenuates body weight gain and glucose intolerance on a high calorie diet, there is little information about the metabolic actions of ghrelin in the obese state. In this review, we discuss the novel concept of obesity-induced central ghrelin resistance in neural circuits regulating behavior, and impaired ghrelin secretion from the stomach. Interestingly, weight loss restores ghrelin secretion and function, and we hypothesize that ghrelin resistance is a mechanism designed to protect a higher body weight set-point established during times of food availability, to maximize energy reserves during a time of food scarcity.
Collapse
Affiliation(s)
- Jeffrey M Zigman
- Departments of Internal Medicine (Divisions of Hypothalamic Research and Endocrinology and Metabolism) and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390-9077, USA.
| | - Sebastien G Bouret
- The Saban Research Institute, Developmental Neuroscience Program, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA; Inserm, Jean-Pierre Aubert Research Center, U1172, University Lille 2, Lille, 59045, France
| | - Zane B Andrews
- Metabolic Disease and Obesity Theme, Biomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria 3183, Australia
| |
Collapse
|
16
|
Mohan H, Ramesh N, Mortazavi S, Le A, Iwakura H, Unniappan S. Nutrients differentially regulate nucleobindin-2/nesfatin-1 in vitro in cultured stomach ghrelinoma (MGN3-1) cells and in vivo in male mice. PLoS One 2014; 9:e115102. [PMID: 25506938 PMCID: PMC4266631 DOI: 10.1371/journal.pone.0115102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 11/18/2014] [Indexed: 11/18/2022] Open
Abstract
Nesfatin-1 is secreted, meal-responsive anorexigenic peptide encoded in the precursor nucleobindin-2 [NUCB2]. Circulating nesfatin-1 increases post-prandially, but the dietary components that modulate NUCB2/nesfatin-1 remain unknown. We hypothesized that carbohydrate, fat and protein differentially regulate tissue specific expression of nesfatin-1. NUCB2, prohormone convertases and nesfatin-1 were detected in mouse stomach ghrelinoma [MGN3-1] cells. NUCB2 mRNA and protein were also detected in mouse liver, and small and large intestines. MGN3-1 cells were treated with glucose, fatty acids or amino acids. Male C57BL/6 mice were chronically fed high fat, high carbohydrate and high protein diets for 17 weeks. Quantitative PCR and nesfatin-1 assays were used to determine nesfatin-1 at mRNA and protein levels. Glucose stimulated NUCB2 mRNA expression in MGN3-1 cells. L-Tryptophan also increased NUCB2 mRNA expression and ghrelin mRNA expression, and nesfatin-1 secretion. Oleic acid inhibited NUCB2 mRNA expression, while ghrelin mRNA expression and secretion was enhanced. NUCB2 mRNA expression was significantly lower in the liver of mice fed a high protein diet compared to mice fed other diets. Chronic intake of high fat diet caused a significant reduction in NUCB2 mRNA in the stomach, while high protein and high fat diet caused similar suppression of NUCB2 mRNA in the large intestine. No differences in serum nesfatin-1 levels were found in mice at 7 a.m, at the commencement of the light phase. High carbohydrate diet fed mice showed significantly elevated nesfatin-1 levels at 1 p.m. Serum nesfatin-1 was significantly lower in mice fed high fat, protein or carbohydrate compared to the controls at 7 p.m, just prior to the dark phase. Mice that received a bolus of high fat had significantly elevated nesfatin-1/NUCB2 at all time points tested post-gavage, compared to control mice and mice fed other diets. Our results for the first time indicate that nesfatin-1 is modulated by nutrients.
Collapse
Affiliation(s)
- Haneesha Mohan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Naresh Ramesh
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sima Mortazavi
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anthony Le
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Hiroshi Iwakura
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
17
|
Uchida A, Zechner JF, Mani BK, Park WM, Aguirre V, Zigman JM. Altered ghrelin secretion in mice in response to diet-induced obesity and Roux-en-Y gastric bypass. Mol Metab 2014; 3:717-30. [PMID: 25353000 PMCID: PMC4209356 DOI: 10.1016/j.molmet.2014.07.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 01/06/2023] Open
Abstract
The current study examined potential mechanisms for altered circulating ghrelin levels observed in diet-induced obesity (DIO) and following weight loss resulting from Roux-en-Y gastric bypass (RYGB). We hypothesized that circulating ghrelin levels were altered in obesity and after weight loss through changes in ghrelin cell responsiveness to physiological cues. We confirmed lower ghrelin levels in DIO mice and demonstrated elevated ghrelin levels in mice 6 weeks post-RYGB. In both DIO and RYGB settings, these changes in ghrelin levels were associated with altered ghrelin cell responsiveness to two key physiological modulators of ghrelin secretion - glucose and norepinephrine. In DIO mice, increases in ghrelin cell density within both the stomach and duodenum and in somatostatin-immunoreactive D cell density in the duodenum were observed. Our findings provide new insights into the regulation of ghrelin secretion and its relation to circulating ghrelin within the contexts of obesity and weight loss.
Collapse
Affiliation(s)
- Aki Uchida
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology & Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Juliet F Zechner
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bharath K Mani
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology & Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Won-Mee Park
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology & Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vincent Aguirre
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology & Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
18
|
Food choice in disorders of eating behavior: correlations with the psychopathological aspects of the diseases. Compr Psychiatry 2014; 55:1203-11. [PMID: 24703769 DOI: 10.1016/j.comppsych.2014.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 02/23/2014] [Accepted: 02/24/2014] [Indexed: 11/21/2022] Open
Abstract
Eating disorders (ED) are characterized by alterations in food choice and in the quantity and quality of nutrient intake. In a population of 124 female patients with ED (anorexia nervosa restricting subtype [AN-R, n=37]; AN bingeing-purging subtype [AN-BP, n=18]; bulimia nervosa purging subtype [BN-P, n=40]; and binge eating disorder [BED, n=29]) and healthy age-matched controls ([C], n=20) we compared food choice and macronutrient intake with psychopathologic symptoms of the disorders. Data were collected from the probands' 7-day food diaries and the scores from two assessment scales (Eating Disorder Inventory-2 [EDI-2] and Temperament and Character Inventory-revised [TCI-R]) that measure symptom domains, dimensions of personality and character dimensions, respectively. Multiple regression analysis was applied to the nutritional data and scale scores. When compared to the values for the control group, intake of animal proteins (grams) was significantly lower for all patient groups, intake of lactoproteins was lower for the AN-R and AN-BP than BN-P and BED groups, intake of vegetal proteins was higher for the AN-R, AN-BP, BN-P and BED groups, intake of dietary fats was lower for the AN-R and AN-BP subtype groups, and intake of total carbohydrates and oligosaccharides was lower for the AN-R and AN-BP groups, and oligosaccharides also for the BED, when calculated in grams but not when expressed in percent. When studied as percent values animal proteins were lower in patients than in controls, lactoprotein in BN-P and BED, vegetal proteins higher in all the patients, fat lower in AN-R and AN-BP, while carbohydrates did not differ between patients and controls. Significant correlations emerged between food choice and TCI-R and EDI-2 scale scores. Food choice in ED might depend on alterations in neurotransmitter peptides, neuropeptides, and peripheral peptides, which regulate and are regulated by macronutrient intake and underlie psychological and temperamental alterations.
Collapse
|
19
|
Saqui-Salces M, Dowdle WE, Reiter JF, Merchant JL. A high-fat diet regulates gastrin and acid secretion through primary cilia. FASEB J 2012; 26:3127-39. [PMID: 22516298 DOI: 10.1096/fj.11-197426] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The role of primary cilia in the gastrointestinal tract has not been examined. Here we report the presence of primary cilia on gastric endocrine cells producing gastrin, ghrelin, and somatostatin (Sst), hormones regulated by food intake. During eating, cilia in the gastric antrum decreased, whereas gastric acid and circulating gastrin increased. Mice fed high-fat chow showed a delayed decrease in antral cilia, increased plasma gastrin, and gastric acidity. Mice fed high-fat chow for 3 wk showed lower cilia numbers and acid but higher gastrin levels than mice fed a standard diet, suggesting that fat affects gastric physiology. Ex vivo experiments showed that cilia in the corpus responded to acid and distension, whereas cilia in the antrum responded to food. To analyze the role of gastric cilia, we conditionally deleted the intraflagellar transport protein Ift88 (Ift88(-/fl)). In fed Ift88(-/fl) mice, gastrin levels were higher, and gastric acidity was lower. Moreover, gastrin and Sst gene expression did not change in response to food as in controls. At 8 mo, Ift88(-/fl) mice developed foveolar hyperplasia, hypergastrinemia, and hypochlorhydria associated with endocrine dysfunction. Our results show that components of food (fat) are sensed by antral cilia on endocrine cells, which modulates gastrin secretion and gastric acidity.
Collapse
Affiliation(s)
- Milena Saqui-Salces
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
20
|
Al Massadi O, Tschöp MH, Tong J. Ghrelin acylation and metabolic control. Peptides 2011; 32:2301-8. [PMID: 21893140 DOI: 10.1016/j.peptides.2011.08.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 01/26/2023]
Abstract
Since its discovery, many physiologic functions have been ascribed to ghrelin, a gut derived hormone. The presence of a median fatty acid side chain on the ghrelin peptide is required for the binding and activation of the classical ghrelin receptor, the growth hormone secretagogue receptor (GHSR)-1a. Ghrelin O-acyl transferase (GOAT) was recently discovered as the enzyme responsible for this acylation process. GOAT is expressed in all tissues that have been found to express ghrelin and has demonstrated actions on several complex endocrine organ systems such as the hypothalamus-pituitary-gonadal, insular and adrenal axis as well as the gastrointestinal (GI) tract, bone and gustatory system. Ghrelin acylation is dependent on the function of GOAT and the availability of substrates such as proghrelin and short- to medium-chain fatty acids (MCFAs). This process is governed by GOAT activity and has been shown to be modified by dietary lipids. In this review, we provided evidence that support an important role of GOAT in the regulation of energy homeostasis and glucose metabolism by modulating acyl ghrelin (AG) production. The relevance of GOAT and AG during periods of starvation remains to be defined. In addition, we summarized the recent literature on the metabolic effects of GOAT specific inhibitors and shared our view on the potential of targeting GOAT for the treatment of metabolic disorders such as obesity and type 2 diabetes.
Collapse
Affiliation(s)
- O Al Massadi
- Division of Endocrinology, Department of Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH 45237, USA.
| | | | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The review summarizes the past year's literature regarding the regulation of gastric exocrine and endocrine secretion, both basic science and clinical. RECENT FINDINGS Gastric acid secretion is an elaborate and dynamic process that is regulated by neural (efferent and afferent), hormonal (e.g. gastrin), and paracrine (e.g. histamine, ghrelin, somatostatin) pathways as well as mechanical (e.g. distension) and chemical (e.g. amino acids) stimuli. Secretion of hydrochloric acid (HCl) by parietal cells involves translocation of HK-ATPase-containing cytoplasmic tubulovesicles to the apical membrane with subsequent electroneutral transport of hydronium ions in exchange for potassium. The main apical potassium channel is KCNQ1 which, when activated, assembles with its β-subunit KCNE2 to function as a constitutively open, voltage-insensitive, and acid-resistant luminal potassium channel. Proton pump inhibitors block acid secretion by covalently binding to cysteine residues accessible from the luminal surface of the HK-ATPase. Potassium-competitive ATPase blockers (P-CABs) act by competing for K on the luminal surface of HK-ATPase. As they are acid-stable and do not require acid-dependent activation, P-CABs hold promise for rapid and prolonged inhibition of acid secretion. SUMMARY We continue to make progress in our understanding of the physiologic regulation of gastric acid secretion. A better understanding of the pathways and mechanisms regulating acid secretion should lead to improved management of patients with acid-induced disorders.
Collapse
|