1
|
Salisbury SJ, Daniels RR, Monaghan SJ, Bron JE, Villamayor PR, Gervais O, Fast MD, Sveen L, Houston RD, Robinson N, Robledo D. Keratinocytes drive the epithelial hyperplasia key to sea lice resistance in coho salmon. BMC Biol 2024; 22:160. [PMID: 39075472 PMCID: PMC11287951 DOI: 10.1186/s12915-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Salmonid species have followed markedly divergent evolutionary trajectories in their interactions with sea lice. While sea lice parasitism poses significant economic, environmental, and animal welfare challenges for Atlantic salmon (Salmo salar) aquaculture, coho salmon (Oncorhynchus kisutch) exhibit near-complete resistance to sea lice, achieved through a potent epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms underlying these divergent responses to sea lice are unknown. RESULTS We characterized the cellular and molecular responses of Atlantic salmon and coho salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to copepodid sea lice (Lepeophtheirus salmonis), and lice-attached pelvic fin and skin samples were collected 12 h, 24 h, 36 h, 48 h, and 60 h after exposure, along with control samples. Comparative analysis of control and treatment samples revealed an immune and wound-healing response that was common to both species, but attenuated in Atlantic salmon, potentially reflecting greater sea louse immunomodulation. Our results revealed unique but complementary roles of three layers of keratinocytes in the epithelial hyperplasia response leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes direct the expansion and mobility of intermediate and, especially, superficial keratinocytes, which eventually encapsulate the parasite. CONCLUSIONS Our results highlight the key role of keratinocytes in coho salmon's sea lice resistance and the diverged biological response of the two salmonid host species when interacting with this parasite. This study has identified key pathways and candidate genes that could be manipulated using various biotechnological solutions to improve Atlantic salmon sea lice resistance.
Collapse
Affiliation(s)
- S J Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | - R Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - S J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - J E Bron
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - P R Villamayor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - O Gervais
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - M D Fast
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | | | - R D Houston
- Benchmark Genetics, 1 Pioneer BuildingMilton Bridge, Edinburgh TechnopolePenicuik, UK
| | - N Robinson
- Nofima AS, Tromsø, Norway.
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), Deakin University, Melbourne, VIC, 3225, Australia.
| | - D Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Stanley ER, Biundo F, Gökhan Ş, Chitu V. Differential regulation of microglial states by colony stimulating factors. Front Cell Neurosci 2023; 17:1275935. [PMID: 37964794 PMCID: PMC10642290 DOI: 10.3389/fncel.2023.1275935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Recent studies have emphasized the role of microglia in the progression of many neurodegenerative diseases. The colony stimulating factors, CSF-1 (M-CSF), granulocyte-macrophage CSF (GM-CSF) and granulocyte CSF (G-CSF) regulate microglia through different cognate receptors. While the receptors for GM-CSF (GM-CSFR) and G-CSF (G-CSFR) are specific for their ligands, CSF-1 shares its receptor, the CSF-1 receptor-tyrosine kinase (CSF-1R), with interleukin-34 (IL-34). All four cytokines are expressed locally in the CNS. Activation of the CSF-1R in macrophages is anti-inflammatory. In contrast, the actions of GM-CSF and G-CSF elicit different activated states. We here review the roles of each of these cytokines in the CNS and how they contribute to the development of disease in a mouse model of CSF-1R-related leukodystrophy. Understanding their roles in this model may illuminate their contribution to the development or exacerbation of other neurodegenerative diseases.
Collapse
Affiliation(s)
- E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Şölen Gökhan
- Department of Neurology, Albert Einstein College of Medicine, Institute for Brain Disorders and Neural Regeneration, Bronx, NY, United States
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
3
|
Eugenín J, Eugenín-von Bernhardi L, von Bernhardi R. Age-dependent changes on fractalkine forms and their contribution to neurodegenerative diseases. Front Mol Neurosci 2023; 16:1249320. [PMID: 37818457 PMCID: PMC10561274 DOI: 10.3389/fnmol.2023.1249320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
The chemokine fractalkine (FKN, CX3CL1), a member of the CX3C subfamily, contributes to neuron-glia interaction and the regulation of microglial cell activation. Fractalkine is expressed by neurons as a membrane-bound protein (mCX3CL1) that can be cleaved by extracellular proteases generating several sCX3CL1 forms. sCX3CL1, containing the chemokine domain, and mCX3CL1 have high affinity by their unique receptor (CX3CR1) which, physiologically, is only found in microglia, a resident immune cell of the CNS. The activation of CX3CR1contributes to survival and maturation of the neural network during development, glutamatergic synaptic transmission, synaptic plasticity, cognition, neuropathic pain, and inflammatory regulation in the adult brain. Indeed, the various CX3CL1 forms appear in some cases to serve an anti-inflammatory role of microglia, whereas in others, they have a pro-inflammatory role, aggravating neurological disorders. In the last decade, evidence points to the fact that sCX3CL1 and mCX3CL1 exhibit selective and differential effects on their targets. Thus, the balance in their level and activity will impact on neuron-microglia interaction. This review is focused on the description of factors determining the emergence of distinct fractalkine forms, their age-dependent changes, and how they contribute to neuroinflammation and neurodegenerative diseases. Changes in the balance among various fractalkine forms may be one of the mechanisms on which converge aging, chronic CNS inflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Jaime Eugenín
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | | | - Rommy von Bernhardi
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
4
|
Mitchell JW, Gillette MU. Development of circadian neurovascular function and its implications. Front Neurosci 2023; 17:1196606. [PMID: 37732312 PMCID: PMC10507717 DOI: 10.3389/fnins.2023.1196606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
The neurovascular system forms the interface between the tissue of the central nervous system (CNS) and circulating blood. It plays a critical role in regulating movement of ions, small molecules, and cellular regulators into and out of brain tissue and in sustaining brain health. The neurovascular unit (NVU), the cells that form the structural and functional link between cells of the brain and the vasculature, maintains the blood-brain interface (BBI), controls cerebral blood flow, and surveils for injury. The neurovascular system is dynamic; it undergoes tight regulation of biochemical and cellular interactions to balance and support brain function. Development of an intrinsic circadian clock enables the NVU to anticipate rhythmic changes in brain activity and body physiology that occur over the day-night cycle. The development of circadian neurovascular function involves multiple cell types. We address the functional aspects of the circadian clock in the components of the NVU and their effects in regulating neurovascular physiology, including BBI permeability, cerebral blood flow, and inflammation. Disrupting the circadian clock impairs a number of physiological processes associated with the NVU, many of which are correlated with an increased risk of dysfunction and disease. Consequently, understanding the cell biology and physiology of the NVU is critical to diminishing consequences of impaired neurovascular function, including cerebral bleeding and neurodegeneration.
Collapse
Affiliation(s)
- Jennifer W. Mitchell
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Martha U. Gillette
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
5
|
Galletti JG, Scholand KK, Trujillo-Vargas CM, Haap W, Santos-Ferreira T, Ullmer C, Yu Z, de Paiva CS. Effects of Cathepsin S Inhibition in the Age-Related Dry Eye Phenotype. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 37540176 PMCID: PMC10414132 DOI: 10.1167/iovs.64.11.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Purpose Aged C57BL/6J (B6) mice have increased levels of cathepsin S, and aged cathepsin S (Ctss-/-) knockout mice are resistant to age-related dry eye. This study investigated the effects of cathepsin S inhibition on age-related dry eye disease. Methods Female B6 mice aged 15.5 to 17 months were randomized to receive a medicated diet formulated by mixing the RO5461111 cathepsin S inhibitor or a standard diet for at least 12 weeks. Cornea mechanosensitivity was measured with a Cochet-Bonnet esthesiometer. Ocular draining lymph nodes and lacrimal glands (LGs) were excised and prepared for histology or assayed by flow cytometry to quantify infiltrating immune cells. The inflammatory foci (>50 cells) were counted under a 10× microscope lens and quantified using the focus score. Goblet cell density was investigated in periodic acid-Schiff stained sections. Ctss-/- mice were compared to age-matched wild-type mice. Results Aged mice subjected to cathepsin S inhibition or Ctss-/- mice showed improved conjunctival goblet cell density and cornea mechanosensitivity. There was no change in total LG focus score in the diet or Ctss-/- mice, but there was a lower frequency of CD4+IFN-γ+ cell infiltration in the LGs. Furthermore, aged Ctss-/- LGs had an increase in T central memory, higher numbers of CD19+B220-, and fewer CD19+B220+ cells than wild-type LGs. Conclusions Our results indicate that therapies aimed at decreasing cathepsin S can ameliorate age-related dry eye disease with a highly beneficial impact on the ocular surface. Further studies are needed to investigate the role of cathepsin S during aging.
Collapse
Affiliation(s)
- Jeremias G. Galletti
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Institute of Experimental Medicine, Buenos Aires, Argentina
| | - Kaitlin K. Scholand
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| | - Claudia M. Trujillo-Vargas
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Wolfgang Haap
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tiago Santos-Ferreira
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Cintia S. de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| |
Collapse
|
6
|
Oh YH, Becker ML, Mendola KM, Choe LH, Min L, Lee KH, Yigzaw Y, Seay A, Bill J, Li X, Roush DJ, Cramer SM, Menegatti S, Lenhoff AM. Characterization and implications of host-cell protein aggregates in biopharmaceutical processing. Biotechnol Bioeng 2023; 120:1068-1080. [PMID: 36585356 DOI: 10.1002/bit.28325] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
In the production of biopharmaceuticals such as monoclonal antibodies (mAbs) and vaccines, the residual amounts of host-cell proteins (HCPs) are among the critical quality attributes. In addition to overall HCP levels, individual HCPs may elude purification, potentially causing issues in product stability or patient safety. Such HCP persistence has been attributed mainly to biophysical interactions between individual HCPs and the product, resin media, or residual chromatin particles. Based on measurements on process streams from seven mAb processes, we have found that HCPs in aggregates, not necessarily chromatin-derived, may play a significant role in the persistence of many HCPs. Such aggregates may also hinder accurate detection of HCPs using existing proteomics methods. The findings also highlight that certain HCPs may be difficult to remove because of their functional complementarity to the product; specifically, chaperones and other proteins involved in the unfolded protein response (UPR) are disproportionately present in the aggregates. The methods and findings described here expand our understanding of the origins and potential behavior of HCPs in cell-based biopharmaceutical processes and may be instrumental in improving existing techniques for HCP detection and clearance.
Collapse
Affiliation(s)
- Young Hoon Oh
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Matthew L Becker
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kerri M Mendola
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Leila H Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Yinges Yigzaw
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Alexander Seay
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Jerome Bill
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Xuanwen Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - David J Roush
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Steven M Cramer
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
7
|
Cathepsins in the extracellular space: Focusing on non-lysosomal proteolytic functions with clinical implications. Cell Signal 2023; 103:110531. [PMID: 36417977 DOI: 10.1016/j.cellsig.2022.110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Cathepsins can be found in the extracellular space, cytoplasm, and nucleus. It was initially suspected that the primary physiological function of the cathepsins was to break down intracellular protein, and that they also had a role in pathological processes including inflammation and apoptosis. However, the many actions of cathepsins outside the cell and their complicated biological impacts have garnered much interest. Cathepsins play significant roles in a number of illnesses by regulating parenchymal cell proliferation, cell migration, viral invasion, inflammation, and immunological responses through extracellular matrix remodeling, signaling disruption, leukocyte recruitment, and cell adhesion. In this review, we outline the physiological roles of cathepsins in the extracellular space, the crucial pathological functions performed by cathepsins in illnesses, and the recent breakthroughs in the detection and therapy of specific inhibitors and fluorescent probes in associated dysfunction.
Collapse
|
8
|
Drake SS, Zaman A, Simas T, Fournier AE. Comparing RNA-sequencing datasets from astrocytes, oligodendrocytes, and microglia in multiple sclerosis identifies novel dysregulated genes relevant to inflammation and myelination. WIREs Mech Dis 2023; 15:e1594. [PMID: 36600404 DOI: 10.1002/wsbm.1594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/25/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023]
Abstract
Central nervous system (CNS) inflammation is a key factor in multiple sclerosis (MS). Invasion of peripheral immune cells into the CNS resulting from an unknown signal or combination of signals results in activation of resident immune cells and the hallmark feature of the disease: demyelinating lesions. These lesion sites are an amalgam of reactive peripheral and central immune cells, astrocytes, damaged and dying oligodendrocytes, and injured neurons and axons. Sustained inflammation affects cells directly located within the lesion site and further abnormalities are apparent diffusely throughout normal-appearing white matter and grey matter. It is only relatively recently, using animal models, new tissue sampling techniques, and next-generation sequencing, that molecular changes occurring in CNS resident cells have been broadly captured. Advances in cell isolation through Fluorescence Activated Cell Sorting (FACS) and laser-capture microdissection together with the emergence of single-cell sequencing have enabled researchers to investigate changes in gene expression in astrocytes, microglia, and oligodendrocytes derived from animal models of MS as well as from primary patient tissue. The contribution of some dysregulated pathways has been followed up in individual studies; however, corroborating results often go unreported between sequencing studies. To this end, we have consolidated results from numerous RNA-sequencing studies to identify and review novel patterns of differentially regulated genes and pathways occurring within CNS glial cells in MS. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Sienna S Drake
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Aliyah Zaman
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Tristan Simas
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Alyson E Fournier
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Yu Z, Li J, Govindarajan G, Hamm-Alvarez S, Alam J, Li DQ, de Paiva CS. Cathepsin S is a novel target for age-related dry eye. Exp Eye Res 2022; 214:108895. [PMID: 34910926 PMCID: PMC8908478 DOI: 10.1016/j.exer.2021.108895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Cathepsin S (Ctss) is a protease that is proinflammatory on epithelial cells. The purpose of this study was to investigate the role of Ctss in age-related dry eye disease. Ctss-/- mice [in a C57BL/6 (B6) background] of different ages were compared to B6 mice. Ctss activity in tears and lacrimal gland (LG) lysates was measured. The corneal barrier function was investigated in naïve mice or after topical administration of Ctss eye drops 5X/day for two days. Eyes were collected, and conjunctival goblet cell density was measured in PAS-stained sections. Immunoreactivity of the tight junction proteins, ZO-1 and occludin, was investigated in primary human cultured corneal epithelial cells (HCEC) without or with Ctss, with or without a Ctss inhibitor. A significant increase in Ctss activity was observed in the tears and LG lysates in aged B6 compared to young mice. This was accompanied by higher Ctss transcripts and protein expression in LG and spleen. Compared to B6, 12 and 24-month-old Ctss-/- mice did not display age-related corneal barrier disruption and goblet cell loss. Treatment of HCEC with Ctss for 48 h disrupted occludin and ZO-1 immunoreactivity compared to control cells. This was prevented by the Ctss inhibitor LY3000328 or Ctss-heat inactivation. Topical reconstitution of Ctss in Ctss-/- mice for two days disrupted corneal barrier function. Aging on the ocular surface is accompanied by increased expression and activity of the protease Ctss. Our results suggest that cathepsin S modulation might be a novel target for age-related dry eye disease.
Collapse
Affiliation(s)
- Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | - Jinmiao Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | | | - Sarah Hamm-Alvarez
- Department of Ophthalmology and Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, United States
| | - Jehan Alam
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | - De-Quan Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | | |
Collapse
|
11
|
Zhao M, Jiang XF, Zhang HQ, Sun JH, Pei H, Ma LN, Cao Y, Li H. Interactions between glial cells and the blood-brain barrier and their role in Alzheimer's disease. Ageing Res Rev 2021; 72:101483. [PMID: 34610479 DOI: 10.1016/j.arr.2021.101483] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), which is an irreversible neurodegenerative disorder characterized by senile plaques and neurofibrillary tangles, is the most common form of dementia worldwide. However, currently, there are no satisfying curative therapies for AD. The blood-brain barrier (BBB) acts as a selective physical barrier and plays protective roles in maintaining brain homeostasis. BBB dysfunction as an upstream or downstream event promotes the onset and progression of AD. Moreover, the pathogenesis of AD caused by BBB injury hasn't been well elucidated. Glial cells, BBB compartments and neurons form a minimal functional unit called the neurovascular unit (NVU). Emerging evidence suggests that glial cells are regulators in maintaining the BBB integrity and neuronal function. Illustrating the regulatory mechanism of glial cells in the BBB assists us in drawing a glial-vascular coupling diagram of AD, which may offer new insight into the pathogenesis of AD and early intervention strategies for AD. This review aims to summarize our current knowledge of glial-BBB interactions and their pathological implications in AD and to provide new therapeutic potentials for future investigations.
Collapse
|
12
|
Zhao J, Yang Y, Wu Y. The Clinical Significance and Potential Role of Cathepsin S in IgA Nephropathy. Front Pediatr 2021; 9:631473. [PMID: 33912521 PMCID: PMC8071879 DOI: 10.3389/fped.2021.631473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
Objective: Cathepsin S (CTSS) is an important lysosomal cysteine protease. This study aimed at investigating the clinical significance of CTSS and underlying mechanism in immunoglobulin A nephropathy (IgAN). Methods: This study recruited 25 children with IgAN and age-matched controls and their serum CTSS levels were measured by enzyme-linked immunosorbent assay (ELISA). Following induction of IgAN in rats, their kidney CTSS expression, IgA accumulation and serum CTSS were characterized by immunohistochemistry, immunofluorescence, and ELISA. The impact of IgA1 aggregates on the proliferation of human mesangial cells (HMCs) was determined by Cell Counting Kit-8 and Western blot analysis of Ki67. Results: Compared to the non-IgAN controls, significantly up-regulated CTSS expression was detected in the renal tissues, particularly in the glomerular mesangium and tubular epithelial cells of IgAN patients, accompanied by higher levels of serum CTSS (P < 0.05), which were correlated with the levels of 24-h-urine proteins and microalbumin and urine erythrocytes and grades of IgAN Lee's classification in children with IgAN (P < 0.01 for all). Following induction of IgAN, we detected inducible IgA accumulation and increased levels of CTSS expression in the glomerular mesangium and glomerular damages in rats, which were mitigated by LY3000328, a CTSS-specific inhibitor. Treatment with LY3000328 significantly mitigated the Ki67 expression in the kidney of IgAN rats (P < 0.01) and significantly minimized the IgA1 aggregate-stimulated proliferation of HMCs and their Ki67 expression in vitro (P < 0.01). Conclusions: CTSS promoted the proliferation of glomerular mesangial cells, contributing to the pathogenesis of IgAN and may be a new therapeutic target for intervention of aberrant mesangial cell proliferation during the process of IgAN.
Collapse
Affiliation(s)
- Jingying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongchang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yubin Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Usefulness of Cathepsin S to Predict Risk for Obstructive Sleep Apnea among Patients with Type 2 Diabetes. DISEASE MARKERS 2020; 2020:8819134. [PMID: 33062070 PMCID: PMC7533779 DOI: 10.1155/2020/8819134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/20/2020] [Accepted: 08/18/2020] [Indexed: 01/19/2023]
Abstract
Background Obstructive sleep apnea (OSA) was highly prevalent in patients with type 2 diabetes (T2D). Cathepsin S (CTSS), a cysteine protease, is involved in the inflammatory activity in T2D and hypoxia conditions. The aim of the study was to evaluate whether CTSS could be involved in the inflammatory reaction of OSA in patients with T2D. Methods We included 158 participants in this study matched for age, gender, and body mass index in 4 groups (control, non-OSA&T2D, OSA&non-T2D, and OSA&T2D). After overnight polysomnography, we collected the clinical data including anthropometrical characteristics, blood pressure, and fasting blood samples in the morning. Plasma CTSS concentration was evaluated using the human Magnetic Luminex Assay. Results Compared with the control group, both the non-OSA&T2D group and the OSA&non-T2D group showed higher CTSS levels. Plasma CTSS expression was significantly increased in subjects with OSA&T2D compared to subjects with non-OSA&T2D. The OSA&T2D group had higher CTSS levels than the OSA&non-T2D group, but there were no statistically significant differences. Plasma CTSS levels showed significant correlation with the apnea-hypopnea index (AHI) (r = 0.559, P < 0.001) and plasma fasting blood glucose (r = 0.427, P < 0.001). After adjusting confounding factors, plasma CTSS levels were independently associated with the AHI (Beta: 0.386, 95% confidence intervals (CI): 21.988 to 57.781; P < 0.001). Furthermore, we confirmed the higher pinpoint accuracy of plasma CTSS in the diagnosis of OSA (area under the curve: 0.868). Conclusions Plasma CTSS expression was significantly elevated in the OSA&T2D group and was independently associated with the AHI; it could be a biomarker with a positive diagnostic value on diagnosing OSA among patients with T2D.
Collapse
|
14
|
Montague-Cardoso K, Malcangio M. Cathepsin S as a potential therapeutic target for chronic pain. MEDICINE IN DRUG DISCOVERY 2020; 7:100047. [PMID: 32904424 PMCID: PMC7453913 DOI: 10.1016/j.medidd.2020.100047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 01/28/2023] Open
Abstract
Chronic pain is a distressing yet poorly-treated condition that can arise as a result of diseases and injuries to the nervous system. The development of more efficacious therapies for chronic pain is essential and requires advances in our understanding of its underlying mechanisms. Clinical and preclinical evidence has demonstrated that immune responses play a crucial role in chronic pain. The lysosomal cysteine protease cathepsin S (CatS) plays a key role in such immune response. Here we discuss the preclinical evidence for the mechanistic importance of extracellular CatS in chronic pain focussing on studies utilising drugs and other pharmacological tools that target CatS activity. We also consider the use of CatS inhibitors as potential novel antihyperalgesics, highlighting that the route and timing of delivery would need to be tailored to the initial cause of pain in order to ensure the most effective use of such drugs. Cathepsin S plays a key extracellular role in the underlying mechanisms of chronic pain Pharmacological tools provide crucial evidence for this role and the therapeutic potential of targeting Cathepsin S The route of delivery and timing of cathepsin S inhibitor administration should be tailored to specific causes of chronic pain
Collapse
Affiliation(s)
- Karli Montague-Cardoso
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London SE1 1UL
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London SE1 1UL
| |
Collapse
|
15
|
Zutshi S, Kumar S, Chauhan P, Bansode Y, Nair A, Roy S, Sarkar A, Saha B. Anti-Leishmanial Vaccines: Assumptions, Approaches, and Annulments. Vaccines (Basel) 2019; 7:vaccines7040156. [PMID: 31635276 PMCID: PMC6963565 DOI: 10.3390/vaccines7040156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is a neglected protozoan parasitic disease that occurs in 88 countries but a vaccine is unavailable. Vaccination with live, killed, attenuated (physically or genetically) Leishmania have met with limited success, while peptide-, protein-, or DNA-based vaccines showed promise only in animal models. Here, we critically assess several technical issues in vaccination and expectation of a host-protective immune response. Several studies showed that antigen presentation during priming and triggering of the same cells in infected condition are not comparable. Altered proteolytic processing, antigen presentation, protease-susceptible sites, and intracellular expression of pathogenic proteins during Leishmania infection may vary dominant epitope selection, MHC-II/peptide affinity, and may deter the reactivation of desired antigen-specific T cells generated during priming. The robustness of the memory T cells and their functions remains a concern. Presentation of the antigens by Leishmania-infected macrophages to antigen-specific memory T cells may lead to change in the T cells' functional phenotype or anergy or apoptosis. Although cells may be activated, the peptides generated during infection may be different and cross-reactive to the priming peptides. Such altered peptide ligands may lead to suppression of otherwise active antigen-specific T cells. We critically assess these different immunological issues that led to the non-availability of a vaccine for human use.
Collapse
Affiliation(s)
| | - Sunil Kumar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Yashwant Bansode
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Arathi Nair
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Somenath Roy
- Department of Human Physiology with Community Health, Vidyasagar University, Midnapore 721102, India.
| | - Arup Sarkar
- Department of Biotechnology, Trident Academy of Creative Technology, Bhubaneswar 751024, India.
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
- Department of Biotechnology, Trident Academy of Creative Technology, Bhubaneswar 751024, India.
| |
Collapse
|
16
|
Laube M, Frizler M, Wodtke R, Neuber C, Belter B, Kniess T, Bachmann M, Gütschow M, Pietzsch J, Löser R. Synthesis and preliminary radiopharmacological characterisation of an 11 C-labelled azadipeptide nitrile as potential PET tracer for imaging of cysteine cathepsins. J Labelled Comp Radiopharm 2019; 62:448-459. [PMID: 30912586 DOI: 10.1002/jlcr.3729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Abstract
An O-methyltyrosine-containing azadipeptide nitrile was synthesised and investigated for its inhibitory activity towards cathepsins L, S, K, and B. Labelling with carbon-11 was accomplished by reaction of the corresponding phenolic precursor with [11 C]methyl iodide starting from cyclotron-produced [11 C]methane. Radiopharmacological evaluation of the resulting radiotracer in a mouse xenograft model derived from a mammary tumour cell line by small animal PET imaging indicates tumour targeting with complex pharmacokinetics. Radiotracer uptake in the tumour region was considerably lower under treatment with the nonradioactive reference compound and the epoxide-based irreversible cysteine cathepsin inhibitor E64. The in vivo behaviour observed for this radiotracer largely confirms that of the corresponding 18 F-fluoroethylated analogue and suggests the limited suitability of azadipeptide nitriles for the imaging of tumour-associated cysteine cathepsins despite target-mediated uptake is evidenced.
Collapse
Affiliation(s)
- Markus Laube
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Maxim Frizler
- Pharmaceutical Institute, Pharmaceutical Chemistry I, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Christin Neuber
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Birgit Belter
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Torsten Kniess
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
17
|
Sobczak AIS, Pitt SJ, Stewart AJ. Glycosaminoglycan Neutralization in Coagulation Control. Arterioscler Thromb Vasc Biol 2018; 38:1258-1270. [PMID: 29674476 PMCID: PMC5965931 DOI: 10.1161/atvbaha.118.311102] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/05/2018] [Indexed: 01/22/2023]
Abstract
The glycosaminoglycans (GAGs) heparan sulfate, dermatan sulfate, and heparin are important anticoagulants that inhibit clot formation through interactions with antithrombin and heparin cofactor II. Unfractionated heparin, low-molecular-weight heparin, and heparin-derived drugs are often the main treatments used clinically to handle coagulatory disorders. A wide range of proteins have been reported to bind and neutralize these GAGs to promote clot formation. Such neutralizing proteins are involved in a variety of other physiological processes, including inflammation, transport, and signaling. It is clear that these interactions are important for the control of normal coagulation and influence the efficacy of heparin and heparin-based therapeutics. In addition to neutralization, the anticoagulant activities of GAGs may also be regulated through reduced synthesis or by degradation. In this review, we describe GAG neutralization, the proteins involved, and the molecular processes that contribute to the regulation of anticoagulant GAG activity.
Collapse
Affiliation(s)
- Amélie I S Sobczak
- From the School of Medicine, University of St Andrews, Fife, United Kingdom
| | - Samantha J Pitt
- From the School of Medicine, University of St Andrews, Fife, United Kingdom
| | - Alan J Stewart
- From the School of Medicine, University of St Andrews, Fife, United Kingdom.
| |
Collapse
|
18
|
Memmert S, Nokhbehsaim M, Damanaki A, Nogueira AVB, Papadopoulou AK, Piperi C, Basdra EK, Rath-Deschner B, Götz W, Cirelli JA, Jäger A, Deschner J. Role of cathepsin S In periodontal wound healing-an in vitro study on human PDL cells. BMC Oral Health 2018; 18:60. [PMID: 29622023 PMCID: PMC5887187 DOI: 10.1186/s12903-018-0518-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/20/2018] [Indexed: 12/15/2022] Open
Abstract
Background Cathepsin S is a cysteine protease, which is expressed in human periodontal ligament (PDL) cells under inflammatory and infectious conditions. This in vitro study was established to investigate the effect of cathepsin S on PDL cell wound closure. Methods An in vitro wound healing assay was used to monitor wound closure in wounded PDL cell monolayers for 72 h in the presence and absence of cathepsin S. In addition, the effects of cathepsin S on specific markers for apoptosis and proliferation were studied at transcriptional level. Changes in the proliferation rate due to cathepsin S stimulation were analyzed by an XTT assay, and the actions of cathepsin S on cell migration were investigated via live cell tracking. Additionally, PDL cell monolayers were treated with a toll-like receptor 2 agonist in the presence and absence of a cathepsin inhibitor to examine if periodontal bacteria can alter wound closure via cathepsins. Results Cathepsin S enhanced significantly the in vitro wound healing rate by inducing proliferation and by increasing the speed of cell migration, but had no effect on apoptosis. Moreover, the toll-like receptor 2 agonist enhanced significantly the wound closure and this stimulatory effect was dependent on cathepsins. Conclusions Our findings provide original evidence that cathepsin S stimulates PDL cell proliferation and migration and, thereby, wound closure, suggesting that this cysteine protease might play a critical role in periodontal remodeling and healing. In addition, cathepsins might be exploited by periodontal bacteria to regulate critical PDL cell functions.
Collapse
Affiliation(s)
- Svenja Memmert
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany. .,Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany.
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Anna Damanaki
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Andressa V B Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, UNESP, Araraquara, Brazil
| | | | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Birgit Rath-Deschner
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Werner Götz
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, UNESP, Araraquara, Brazil
| | - Andreas Jäger
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - James Deschner
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany.,Noel Martin Visiting Chair, Faculty of Dentistry, University of Sydney, Sydney, Australia
| |
Collapse
|
19
|
Sena BF, Figueiredo JL, Aikawa E. Cathepsin S As an Inhibitor of Cardiovascular Inflammation and Calcification in Chronic Kidney Disease. Front Cardiovasc Med 2018; 4:88. [PMID: 29379789 PMCID: PMC5770806 DOI: 10.3389/fcvm.2017.00088] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/14/2017] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease (CVD) is responsible for the majority of deaths in the developed world. Particularly, in patients with chronic kidney disease (CKD), the imbalance of calcium and phosphate may lead to the acceleration of both vascular and valve inflammation and calcification. One in two patients with CKD are reported as dying from cardiovascular causes due to the resulting acceleration in the development of atherosclerosis plaques. In addition, CKD patients on hemodialysis are prone to aortic valve calcification and often need valve replacement before kidney transplantation. The lysosomal proteases, cathepsins, are composed of 11 cysteine members (cathepsin B, C, F, H, K, L, O, S, V, W, and Z), as well as serine proteases cathepsin A and G, which cleave peptide bonds with serine as the amino acid, and aspartyl proteases D and E, which use an activated water molecule bound to aspartate to break peptide substrate. Cysteine proteases, also known as thiol proteases, degrade protein via the deprotonation of a thiol and have been found to play a significant role in autoimmune disease, atherosclerosis, aortic valve calcification, cardiac repair, and cardiomyopathy, operating within extracellular spaces. This review sought to evaluate recent findings in this field, highlighting how among cathepsins, the inhibition of cathepsin S in particular, could play a significant role in diminishing the effects of CVD, especially for patients with CKD.
Collapse
Affiliation(s)
- Brena F Sena
- Boston University School of Public Health, Boston, MA, United States
| | - Jose Luiz Figueiredo
- Department of Surgery, Introduction to Clinical and Surgical Techniques Division, Laboratory of Experimental Surgery, Federal University of Pernambuco, Recife, Brazil
| | - Elena Aikawa
- The Center of Excellence in Vascular Biology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Dysfunction in diurnal synaptic responses and social behavior abnormalities in cathepsin S-deficient mice. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Ye L, Xiao L, Yang SY, Duan JJ, Chen Y, Cui Y, Chen Y. Cathepsin S in the spinal microglia contributes to remifentanil-induced hyperalgesia in rats. Neuroscience 2017; 344:265-275. [DOI: 10.1016/j.neuroscience.2016.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/13/2016] [Accepted: 12/18/2016] [Indexed: 01/05/2023]
|
22
|
Steubl D, Kumar SV, Tato M, Mulay SR, Larsson A, Lind L, Risérus U, Renders L, Heemann U, Carlsson AC, Ärnlöv J, Anders HJ. Circulating cathepsin-S levels correlate with GFR decline and sTNFR1 and sTNFR2 levels in mice and humans. Sci Rep 2017; 7:43538. [PMID: 28240259 PMCID: PMC5327444 DOI: 10.1038/srep43538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/25/2017] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular complications determine morbidity/mortality in chronic kidney disease (CKD). We hypothesized that progressive CKD drives the release of cathepsin-S (Cat-S), a cysteine protease that promotes endothelial dysfunction and cardiovascular complications. Therefore, Cat-S, soluble tumor-necrosis-factor receptor (sTNFR) 1/2 and glomerular filtration rate (GFR) were measured in a CKD mouse model, a German CKD-cohort (MCKD, n = 421) and two Swedish community-based cohorts (ULSAM, n = 764 and PIVUS, n = 804). Association between Cat-S and sTNFR1/2/GFR was assessed using multivariable linear regression. In the mouse model, Cat-S and sTNFR1/2 concentrations were increased following the progressive decline of GFR, showing a strong correlation between Cat-S and GFR (r = −0.746, p < 0.001) and Cat-S and sTNFR1/sTNFR2 (r = 0.837/0.916, p < 0.001, respectively). In the human cohorts, an increase of one standard deviation of estimated GFR was associated with a decrease of 1.008 ng/ml (95%-confidence interval (95%-CI) −1.576–(−0.439), p < 0.001) in Cat-S levels in MCKD; in ULSAM and PIVUS, results were similar. In all three cohorts, Cat-S and sTNFR1/sTNFR2 levels were associated in multivariable linear regression (p < 0.001). In conclusion, as GFR declines Cat-S and markers of inflammation-related endothelial dysfunction increase. The present data indicating that Cat-S activity increases with CKD progression suggest that Cat-S might be a therapeutic target to prevent cardiovascular complications in CKD.
Collapse
Affiliation(s)
- Dominik Steubl
- Abteilung für Nephrologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Santhosh V Kumar
- Medizinische Klinik und Poliklinik IV, Renal Division, Klinikum der Universität München, Campus Innenstadt, München, Germany
| | - Maia Tato
- Medizinische Klinik und Poliklinik IV, Renal Division, Klinikum der Universität München, Campus Innenstadt, München, Germany
| | - Shrikant R Mulay
- Medizinische Klinik und Poliklinik IV, Renal Division, Klinikum der Universität München, Campus Innenstadt, München, Germany
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ulf Risérus
- Departments of Public Health and Caring Sciences/Clinical Nutrition, Uppsala University, Uppsala, Sweden
| | - Lutz Renders
- Abteilung für Nephrologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Uwe Heemann
- Abteilung für Nephrologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Axel C Carlsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Division of Family Medicine, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Johan Ärnlöv
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,School of Health and Social Studies, Dalarna University, Falun, Sweden
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Renal Division, Klinikum der Universität München, Campus Innenstadt, München, Germany
| |
Collapse
|
23
|
Plasma Cathepsin S and Cathepsin S/Cystatin C Ratios Are Potential Biomarkers for COPD. DISEASE MARKERS 2016; 2016:4093870. [PMID: 27994288 PMCID: PMC5138488 DOI: 10.1155/2016/4093870] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/17/2016] [Indexed: 11/18/2022]
Abstract
Purpose. This study aimed to examine whether plasma levels of cathepsin S or its inhibitor, cystatin C, may serve as biomarkers for COPD. Patients and Methods. We measured anthropometrics and performed pulmonary function tests and chest CT scans on 94 patients with COPD and 31 subjects with productive cough but no airflow obstruction (“at risk”; AR). In these subjects and in 52 healthy nonsmokers (NS) and 66 healthy smokers (HS) we measured plasma concentrations of cathepsin S and cystatin C using an ELISA. Data were analyzed using simple and logistic regression and receiver operating characteristic analyses. Results. Cathepsin S and cystatin C plasma levels were significantly higher in the COPD and AR groups than in the NS and HS groups (p < 0.01). Among the COPD patients and AR subjects, plasma cathepsin S levels and cathepsin S/cystatin C ratios, but not cystatin C levels, were negatively related to severe airflow limitation (% FEV1 predicted < 50%; p = 0.005) and severe emphysema as assessed by low attenuation area (LAA) score on chest CT scans (LAA ≥ 8.0; p = 0.001). Conclusion. Plasma cathepsin S and cathepsin S/cystatin C ratios may serve as potential biomarkers for COPD.
Collapse
|
24
|
Seo Y, Kim HS, Kang I, Choi SW, Shin TH, Shin JH, Lee BC, Lee JY, Kim JJ, Kook MG, Kang KS. Cathepsin S contributes to microglia-mediated olfactory dysfunction through the regulation of Cx3cl1-Cx3cr1 axis in a Niemann-Pick disease type C1 model. Glia 2016; 64:2291-2305. [PMID: 27687148 DOI: 10.1002/glia.23077] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 12/28/2022]
Abstract
Microglia can aggravate olfactory dysfunction by mediating neuronal death in the olfactory bulb (OB) of a murine model of Niemann-Pick disease type C1 (NPC1), a fatal neurodegenerative disorder accompanied by lipid trafficking defects. In this study, we focused on the crosstalk between neurons and microglia to elucidate the mechanisms underlying extensive microgliosis in the NPC1-affected brain. Microglia in the OB of NPC1 mice strongly expressed CX3C chemokine receptor 1 (Cx3cr1), a specific receptor for the neural chemokine C-X3-C motif ligand 1 (Cx3cl1). In addition, a high level of Cx3cl1 was detected in NPC1 mouse-derived CSF due to enhanced catalytic activity of Cathepsin S (Ctss), which is responsible for Cx3cl1 secretion. Notably, nasal delivery of Cx3cl1 neutralizing antibody or Ctss inhibitor could inhibit the Cx3cl1-Cx3cr1 interaction and support neuronal survival through the suppression of microglial activation, leading to an improvement in the olfactory function in NPC1 mice. Relevant in vitro experiments revealed that intracellular cholesterol accumulation could act as a strong inducer of abnormal Ctss activation and, in turn, stimulated the Cx3cl1-Cx3cr1 axis in microglia via p38 mitogen-activated protein kinase signaling. Our data address the significance of Cx3cl1-Cx3cr1 interaction in the development of microglial neurotoxicity and suggest that Ctss is a key upstream regulator. Therefore, this study contributes to a better understanding of the crosstalk between neurons and microglia in the development of the neurodegeneration and provides a new perspective for the management of olfactory deficits and other microglia-dependent neuropathies. GLIA 2016;64:2291-2305.
Collapse
Affiliation(s)
- Yoojin Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,School of Medicine, Pusan National University, Busan, 49241, South Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, South Korea
| | - Hyung-Sik Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,School of Medicine, Pusan National University, Busan, 49241, South Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, South Korea
| | - Insung Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Tae-Hoon Shin
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Ji-Hee Shin
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Byung-Chul Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Jin Young Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Jae-Jun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Myung Geun Kook
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea. .,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
25
|
The association between laminin and microglial morphology in vitro. Sci Rep 2016; 6:28580. [PMID: 27334934 PMCID: PMC4917827 DOI: 10.1038/srep28580] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/07/2016] [Indexed: 12/22/2022] Open
Abstract
Microglia are immune cells in the central nervous system (CNS) that contribute to primary innate immune responses. The morphology of microglia is closely associated with their functional activities. The majority of microglial studies have focused on the ramified or amoeboid morphology; however, bipolar/rod-shaped microglia have recently received much attention. Bipolar/rod-shaped microglia form trains with end-to-end alignment in injured brains and retinae, which is proposed as an important mechanism in CNS repair. We previously established a cell culture model system to enrich bipolar/rod-shaped microglia simply by growing primary microglia on scratched poly-D-lysine (PDL)/laminin-coated surfaces. Here, we investigated the role of laminin in morphological changes of microglia. Bipolar/rod-shaped microglia trains were transiently formed on scratched surfaces without PDL/laminin coating, but the microglia alignment disappeared after 3 days in culture. Amoeboid microglia digested the surrounding laminin, and the gene and protein expression of laminin-cleaving genes Adam9 and Ctss was up-regulated. Interestingly, lipopolysaccharide (LPS)-induced transformation from bipolar/rod-shaped into amoeboid microglia increased the expression of Adam9 and Ctss, and the expression of these genes in LPS-treated amoeboid-enriched cultures remained unchanged. These results indicate a strong association between laminin and morphological transformation of microglia, shedding new light on the role of bipolar/rod-shaped microglia in CNS repair.
Collapse
|
26
|
Cytokine and Growth Factor Activation In Vivo and In Vitro after Spinal Cord Injury. Mediators Inflamm 2016; 2016:9476020. [PMID: 27418745 PMCID: PMC4935915 DOI: 10.1155/2016/9476020] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury results in a life-disrupting series of deleterious interconnected mechanisms encompassed by the primary and secondary injury. These events are mediated by the upregulation of genes with roles in inflammation, transcription, and signaling proteins. In particular, cytokines and growth factors are signaling proteins that have important roles in the pathophysiology of SCI. The balance between the proinflammatory and anti-inflammatory effects of these molecules plays a critical role in the progression and outcome of the lesion. The excessive inflammatory Th1 and Th17 phenotypes observed after SCI tilt the scale towards a proinflammatory environment, which exacerbates the deleterious mechanisms present after the injury. These mechanisms include the disruption of the spinal cord blood barrier, edema and ion imbalance, in particular intracellular calcium and sodium concentrations, glutamate excitotoxicity, free radicals, and the inflammatory response contributing to the neurodegenerative process which is characterized by demyelination and apoptosis of neuronal tissue.
Collapse
|
27
|
Kim HY, Kim BW, Kim YJ. Elevated serum cathepsin B concentration in pregnant women is associated with preeclampsia. Arch Gynecol Obstet 2016; 294:1145-1150. [DOI: 10.1007/s00404-016-4129-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023]
|
28
|
Barlow N, Nasser Y, Zhao P, Sharma N, Guerrero-Alba R, Edgington-Mitchell LE, Lieu T, Veldhuis NA, Poole DP, Conner JW, Lindström E, Craig AW, Graham B, Vanner SJ, Bunnett NW. Demonstration of elevated levels of active cathepsin S in dextran sulfate sodium colitis using a new activatable probe. Neurogastroenterol Motil 2015; 27:1675-80. [PMID: 26303377 DOI: 10.1111/nmo.12656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/17/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Proteases play a major role in inflammatory diseases of the gastrointestinal tract. Activatable probes are a major technological advance, enabling sensitive detection of active proteases in tissue samples. Our aim was to synthesize an activatable probe for cathepsin S and validate its use in a mouse model of colitis. METHODS We designed and synthesized a new fluorescent activatable probe, NB200, for the detection of active cathepsin S. Colitis was induced in C57BL/6 mice by the administration of 3% dextran sulfate sodium (DSS). Homogenized mouse colons, with or without the addition of the specific cathepsin S inhibitor MV026031, were incubated with NB200 in a fluorescent plate reader. KEY RESULTS NB200 selectively detected purified cathepsin S and not other common inflammatory proteases. Homogenates of colon from mice with DSS colitis induced a significant fluorescent increase when compared to control animals (control vs DSS: p < 0.05 at 200 min and p < 0.01 at 220-240 min), indicating cathepsin S activation. The cathepsin S inhibitor abolished this increase in fluorescence (DSS vs DSS + MV026031: p < 0.05 at 140 min, p < 0.01 at 180 min, p < 0.001 at 200-240 min), which confirms cathepsin S activation. Cathepsin S activity correlated with the disease activity index (Spearman r = 0.77, p = 0.017). CONCLUSIONS & INFERENCES Our investigation has demonstrated the utility of activatable probes for detecting protease activity in intestinal inflammation. Panels of such probes may allow 'signature' protease profiles to be established for a range of inflammatory diseases and disorders.
Collapse
Affiliation(s)
- N Barlow
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia
| | - Y Nasser
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, ON, Canada
| | - P Zhao
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia
| | - N Sharma
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - R Guerrero-Alba
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, ON, Canada
| | - L E Edgington-Mitchell
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia
| | - T Lieu
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia
| | - N A Veldhuis
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia
| | - D P Poole
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | - J W Conner
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia
| | | | - A W Craig
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - B Graham
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia
| | - S J Vanner
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, ON, Canada
| | - N W Bunnett
- Monash Institute of Pharmaceutical Sciences Parkville Australia, Parkville, Vic., Australia
| |
Collapse
|
29
|
Old EA, Clark AK, Malcangio M. The role of glia in the spinal cord in neuropathic and inflammatory pain. Handb Exp Pharmacol 2015; 227:145-170. [PMID: 25846618 DOI: 10.1007/978-3-662-46450-2_8] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chronic pain, both inflammatory and neuropathic, is a debilitating condition in which the pain experience persists after the painful stimulus has resolved. The efficacy of current treatment strategies using opioids, NSAIDS and anticonvulsants is limited by the extensive side effects observed in patients, underlining the necessity for novel therapeutic targets. Preclinical models of chronic pain have recently provided evidence for a critical role played by glial cells in the mechanisms underlying the chronicity of pain, both at the site of damage in the periphery and in the dorsal horn of the spinal cord. Here microglia and astrocytes respond to the increased input from the periphery and change morphology, increase in number and release pro-nociceptive mediators such as ATP, cytokines and chemokines. These gliotransmitters can sensitise neurons by activation of their cognate receptors thereby contributing to central sensitization which is fundamental for the generation of allodynia, hyperalgesia and spontaneous pain.
Collapse
Affiliation(s)
- Elizabeth Amy Old
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | | | |
Collapse
|
30
|
Zhao P, Lieu T, Barlow N, Metcalf M, Veldhuis NA, Jensen DD, Kocan M, Sostegni S, Haerteis S, Baraznenok V, Henderson I, Lindström E, Guerrero-Alba R, Valdez-Morales EE, Liedtke W, McIntyre P, Vanner SJ, Korbmacher C, Bunnett NW. Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J Biol Chem 2014; 289:27215-27234. [PMID: 25118282 DOI: 10.1074/jbc.m114.599712] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine proteases such as trypsin and mast cell tryptase cleave protease-activated receptor-2 (PAR2) at R(36)↓S(37) and reveal a tethered ligand that excites nociceptors, causing neurogenic inflammation and pain. Whether proteases that cleave PAR2 at distinct sites are biased agonists that also induce inflammation and pain is unexplored. Cathepsin S (Cat-S) is a lysosomal cysteine protease of antigen-presenting cells that is secreted during inflammation and which retains activity at extracellular pH. We observed that Cat-S cleaved PAR2 at E(56)↓T(57), which removed the canonical tethered ligand and prevented trypsin activation. In HEK and KNRK cell lines and in nociceptive neurons of mouse dorsal root ganglia, Cat-S and a decapeptide mimicking the Cat-S-revealed tethered ligand-stimulated PAR2 coupling to Gαs and formation of cAMP. In contrast to trypsin, Cat-S did not mobilize intracellular Ca(2+), activate ERK1/2, recruit β-arrestins, or induce PAR2 endocytosis. Cat-S caused PAR2-dependent activation of transient receptor potential vanilloid 4 (TRPV4) in Xenopus laevis oocytes, HEK cells and nociceptive neurons, and stimulated neuronal hyperexcitability by adenylyl cyclase and protein kinase A-dependent mechanisms. Intraplantar injection of Cat-S caused inflammation and hyperalgesia in mice that was attenuated by PAR2 or TRPV4 deletion and adenylyl cyclase inhibition. Cat-S and PAR2 antagonists suppressed formalin-induced inflammation and pain, which implicates endogenous Cat-S and PAR2 in inflammatory pain. Our results identify Cat-S as a biased agonist of PAR2 that causes PAR2- and TRPV4-dependent inflammation and pain. They expand the role of PAR2 as a mediator of protease-driven inflammatory pain.
Collapse
Affiliation(s)
- Peishen Zhao
- Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia
| | - Nicholas Barlow
- Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia
| | - Matthew Metcalf
- Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia
| | | | - Dane D Jensen
- Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia
| | - Martina Kocan
- Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia
| | - Silvia Sostegni
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Silke Haerteis
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | | | | | - Raquel Guerrero-Alba
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario N7L 3N6, Canada
| | - Eduardo E Valdez-Morales
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario N7L 3N6, Canada
| | - Wolfgang Liedtke
- Division of Neurology, Department of Medicine, Duke University, Durham, North Carolina 27710
| | - Peter McIntyre
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora 3083, Australia
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario N7L 3N6, Canada
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia,; Department of Pharmacology, University of Melbourne, Melbourne 3010, Australia, and; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville 3052, Australia.
| |
Collapse
|
31
|
Zhao P, Metcalf M, Bunnett NW. Biased signaling of protease-activated receptors. Front Endocrinol (Lausanne) 2014; 5:67. [PMID: 24860547 PMCID: PMC4026716 DOI: 10.3389/fendo.2014.00067] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/22/2014] [Indexed: 01/06/2023] Open
Abstract
In addition to their role in protein degradation and digestion, proteases can also function as hormone-like signaling molecules that regulate vital patho-physiological processes, including inflammation, hemostasis, pain, and repair mechanisms. Certain proteases can signal to cells by cleaving protease-activated receptors (PARs), a family of four G protein-coupled receptors. PARs are expressed by almost all cell types, control important physiological and disease-relevant processes, and are an emerging therapeutic target for major diseases. Most information about PAR activation and function derives from studies of a few proteases, for example thrombin in the case of PAR1, PAR3, and PAR4, and trypsin in the case of PAR2 and PAR4. These proteases cleave PARs at established sites with the extracellular N-terminal domains, and expose tethered ligands that stabilize conformations of the cleaved receptors that activate the canonical pathways of G protein- and/or β-arrestin-dependent signaling. However, a growing number of proteases have been identified that cleave PARs at divergent sites to activate distinct patterns of receptor signaling and trafficking. The capacity of these proteases to trigger distinct signaling pathways is referred to as biased signaling, and can lead to unique patho-physiological outcomes. Given that a different repertoire of proteases are activated in various patho-physiological conditions that may activate PARs by different mechanisms, signaling bias may account for the divergent actions of proteases and PARs. Moreover, therapies that target disease-relevant biased signaling pathways may be more effective and selective approaches for the treatment of protease- and PAR-driven diseases. Thus, rather than mediating the actions of a few proteases, PARs may integrate the biological actions of a wide spectrum of proteases in different patho-physiological conditions.
Collapse
Affiliation(s)
- Peishen Zhao
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Matthew Metcalf
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Nigel W. Bunnett
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Nigel W. Bunnett, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia e-mail:
| |
Collapse
|
32
|
Pišlar A, Kos J. Cysteine cathepsins in neurological disorders. Mol Neurobiol 2013; 49:1017-30. [PMID: 24234234 DOI: 10.1007/s12035-013-8576-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 10/21/2013] [Indexed: 12/13/2022]
Abstract
Increased proteolytic activity is a hallmark of several pathological processes, including neurodegeneration. Increased expression and activity of cathepsins, lysosomal cysteine proteases, during degeneration of the central nervous system is frequently reported. Recent studies reveal that a disturbed balance of their enzymatic activities is the first insult in brain aging and age-related diseases. Leakage of cathepsins from lysosomes, due to their membrane permeability, and activation of pro-apoptotic factors additionally contribute to neurodegeneration. Furthermore, in inflammation-induced neurodegeneration the cathepsins expressed in activated microglia play a pivotal role in neuronal death. The proteolytic activity of cysteine cathepsins is controlled by endogenous protein inhibitors-the cystatins-which evidently fail to perform their function in neurodegenerative processes. Exogenous synthetic inhibitors, which may augment their inhibitory potential, are considered as possible therapeutic tools for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Anja Pišlar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia,
| | | |
Collapse
|
33
|
Hayashi Y, Koyanagi S, Kusunose N, Okada R, Wu Z, Tozaki-Saitoh H, Ukai K, Kohsaka S, Inoue K, Ohdo S, Nakanishi H. The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S. Sci Rep 2013; 3:2744. [PMID: 24067868 PMCID: PMC3783043 DOI: 10.1038/srep02744] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/04/2013] [Indexed: 01/22/2023] Open
Abstract
Microglia are thought to play important roles in the maintenance of neuronal circuitry and the regulation of behavior. We found that the cortical microglia contain an intrinsic molecular clock and exhibit a circadian expression of cathepsin S (CatS), a microglia-specific lysosomal cysteine protease in the brain. The genetic deletion of CatS causes mice to exhibit hyperlocomotor activity and removes diurnal variations in the synaptic activity and spine density of the cortical neurons, which are significantly higher during the dark (waking) phase than the light (sleeping) phase. Furthermore, incubation with recombinant CatS significantly reduced the synaptic activity of the cortical neurons. These results suggest that CatS secreted by microglia during the dark-phase decreases the spine density of the cortical neurons by modifying the perisynaptic environment, leading to downscaling of the synaptic strength during the subsequent light-phase. Disruption of CatS therefore induces hyperlocomotor activity due to failure to downscale the synaptic strength.
Collapse
Affiliation(s)
- Yoshinori Hayashi
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lively S, Schlichter LC. The microglial activation state regulates migration and roles of matrix-dissolving enzymes for invasion. J Neuroinflammation 2013; 10:75. [PMID: 23786632 PMCID: PMC3693964 DOI: 10.1186/1742-2094-10-75] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/06/2013] [Indexed: 12/30/2022] Open
Abstract
Background Microglial cells are highly mobile under many circumstances and, after central nervous system (CNS) damage, they must contend with the dense extracellular matrix (ECM) in order to reach their target sites. In response to damage or disease, microglia undergo complex activation processes that can be modulated by environmental cues and culminate in either detrimental or beneficial outcomes. Thus, there is considerable interest in comparing their pro-inflammatory (‘classical’ activation) and resolving ‘alternative’ activation states. Almost nothing is known about how these activation states affect the ability of microglia to migrate and degrade ECM, or the enzymes used for substrate degradation. This is the subject of the present study. Methods Primary cultured rat microglial cells were exposed to lipopolysaccharide (LPS) to evoke classical activation or IL4 to evoke alternative activation. High-resolution microscopy was used to monitor changes in cell morphology and aspects of the cytoskeleton. We quantified migration in a scratch-wound assay and through open filter holes, and invasion through Matrigel™. A panel of inhibitors was used to analyze contributions of different matrix-degrading enzymes to migration and invasion, and quantitative real-time reverse transcriptase PCR (qRT-PCR) was used to assess changes in their expression. Results Vinculin- and F-actin-rich lamellae were prominent in untreated and IL4-treated microglia (but not after LPS). IL4 increased the migratory capacity of microglia but eliminated the preferential anterior nuclear-centrosomal axis polarity and location of the microtubule organizing center (MTOC). Microglia degraded fibronectin, regardless of treatment, but LPS-treated cells were relatively immobile and IL4-treated cells invaded much more effectively through Matrigel™. For invasion, untreated microglia primarily used cysteine proteases, but IL4-treated cells used a wider range of enzymes (cysteine proteases, cathepsin S and K, heparanase, and matrix metalloproteases). Untreated microglia expressed MMP2, MMP12, heparanase, and four cathepsins (B, K, L1, and S). Each activation stimulus upregulated a different subset of enzymes. IL4 increased MMP2 and cathepsins S and K; whereas LPS increased MMP9, MMP12, MMP14 (MT1-MMP), heparanase, and cathepsin L1. Conclusions Microglial cells migrate during CNS development and after CNS damage or disease. Thus, there are broad implications of the finding that classically and alternatively activated microglia differ in morphology, cytoskeleton, migratory and invasive capacity, and in the usage of ECM-degrading enzymes.
Collapse
Affiliation(s)
- Starlee Lively
- Toronto Western Research Institute, Room MC9-417, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada
| | | |
Collapse
|
35
|
Jung JY, Oh JH, Kim YK, Shin MH, Lee D, Chung JH. Acute UV irradiation increases heparan sulfate proteoglycan levels in human skin. J Korean Med Sci 2012; 27:300-6. [PMID: 22379342 PMCID: PMC3286778 DOI: 10.3346/jkms.2012.27.3.300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/02/2012] [Indexed: 11/20/2022] Open
Abstract
Glycosaminoglycans are important structural components in the skin and exist as various proteoglycan forms, except hyaluronic acid. Heparan sulfate (HS), one of the glycosaminoglycans, is composed of repeated disaccharide units, which are glucuronic acids linked to an N-acetyl-glucosamine or its sulfated forms. To investigate acute ultraviolet (UV)-induced changes of HS and HS proteoglycans (HSPGs), changes in levels of HS and several HSPGs in male human buttock skin were examined by immunohistochemistry and real-time quantitative polymerase chain reaction (qPCR) after 2 minimal erythema doses (MED) of UV irradiation (each n = 4-7). HS staining revealed that 2 MED of UV irradiation increased its expression, and staining for perlecan, syndecan-1, syndecan-4, CD44v3, and CD44 showed that UV irradiation increased their protein levels. However, analysis by real-time qPCR showed that UV irradiation did not change mRNA levels of CD44 and agrin, and decreased perlecan and syndecan-4 mRNA levels, while increased syndecan-1 mRNA level. As HS-synthesizing or -degrading enzymes, exostosin-1 and heparanase mRNA levels were increased, but exostosin-2 was decreased by UV irradiation. UV-induced matrix metalloproteinase-1 expression was confirmed for proper experimental conditions. Acute UV irradiation increases HS and HSPG levels in human skin, but their increase may not be mediated through their transcriptional regulation.
Collapse
Affiliation(s)
- Ji-Yong Jung
- Department of Dermatology and Institute of Dermatological Science, Seoul National University College of Medicine, and Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jang-Hee Oh
- Department of Dermatology and Institute of Dermatological Science, Seoul National University College of Medicine, and Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yeon Kyung Kim
- Department of Dermatology and Institute of Dermatological Science, Seoul National University College of Medicine, and Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Mi Hee Shin
- Department of Dermatology and Institute of Dermatological Science, Seoul National University College of Medicine, and Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Dayae Lee
- Department of Dermatology and Institute of Dermatological Science, Seoul National University College of Medicine, and Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jin Ho Chung
- Department of Dermatology and Institute of Dermatological Science, Seoul National University College of Medicine, and Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
36
|
Blednov YA, Ponomarev I, Geil C, Bergeson S, Koob GF, Harris RA. Neuroimmune regulation of alcohol consumption: behavioral validation of genes obtained from genomic studies. Addict Biol 2012; 17:108-20. [PMID: 21309947 DOI: 10.1111/j.1369-1600.2010.00284.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Analysis of mouse brain gene expression, using strains that differ in alcohol consumption, provided a number of novel candidate genes that potentially regulate alcohol consumption. We selected six genes [beta-2-microglobulin (B2m), cathepsin S (Ctss), cathepsin F (Ctsf), interleukin 1 receptor antagonist (Il1rn), CD14 molecule (Cd14) and interleukin 6 (Il6)] for behavioral validation using null mutant mice. These genes are known to be important for immune responses but were not specifically linked to alcohol consumption by previous research. Null mutant mice were tested for ethanol intake in three tests: 24-hour two-bottle choice, limited access two-bottle choice and limited access to one bottle of ethanol. Ethanol consumption and preference were reduced in all the null mutant mice in the 24-hour two-bottle choice test, the test that was the basis for selection of these genes. No major differences were observed in consumption of saccharin or quinine in the null mutant mice. Deletion of B2m, Ctss, Il1rn, Cd14 and Il6 also reduced ethanol consumption in the limited access two bottle choice test for ethanol intake; with the Il1rn and Ctss null mutants showing reduced intake in all three tests (with some variation between males and females). These results provide the most compelling evidence to date that global gene expression analysis can identify novel genetic determinants of complex behavioral traits. Specifically, they suggest a novel role for neuroimmune signaling in regulation of alcohol consumption.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Department Pharmacology/Toxicology, University of Texas, Austin, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Clark AK, Malcangio M. Microglial signalling mechanisms: Cathepsin S and Fractalkine. Exp Neurol 2011; 234:283-92. [PMID: 21946268 DOI: 10.1016/j.expneurol.2011.09.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/26/2011] [Accepted: 09/09/2011] [Indexed: 12/15/2022]
Abstract
A recent major conceptual advance has been the recognition of the importance of immune system-neuron interactions in the modulation of spinal pain processing. In particular, pro-inflammatory mediators secreted by immune competent cells such as microglia modulate nociceptive function in the injured CNS and following peripheral nerve damage. Chemokines play a pivotal role in mediating neuronal-microglial communication which leads to increased nociception. Here we examine the evidence that one such microglial mediator, the lysosomal cysteine protease Cathepsin S (CatS), is critical for the maintenance of neuropathic pain via cleavage of the transmembrane chemokine Fractalkine (FKN). Both CatS and FKN mediate critical physiological functions necessary for immune regulation. As key mediators of homeostatic functions it is not surprising that imbalance in these immune processes has been implicated in autoimmune disorders including Multiple Sclerosis and Rheumatoid Arthritis, both of which are associated with chronic pain. Thus, impairment of the CatS/FKN signalling pair constitutes a novel therapeutic approach for the treatment of chronic pain.
Collapse
Affiliation(s)
- Anna K Clark
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | |
Collapse
|
38
|
Burden RE, Gormley JA, Kuehn D, Ward C, Kwok HF, Gazdoiu M, McClurg A, Jaquin TJ, Johnston JA, Scott CJ, Olwill SA. Inhibition of Cathepsin S by Fsn0503 enhances the efficacy of chemotherapy in colorectal carcinomas. Biochimie 2011; 94:487-93. [PMID: 21896304 DOI: 10.1016/j.biochi.2011.08.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/24/2011] [Indexed: 12/18/2022]
Abstract
Cathepsin S is a lysosomal cysteine protease implicated in tumourigenesis with key roles in invasion and angiogenesis. We have previously shown that the specific inhibition of Cathepsin S using a monoclonal antibody (Fsn0503) blocks colorectal carcinoma tumour growth and angiogenesis in vivo. We investigated whether Cathepsin S expression levels were affected by chemotherapy in human cancer cell lines by RT-PCR. Using colorectal xenograft models, we examined the therapeutic benefit of Cathepsin S inhibition using Fsn0503 in combination with a metronomic dosing regimen of CPT-11. We analysed the effects of the combination therapy on tumour progression and on tumour vascularisation by immunohistochemical staining of tumours. Cathepsin S expression levels are upregulated in HCT116, LoVo, Colo205 cell lines and HUVECs after exposure to CPT-11 in vitro. The administration of Fsn0503 in combination with CPT-11 significantly attenuated tumour growth in comparison to CPT-11 alone in colorectal HCT116 xenograft models. Furthermore, analysis of tumour vascularisation revealed that this was also significantly disrupted by the combination treatment. These results show that the combination of Cathepsin S inhibition with CPT-11 enhances the therapeutic effect of the chemotherapy. This rationale may have clinical application in the treatment of colorectal cancer upon further evaluation.
Collapse
Affiliation(s)
- Roberta E Burden
- Fusion Antibodies Ltd., Springbank Industrial Estate, Pembroke Loop Road, Belfast BT17 0QL, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Zimering MB, Anderson RJ, Ge L, Moritz TE. Increased plasma basic fibroblast growth factor is associated with coronary heart disease in adult type 2 diabetes mellitus. Metabolism 2011; 60:284-91. [PMID: 20206949 DOI: 10.1016/j.metabol.2010.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 01/21/2010] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
Abstract
Basic fibroblast growth factor (bFGF) is a potent endothelial and smooth muscle cell mitogen that does not normally circulate. Plasma bFGF-like bioactivity was increased in association with persistent microalbuminuria (a risk marker for cardiovascular disease) in adult type 2 diabetes mellitus. In the present study, we tested whether baseline plasma bFGF immunoreactivity (IR) predicts the occurrence of a subset of cardiovascular disease outcomes in adults with advanced type 2 diabetes mellitus from the Veterans Affairs Diabetes Trial (mean: age, 59 years; diabetes duration, 11 years; baseline hemoglobin A(1c), 9.5%). Plasma bFGF-IR was determined with a sensitive and specific 2-site enzyme-linked immunoassay in 399 patients at the baseline visit. These results were then evaluated as possible predictors of the occurrence of prespecified cardiovascular or coronary heart disease end points. There was a borderline-significant association (P = .07) between plasma bFGF-IR and the main study cardiovascular disease outcome (myocardial infarction, congestive heart failure, cerebrovascular accident, amputation, cardiovascular death, coronary, cerebrovascular or peripheral revascularization, and inoperable coronary artery disease). Plasma bFGF-IR was significantly associated with the occurrence of coronary heart disease (P = .01). After adjusting for clinical risk factors, bFGF (hazard ratio [HR], 1.013; 95% confidence interval [CI], 1.007-1.019; P < .0001), prior macrovascular event (HR, 3.55; 95% CI, 2.154-5.839; P < .0001), and duration of diabetes (HR, 1.041; 95% CI, 1.012-1.071; P = .0055) were all significantly associated with time to first postrandomization coronary heart disease occurrence. These results suggest that increased plasma bFGF-IR may be a novel risk marker for coronary heart disease occurrence in adult men with advanced type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mark B Zimering
- Department of Veterans Affairs New Jersey Health Care System, Medical Service, Lyons, NJ 07939, USA.
| | | | | | | |
Collapse
|
41
|
Åkerfeldt T, Larsson A. Inflammatory response is associated with increased cathepsin B and decreased cathepsin S concentrations in the circulation. Scand J Clin Lab Invest 2011; 71:203-7. [DOI: 10.3109/00365513.2011.552631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Jobs E, Risérus U, Ingelsson E, Helmersson J, Nerpin E, Jobs M, Sundström J, Lind L, Larsson A, Basu S, Arnlöv J. Serum cathepsin S is associated with serum C-reactive protein and interleukin-6 independently of obesity in elderly men. J Clin Endocrinol Metab 2010; 95:4460-4. [PMID: 20610597 DOI: 10.1210/jc.2010-0328] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
OBJECTIVE Cathepsin S has been suggested provide a mechanistic link between obesity and atherosclerosis, possibly mediated via adipose tissue-derived inflammation. Previous data have shown an association between circulating cathepsin S and inflammatory markers in the obese, but to date, community-based reports are lacking. Accordingly, we aimed to investigate the association between serum levels of cathepsin S and markers of cytokine-mediated inflammation in a community-based sample, with prespecified subgroup analyses in nonobese participants. METHODS Serum cathepsin S, C-reactive protein (CRP), and IL-6 were measured in a community-based cohort of elderly men (Uppsala Longitudinal Study of Adult Men; mean age 71 years, n = 991). CRP and IL-6 were also measured at a reexamination after 7 yr. RESULTS After adjustment for age, body mass index, fasting plasma glucose, diabetes treatment, systolic blood pressure, diastolic blood pressure, hypertension treatment, serum cholesterol, serum high-density lipoprotein cholesterol, prior cardiovascular disease, smoking, and leisure time physical activity, higher cathepsin S was associated with higher CRP (regression coefficient for 1 sd increase, 0.13; 95% confidence interval 0.07-0.19; P < 0.001) and higher serum IL-6 (regression coefficient for 1 sd increase, 0.08; 95% confidence interval 0.01-0.14; P = 0.02). These associations remained similar in normal-weight participants (body mass index <25 kg/m(2), n = 375). In longitudinal analyses, higher cathepsin S at baseline was associated with higher serum CRP and IL-6 after 7 yr. CONCLUSIONS These results provide additional evidence for the interplay between cathepsin S and inflammatory activity and suggest that this association is present also in normal-weight individuals in the community.
Collapse
Affiliation(s)
- E Jobs
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, SE-75185 Uppsala Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Clark AK, Wodarski R, Guida F, Sasso O, Malcangio M. Cathepsin S release from primary cultured microglia is regulated by the P2X7 receptor. Glia 2010; 58:1710-26. [DOI: 10.1002/glia.21042] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Obermajer N, Doljak B, Jamnik P, Fonović UP, Kos J. Cathepsin X cleaves the C-terminal dipeptide of alpha- and gamma-enolase and impairs survival and neuritogenesis of neuronal cells. Int J Biochem Cell Biol 2009; 41:1685-96. [PMID: 19433310 DOI: 10.1016/j.biocel.2009.02.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 12/20/2022]
Abstract
The cysteine carboxypeptidase cathepsin X has been recognized as an important player in degenerative processes during normal aging and in pathological conditions. In this study we identify isozymes alpha- and gamma-enolases as targets for cathepsin X. Cathepsin X sequentially cleaves C-terminal amino acids of both isozymes, abolishing their neurotrophic activity. Neuronal cell survival and neuritogenesis are, in this way, regulated, as shown on pheochromocytoma cell line PC12. Inhibition of cathepsin X activity increases generation of plasmin, essential for neuronal differentiation and changes the length distribution of neurites, especially in the early phase of neurite outgrowth. Moreover, cathepsin X inhibition increases neuronal survival and reduces serum deprivation induced apoptosis, particularly in the absence of nerve growth factor. On the other hand, the proliferation of cells is decreased, indicating induction of differentiation. Our study reveals enolase isozymes as crucial neurotrophic factors that are regulated by the proteolytic activity of cathepsin X.
Collapse
Affiliation(s)
- Natasa Obermajer
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
45
|
Zimering MB, Anderson RJ, Luo P, Moritz TE. Plasma basic fibroblast growth factor is correlated with plasminogen activator inhibitor-1 concentration in adults from the Veterans Affairs Diabetes Trial. Metabolism 2008; 57:1563-9. [PMID: 18940395 DOI: 10.1016/j.metabol.2008.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
Basic fibroblast growth factor (bFGF) is a potent mitogen in endothelial and vascular smooth muscle cells that increases in serum from adults with coronary artery disease and in microalbuminuric type 2 diabetes mellitus. There has been no prior study of plasma bFGF as a possible cardiovascular risk marker in type 2 diabetes mellitus. In this study, we tested for a correlation between log plasma bFGF immunoreactivity (bFGF-IR) and baseline cardiovascular risk factors in a baseline subset of subjects with advanced type 2 diabetes mellitus from the Veterans Affairs Diabetes Trial ([mean] age, 60 years; hemoglobin A(1c), 9.5%; diabetes' duration, 11 years). Plasma bFGF-IR was determined with a sensitive, specific, 2-site enzyme-linked immunoassay in 281 patients at the baseline visit. Results were compared with baseline risk factors or baseline medication use. Baseline plasma bFGF-IR ranged from 0 to 141 pg/mL. Log plasma bFGF correlated significantly with non-Hispanic white race (P = .002), waist-hip ratio (P = .002), and plasminogen activator inhibitor-1 concentration (P < .0001). Log plasma bFGF correlated inversely with African American race (P = .0003). In multiple regression analysis, plasminogen activator inhibitor-1 and race were significantly correlated with log plasma bFGF. These results suggest a significant correlation between log plasma bFGF-IR and plasminogen activator inhibitor-1, a marker of hemostatic risk.
Collapse
Affiliation(s)
- Mark B Zimering
- Medical Service, Department of Veterans Affairs New Jersey Health Care System, Lyons, NJ 07939, USA.
| | | | | | | |
Collapse
|
46
|
Overcoming hERG issues for brain-penetrating cathepsin S inhibitors: 2-Cyanopyrimidines. Part 2. Bioorg Med Chem Lett 2008; 18:5280-4. [DOI: 10.1016/j.bmcl.2008.08.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 08/15/2008] [Accepted: 08/16/2008] [Indexed: 02/08/2023]
|
47
|
Hao HP, Doh-Ura K, Nakanishi H. Impairment of microglial responses to facial nerve axotomy in cathepsin S-deficient mice. J Neurosci Res 2007; 85:2196-206. [PMID: 17539023 DOI: 10.1002/jnr.21357] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cathepsin S (CS) is a lysosomal/endosomal cysteine protease especially expressed in cells of a mononuclear lineage including microglia. To better understand the role of CS in microglia, we investigated microglial responses after a facial nerve axotomy in CS-deficient (CS-/-) and wild-type mice. Microglia in both groups accumulated in the facial motor nucleus following axotomy. However, the mean number of microglia in CS-/- mice on the axotomized side was significantly smaller than that in wild-type mice. Microglia were found to adhere to injured motoneurons in wild-type mice, whereas microglia abutted on injured motoneurons without spreading on their surface in CS-/- mice. At the same time, the axotomy-induced down-regulation of tenasin-R, an antiadhesive perineuronal net for microglia, was partially abrogated in CS-/- mice. Primary cultured microglia prepared from CS-/- mice showed that CS deficiency caused significant suppression of migration and transmigration of microglia. In CS-/- mice, impaired recruitments of circulating monocytes and T lymphocytes and reduced expression of the class II major compatibility complex on the axotomized side were observed. Interestingly, cathepsin B, a typical lysosomal cysteine protease, was markedly expressed on the axotomized side in CS-/- but not in wild-type microglia. Finally, we compared axotomy-induced neuronal death in the two groups and found that the percentage of motoneurons that survived in CS-/- mice was significantly smaller than that in wild-type mice. The present study strongly suggests that CS plays a role in the migration and activation of microglia to protect facial motoneurons against axotomy-induced injury.
Collapse
Affiliation(s)
- Hai Peng Hao
- Laboratory of Oral Aging Science, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
48
|
Barclay J, Clark AK, Ganju P, Gentry C, Patel S, Wotherspoon G, Buxton F, Song C, Ullah J, Winter J, Fox A, Bevan S, Malcangio M. Role of the cysteine protease cathepsin S in neuropathic hyperalgesia. Pain 2007; 130:225-234. [PMID: 17250968 DOI: 10.1016/j.pain.2006.11.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 10/11/2006] [Accepted: 11/29/2006] [Indexed: 11/29/2022]
Abstract
Using a gene expression analysis approach we found that the mRNA encoding the lysosomal cysteine protease cathepsin S (CatS) was up-regulated in rat dorsal root ganglia (DRG) following peripheral nerve injury. CatS protein was expressed in infiltrating macrophages in DRG and near the site of injury. At both sites CatS expression progressively increased from day 3 to day 14 after injury. In naïve rats, intraplantar injection of activated rat recombinant (rr) CatS (0.3, 1 microg/rat) induced a mechanical hyperalgesia that developed within half-an-hour, diminished by 3h and was absent after 24h. Activated rrCathepsin B (CatB) and non-activated rrCatS injected intraplantarly at the same or higher doses than activated rrCatS had no effect on rat nociceptive thresholds. In nerve-injured rats, mechanical hyperalgesia, but not allodynia, was significantly reversed for up to 3h by systemic administration of a non-brain penetrant, irreversible CatS inhibitor (LHVS, 3-30 mg/kg s.c.). Depletion of peripheral macrophages by intravenous injection of liposome encapsulate clodronate (1ml, 5 mg/ml) partially reduced established mechanical hyperalgesia but not allodynia, and abolished the anti-hyperalgesic effect of LHVS. Our results demonstrate a pro-nociceptive effect of CatS and indicate that endogenous CatS released by peripheral macrophages contributes to the maintenance of neuropathic hyperalgesia following nerve injury.
Collapse
Affiliation(s)
- Jane Barclay
- Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS, UK Department of Functional Genomics, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA Wolfson CARD, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, Dehvari M, Wotherspoon G, Winter J, Ullah J, Bevan S, Malcangio M. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci U S A 2007; 104:10655-60. [PMID: 17551020 PMCID: PMC1965568 DOI: 10.1073/pnas.0610811104] [Citation(s) in RCA: 356] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A recent major conceptual advance has been the recognition of the importance of immune system-neuronal interactions in the modulation of brain function, one example of which is spinal pain processing in neuropathic states. Here, we report that in peripheral nerve-injured rats, the lysosomal cysteine protease cathepsin S (CatS) is critical for the maintenance of neuropathic pain and spinal microglia activation. After injury, CatS was exclusively expressed by activated microglia in the ipsilateral dorsal horn, where expression peaked at day 7, remaining high on day 14. Intrathecal delivery of an irreversible CatS inhibitor, morpholinurea-leucine-homophenylalanine-vinyl phenyl sulfone (LHVS), was antihyperalgesic and antiallodynic in neuropathic rats and attenuated spinal microglia activation. Consistent with a pronociceptive role of endogenous CatS, spinal intrathecal delivery of rat recombinant CatS (rrCatS) induced hyperalgesia and allodynia in naïve rats and activated p38 mitogen-activated protein kinase (MAPK) in spinal cord microglia. A bioinformatics approach revealed that the transmembrane chemokine fractalkine (FKN) is a potential substrate for CatS cleavage. We show that rrCatS incubation reduced the levels of cell-associated FKN in cultured sensory neurons and that a neutralizing antibody against FKN prevented both FKN- and CatS-induced allodynia, hyperalgesia, and p38 MAPK activation. Furthermore, rrCatS induced allodynia in wild-type but not CX3CR1-knockout mice. We suggest that under conditions of increased nociception, microglial CatS is responsible for the liberation of neuronal FKN, which stimulates p38 MAPK phosphorylation in microglia, thereby activating neurons via the release of pronociceptive mediators.
Collapse
Affiliation(s)
- Anna K. Clark
- *Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS, United Kingdom; and
- Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Ping K. Yip
- Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - John Grist
- Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Clive Gentry
- *Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS, United Kingdom; and
| | - Amelia A. Staniland
- Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Fabien Marchand
- Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Maliheh Dehvari
- Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Glen Wotherspoon
- *Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS, United Kingdom; and
| | - Janet Winter
- *Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS, United Kingdom; and
| | - Jakir Ullah
- *Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS, United Kingdom; and
| | - Stuart Bevan
- *Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS, United Kingdom; and
| | - Marzia Malcangio
- *Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS, United Kingdom; and
- Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
- To whom correspondence should be sent at the † address. E-mail:
| |
Collapse
|
50
|
Izmailova ES, Paz N, Alencar H, Chun M, Schopf L, Hepperle M, Lane JH, Harriman G, Xu Y, Ocain T, Weissleder R, Mahmood U, Healy AM, Jaffee B. Use of molecular imaging to quantify response to IKK-2 inhibitor treatment in murine arthritis. ACTA ACUST UNITED AC 2007; 56:117-28. [PMID: 17195214 DOI: 10.1002/art.22303] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The NF-kappaB signaling pathway promotes the immune response in rheumatoid arthritis (RA) and in rodent models of RA. NF-kappaB activity is regulated by the IKK-2 kinase during inflammatory responses. To elucidate how IKK-2 inhibition suppresses disease development, we used a combination of in vivo imaging, transcription profiling, and histopathology technologies to study mice with antibody-induced arthritis. METHODS ML120B, a potent, small molecule inhibitor of IKK-2, was administered to arthritic animals, and disease activity was monitored. NF-kappaB activity in diseased joints was quantified by in vivo imaging. Quantitative reverse transcriptase-polymerase chain reaction was used to evaluate gene expression in joints. Protease-activated near-infrared fluorescence (NIRF) in vivo imaging was applied to assess the amounts of active proteases in the joints. RESULTS Oral administration of ML120B suppressed both clinical and histopathologic manifestations of disease. In vivo imaging demonstrated that NF-kappaB activity in inflamed arthritic paws was inhibited by ML120B, resulting in significant suppression of multiple genes in the NF-kappaB pathway, i.e., KC, epithelial neutrophil-activating peptide 78, JE, intercellular adhesion molecule 1, CD3, CD68, tumor necrosis factor alpha, interleukin-1beta, interleukin-6, inducible nitric oxide synthase, cyclooxygenase 2, matrix metalloproteinase 3, cathepsin B, and cathepsin K. NIRF in vivo imaging demonstrated that ML120B treatment dramatically reduced the amount of active proteases in the joints. CONCLUSION Our data demonstrate that IKK-2 inhibition in the murine model of antibody-induced arthritis suppresses both inflammation and joint destruction. In addition, this study highlights how gene expression profiling can facilitate the identification of surrogate biomarkers of disease activity and treatment response in an experimental model of arthritis.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antirheumatic Agents/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/enzymology
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/enzymology
- Arthritis, Rheumatoid/pathology
- Carbolines/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression/drug effects
- I-kappa B Kinase/antagonists & inhibitors
- I-kappa B Kinase/metabolism
- Joints/drug effects
- Joints/metabolism
- Joints/pathology
- Mice
- Mice, Inbred BALB C
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- RNA, Messenger/metabolism
- Spectrometry, Fluorescence/methods
- Spectroscopy, Near-Infrared/methods
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Elena S Izmailova
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|