1
|
Jadhav U, Harris RM, Jameson JL. Hypogonadotropic hypogonadism in subjects with DAX1 mutations. Mol Cell Endocrinol 2011; 346:65-73. [PMID: 21672607 PMCID: PMC3185185 DOI: 10.1016/j.mce.2011.04.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/07/2011] [Indexed: 11/17/2022]
Abstract
DAX1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1; also known as NROB1, nuclear receptor subfamily 0, group B, member 1) encodes a nuclear receptor that is expressed in embryonic stem (ES) cells, steroidogenic tissues (gonads, adrenals), the ventromedial hypothalamus (VMH), and pituitary gonadotropes. Humans with DAX1 mutations develop an X-linked syndrome referred to as adrenal hypoplasia congenita (AHC). These boys typically present in infancy with adrenal failure but later fail to undergo puberty because of hypogonadotropic hypogonadism (HHG). The adrenal failure reflects a developmental abnormality in the transition of the fetal to adult zone, resulting in glucocorticoid and mineralocorticoid deficiency. The etiology of HHG involves a combined and variable deficiency of hypothalamic GnRH secretion and/or pituitary responsiveness to GnRH resulting in low LH, FSH and testosterone. Treatment with exogenous gonadotropins generally does not induce spermatogenesis. Animal models indicate that DAX1 also plays a critical role in testis development and function. As a nuclear receptor, DAX1 has been shown to function as a transcriptional repressor, particularly of pathways regulated by other nuclear receptors, such as steroidogenic factor 1 (SF1). In addition to reproductive tissues, DAX1 is also expressed at high levels in ES cells and plays a role in the maintenance of pluripotentiality. Here we review the clinical manifestations associated with DAX1 mutations as well as the evolving information about its function based on animal models and in vitro studies.
Collapse
Affiliation(s)
| | | | - J. Larry Jameson
- Corresponding author: J. Larry Jameson, MD, PhD, Vice-President for Medical Affairs and Lewis Landsberg Dean, Northwestern University Feinberg School of Medicine, Arthur J. Rubloff Building, 420 East Superior St., 12th floor, Chicago, IL 60611, , Ph: 312-503-0340; Fax: 312-503-7757
| |
Collapse
|
2
|
Abstract
DAX1 encoded by NR0B1, when mutated, is responsible for X-linked adrenal hypoplasia congenita (AHC). AHC is due to failure of the adrenal cortex to develop normally and is fatal if untreated. When duplicated, this gene is associated with an XY sex-reversed phenotype. DAX1 expression is present during development of the steroidogenic hypothalamic-pituitary-adrenal-gonadal (HPAG) axis and persists into adult life. Despite recognition of the crucial role for DAX1, its function remains largely undefined. The phenotypes of patients and animal models are complex and not always in agreement. Investigations using cell lines have proved difficult to interpret, possibly reflecting cell line choices and their limited characterization. We will review the efforts of our group and others to identify appropriate cell lines for optimizing ex vivo analysis of NR0B1 function throughout development. We will examine the role of DAX1 and its network partners in development of the hypothalamic-pituitary-adrenal/gonadal axis (HPAG) using a variety of different types of investigations, including those in model organisms. This network analysis will help us to understand normal and abnormal development of the HPAG. In addition, these studies permit identification of candidate genes for human inborn errors of HPAG development.
Collapse
|
3
|
Seminara SB, Crowley WF. Genetic approaches to unraveling reproductive disorders: examples of bedside to bench research in the genomic era. Endocr Rev 2002; 23:382-92. [PMID: 12050127 DOI: 10.1210/edrv.23.3.0469] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the rapid advances in medical genetics, many clinicians and investigators remain unaware of the general approaches that can be used to map genes. Although there are specific challenges to using genetic approaches in reproductive medicine, the following report summarizes mapping efforts for three diseases: adrenal hypoplasia congenita, hypergonadotropic ovarian failure, and polycystic ovary syndrome. The themes of rare and novel phenotypes, genetically homogenous populations, and genotype/phenotype correlations are emphasized.
Collapse
Affiliation(s)
- Stephanie B Seminara
- Reproductive Endocrine Unit and Harvard-Wide Reproductive Endocrine Sciences Center and National Center for Infertility Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
4
|
Seminara SB, Hayes FJ, Crowley WF. Gonadotropin-releasing hormone deficiency in the human (idiopathic hypogonadotropic hypogonadism and Kallmann's syndrome): pathophysiological and genetic considerations. Endocr Rev 1998; 19:521-39. [PMID: 9793755 DOI: 10.1210/edrv.19.5.0344] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- S B Seminara
- Department of Medicine, Massachusetts General Hospital, Boston 02114, USA
| | | | | |
Collapse
|
5
|
Peter M, Viemann M, Partsch CJ, Sippell WG. Congenital adrenal hypoplasia: clinical spectrum, experience with hormonal diagnosis, and report on new point mutations of the DAX-1 gene. J Clin Endocrinol Metab 1998; 83:2666-74. [PMID: 9709929 DOI: 10.1210/jcem.83.8.5027] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
X-linked congenital adrenal hypoplasia (AHC) is a rare developmental disorder of the human adrenal cortex and is caused by deletion or mutation of the DAX-1 gene, a recently discovered member of the nuclear hormone receptor superfamily. Hypogonadotropic hypogonadism is frequently associated with AHC. AHC occurs as part of a contiguous gene syndrome together with glycerol kinase deficiency (GKD) and Duchenne's muscular dystrophy. The present series, collected over the past 2 decades, includes 18 AHC boys from 16 families: 4 with AHC, GKD, and Duchenne's muscular dystrophy; 2 with AHC and GKD; and 12 with AHC (5 young adults with hypogonadotropic hypogonadism). Most of the boys presented with salt wasting and hyperpigmentation during the neonatal period. Plasma steroid determinations performed in the first weeks of life often showed confusing results, probably caused by steroids produced in the neonates' persisting fetocortex. Aldosterone deficiency usually preceded cortisol deficiency, which explains why the patients more often presented with salt-wasting rather than with hypoglycemic symptoms. An ACTH test was often necessary to detect cortisol deficiency in the very young infants. In some patients, serial testing was necessary to establish the correct diagnosis. In 4 boys studied during the first 3 months after birth, we found pubertal LH, FSH, and testosterone plasma levels indicating postnatal transient activation of the hypothalamic-pituitary-gonadal axis as in normal boys. Previous studies have shown that the DAX-1 gene is deleted in the AHC patients with a contiguous gene syndrome and is mutated in nondeletion patients. Most of the point mutations identified in AHC patients were frameshift mutations and stop mutations. In the 15 patients available for molecular analysis of the DAX-1 gene, there were large deletions in 6 patients and point mutations in another 7 patients. All of the point mutations identified in the present study resulted in a nonfunctional truncated DAX-1 protein. Two brothers with primary adrenal insufficiency and a medical history that strongly suggested AHC had no mutation in the DAX-1 gene. Thus, additional, as yet unknown genes must play a part in normal adrenal cortical development.
Collapse
Affiliation(s)
- M Peter
- Department of Pediatrics, Christian Albrechts University, Kiel, Germany
| | | | | | | |
Collapse
|
6
|
Zhang YH, Guo W, Wagner RL, Huang BL, McCabe L, Vilain E, Burris TP, Anyane-Yeboa K, Burghes AH, Chitayat D, Chudley AE, Genel M, Gertner JM, Klingensmith GJ, Levine SN, Nakamoto J, New MI, Pagon RA, Pappas JG, Quigley CA, Rosenthal IM, Baxter JD, Fletterick RJ, McCabe ER. DAX1 mutations map to putative structural domains in a deduced three-dimensional model. Am J Hum Genet 1998; 62:855-64. [PMID: 9529340 PMCID: PMC1377022 DOI: 10.1086/301782] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The DAX1 protein is an orphan nuclear hormone receptor based on sequence similarity in the putative ligand-binding domain (LBD). DAX1 mutations result in X-linked adrenal hypoplasia congenita (AHC). Our objective was to identify DAX1 mutations in a series of families, to determine the types of mutations resulting in AHC and to locate single-amino-acid changes in a DAX1 structural model. The 14 new mutations identified among our 17 families with AHC brought the total number of families with AHC to 48 and the number of reported mutations to 42; 1 family showed gonadal mosaicism. These mutations included 23 frameshift, 12 nonsense, and six missense mutations and one single-codon deletion. We mapped the seven single-amino-acid changes to a homology model constructed by use of the three-dimensional crystal structures of the thyroid-hormone receptor and retinoid X receptor alpha. All single-amino-acid changes mapped to the C-terminal half of the DAX1 protein, in the conserved hydrophobic core of the putative LBD, and none affected residues expected to interact directly with a ligand. We conclude that most genetic alterations in DAX1 are frameshift or nonsense mutations and speculate that the codon deletion and missense mutations give insight into the structure and function of DAX1.
Collapse
Affiliation(s)
- Y H Zhang
- Department of Pediatrics, UCLA School of Medicine, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Habiby RL, Boepple P, Nachtigall L, Sluss PM, Crowley WF, Jameson JL. Adrenal hypoplasia congenita with hypogonadotropic hypogonadism: evidence that DAX-1 mutations lead to combined hypothalmic and pituitary defects in gonadotropin production. J Clin Invest 1996; 98:1055-62. [PMID: 8770879 PMCID: PMC507522 DOI: 10.1172/jci118866] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Adrenal hypoplasia congenita (AHC) is an X-linked disorder that typically presents with adrenal insufficiency during infancy. Hypogonadotropic hypogonadism (HHG) has been identified as a component of this disorder in affected individuals who survive into childhood. Recently, AHC was shown to be caused by mutations in DAX-1, a protein that is structurally similar in its carboxyterminal region to orphan nuclear receptors. We studied two kindreds with clinical features of AHC and HHG. DAX-1 mutations were identified in both families. In the JW kindred, a single base deletion at nucleotide 1219 was accompanied by an additional base substitution that resulted in a frameshift mutation at codon 329 followed by premature termination. In the MH kindred, a GGAT duplication at codon 418 caused a frameshift that also resulted in truncation of DAX-1. Baseline luteinizing hormone (LIT), follicle-stimulating hormone (FSH), and free-alpha-subunit (FAS) levels were determined during 24 h of frequent (q10 min) venous sampling. In patient MH, baseline LH levels were low, but FAS levels were within the normal range. In contrast, in patient JW, the mean LH and FSH were within the normal range during baseline sampling, but LH secretion was erratic rather than showing typical pulses. FAS was apulsatile for much of the day, but a surge was seen over a 3-4-h period. Pulsatile gonadotropin releasing hormone (GnRH) (25 ng/kg) was administered every 2 h for 7 d to assess pituitary responsiveness to exogenous GnRH. MH did not exhibit a gonadotropin response to pulsatile GnRH. JW exhibited a normal response to the first pulse of GnRH, but there was no increase in FAS. In contrast to the priming effect of GnRH in GnRH-deficient patients with Kallmann syndrome, GnRH pulses caused minimal secretory responses of LH and no FAS responses in patient JW. The initial LH response in patient JW implies a deficiency in hypothalamic GnRH. On the other hand, the failure to respond to pulsatile GnRH is consistent with a pituitary defect in gonadotropin production. These two cases exemplify the phenotypic heterogeneity of AHC/HHG, and suggest that DAX-1 mutations impair gonadotropin production by acting at both the hypothalamic and pituitary levels.
Collapse
Affiliation(s)
- R L Habiby
- Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
8
|
Zachmann M, Fuchs E, Prader A. Progressive high frequency hearing loss: an additional feature in the syndrome of congenital adrenal hypoplasia and gonadotrophin deficiency. Eur J Pediatr 1992; 151:167-9. [PMID: 1601004 DOI: 10.1007/bf01954375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In an earlier report, we found that X-linked congenital adrenal hypoplasia may be associated with gonadotrophin deficiency. This combination has since been confirmed by many others. At the last examination, our patients were 22.4, 19.9 and 17.5 years old. They were doing well on replacement therapy with hydrocortisone, fluorohydrocortisone, and long-acting testosterone, but in all of them, a progressive hearing loss had appeared, starting at high frequencies at about 14 years of age. The loss progressed with age to lower frequencies, and the oldest patient had some remaining hearing capacity at 125-500 Hz only with a perceptive hearing loss of -95 dB at frequencies above 500 Hz. It is concluded that patients with this syndrome should be examined for hearing loss. X-linked adrenal hypoplasia may also be associated with glycerol kinase deficiency and myopathy. A molecular XP-deletion has suggested a locus for hypogonadotrophic hypogonadism distal to the glycerol kinase and adrenal hypoplasia loci. The observations in our patients suggest that the locus for at least this type of X-linked deafness may be in the same area.
Collapse
Affiliation(s)
- M Zachmann
- Department of Paediatrics, University of Zurich, Kinderspital, Switzerland
| | | | | |
Collapse
|
9
|
Batch JA, Montalto J, Yong AB, Gold H, Goss P, Warne GL. Three cases of congenital adrenal hypoplasia: a cause of salt-wasting and mortality in the neonatal period. J Paediatr Child Health 1991; 27:108-12. [PMID: 1883648 DOI: 10.1111/j.1440-1754.1991.tb00363.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Three infants with congenital adrenal hypoplasia are described. The two surviving infants were detected and successfully treated in the neonatal period due to a suggestive family history (Case 1) and antenatal maternal oestriol screening (Case 2). The modes of inheritance, diverse clinical presentation, associated conditions, diagnostic work-up and pathology of congenital adrenal hypoplasia in these three infants is discussed.
Collapse
Affiliation(s)
- J A Batch
- Department of Endocrinology and Diabetes, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|