1
|
Rashkov GD, Stefanov MA, Yotsova EK, Borisova PB, Dobrikova AG, Apostolova EL. Impact of Sodium Nitroprusside on the Photosynthetic Performance of Maize and Sorghum. PLANTS (BASEL, SWITZERLAND) 2023; 13:118. [PMID: 38202426 PMCID: PMC10781006 DOI: 10.3390/plants13010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Nitric oxide (NO) is an important molecule in regulating plant growth, development and photosynthetic performance. This study investigates the impact of varying concentrations (0-300 µM) of sodium nitroprusside (SNP, a donor of NO) on the functions of the photosynthetic apparatus in sorghum (Sorghum bicolor L. Albanus) and maize (Zea mays L. Kerala) under physiological conditions. Analysis of the chlorophyll fluorescence signals (using PAM and the JIP-test) revealed an increased amount of open PSII reaction centers (qP increased), but it did not affect the number of active reaction centers per PSII antenna chlorophyll (RC/ABS). In addition, the smaller SNP concentrations (up to 150 μM) alleviated the interaction of QA with plastoquine in maize, while at 300 μM it predominates the electron recombination on QAQB-, with the oxidized S2 (or S3) states of oxygen evolving in complex ways in both studied plant species. At the same time, SNP application stimulated the electron flux-reducing end electron acceptors at the PSI acceptor side per reaction center (REo/RC increased up to 26%) and the probability of their reduction (φRo increased up to 20%). An increase in MDA (by about 30%) and H2O2 contents was registered only at the highest SNP concentration (300 µM). At this concentration, SNP differentially affected the amount of P700+ in studied plant species, i.e., it increased (by 10%) in maize but decreased (by 16%) in sorghum. The effects of SNP on the functions of the photosynthetic apparatus were accompanied by an increase in carotenoid content in both studied plants. Additionally, data revealed that SNP-induced changes in the photosynthetic apparatus differed between maize and sorghum, suggesting species specificity for SNP's impact on plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Emilia L. Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (G.D.R.); (M.A.S.); (E.K.Y.); (P.B.B.); (A.G.D.)
| |
Collapse
|
2
|
Solymosi D, Shevela D, Allahverdiyeva Y. Nitric oxide represses photosystem II and NDH-1 in the cyanobacterium Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148507. [PMID: 34728155 DOI: 10.1016/j.bbabio.2021.148507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
Photosynthetic electron transfer comprises a series of light-induced redox reactions catalysed by multiprotein machinery in the thylakoid. These protein complexes possess cofactors susceptible to redox modifications by reactive small molecules. The gaseous radical nitric oxide (NO), a key signalling molecule in green algae and plants, has earlier been shown to bind to Photosystem (PS) II and obstruct electron transfer in plants. The effects of NO on cyanobacterial bioenergetics however, have long remained obscure. In this study, we exposed the model cyanobacterium Synechocystis sp. PCC 6803 to NO under anoxic conditions and followed changes in whole-cell fluorescence and oxidoreduction of P700 in vivo. Our results demonstrate that NO blocks photosynthetic electron transfer in cells by repressing PSII, PSI, and likely the NDH dehydrogenase-like complex 1 (NDH-1). We propose that iron‑sulfur clusters of NDH-1 complex may be affected by NO to such an extent that ferredoxin-derived electron injection to the plastoquinone pool, and thus cyclic electron transfer, may be inhibited. These findings reveal the profound effects of NO on Synechocystis cells and demonstrate the importance of controlled NO homeostasis in cyanobacteria.
Collapse
Affiliation(s)
- Daniel Solymosi
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI 20014, Finland
| | - Dmitry Shevela
- Chemical Biological Centre, Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI 20014, Finland.
| |
Collapse
|
3
|
Misra AN, Vladkova R, Singh R, Misra M, Dobrikova AG, Apostolova EL. Action and target sites of nitric oxide in chloroplasts. Nitric Oxide 2014; 39:35-45. [PMID: 24731839 DOI: 10.1016/j.niox.2014.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 03/17/2014] [Accepted: 04/03/2014] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) is an important signalling molecule in plants under physiological and stress conditions. Here we review the influence of NO on chloroplasts which can be directly induced by interaction with the photosynthetic apparatus by influencing photophosphorylation, electron transport activity and oxido-reduction state of the Mn clusters of the oxygen-evolving complex or by changes in gene expression. The influence of NO-induced changes in the photosynthetic apparatus on its functions and sensitivity to stress factors are discussed.
Collapse
Affiliation(s)
- Amarendra N Misra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi 435020, India.
| | - Radka Vladkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, Sofia 1113, Bulgaria
| | - Ranjeet Singh
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi 435020, India
| | - Meena Misra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi 435020, India
| | - Anelia G Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, Sofia 1113, Bulgaria
| | - Emilia L Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, Sofia 1113, Bulgaria
| |
Collapse
|
4
|
Hayden JA, Farquhar ER, Que L, Lipscomb JD, Hendrich MP. NO binding to Mn-substituted homoprotocatechuate 2,3-dioxygenase: relationship to O₂ reactivity. J Biol Inorg Chem 2013; 18:717-28. [PMID: 23824380 DOI: 10.1007/s00775-013-1016-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
Abstract
Iron(II)-containing homoprotocatechuate 2,3-dioxygenase (FeHPCD) activates O2 to catalyze the aromatic ring opening of homoprotocatechuate (HPCA). The enzyme requires Fe(II) for catalysis, but Mn(II) can be substituted (MnHPCD) with essentially no change in the steady-state kinetic parameters. Near simultaneous O2 and HPCA activation has been proposed to occur through transfer of an electron or electrons from HPCA to O2 through the divalent metal. In O2 reactions with MnHPCD-HPCA and the 4-nitrocatechol (4NC) complex of the His200Asn (H200N) variant of FeHPCD, this transfer has resulted in the detection of a transient M(III)-O2 (·-) species that is not observed during turnover of the wild-type FeHPCD. The factors governing formation of the M(III)-O2 (·-) species are explored here by EPR spectroscopy using MnHPCD and nitric oxide (NO) as an O2 surrogate. Both the HPCA and the dihydroxymandelic substrate complexes of MnHPCD bind NO, thus representing the first reported stable MnNO complexes of a nonheme enzyme. In contrast, the free enzyme, the MnHPCD-4NC complex, and the MnH200N and MnH200Q variants with or without HPCA bound do not bind NO. The MnHPCD-ligand complexes that bind NO are also active in normal O2-linked turnover, whereas the others are inactive. Past studies have shown that FeHPCD and the analogous variants and catecholic ligand complexes all bind NO, and are active in normal turnover. This contrasting behavior may stem from the ability of the enzyme to maintain the approximately 0.8-V difference in the solution redox potentials of Fe(II) and Mn(II). Owing to the higher potential of Mn, the formation of the NO adduct or the O2 adduct requires both strong charge donation from the bound catecholic ligand and additional stabilization by interaction with the active-site His200. The same nonoptimal electronic and structural forces that prevent NO and O2 binding in MnHPCD variants may lead to inefficient electron transfer from the catecholic substrate to the metal center in variants of FeHPCD during O2-linked turnover. Accordingly, past studies have shown that intermediate Fe(III) species are observed for these mutant enzymes.
Collapse
Affiliation(s)
- Joshua A Hayden
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA, 15213, USA
| | | | | | | | | |
Collapse
|
5
|
Gao EJ, Lin L, Wang B, Zhu MC, Jiao W, Liu TL. Syntheses, characterizations and bioactivities on HeLa cells and KB cells of two dinuclear manganese complexes with carboxylate bridges. J COORD CHEM 2013. [DOI: 10.1080/00958972.2013.786830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- En-Jun Gao
- a Department of Coordination Chemistry, International Key Laboratory of Shenyang Inorganic Molecule-Based Chemical , Shenyang University of Chemical Technology , Shenyang , China
| | - Lin Lin
- a Department of Coordination Chemistry, International Key Laboratory of Shenyang Inorganic Molecule-Based Chemical , Shenyang University of Chemical Technology , Shenyang , China
| | - Bo Wang
- a Department of Coordination Chemistry, International Key Laboratory of Shenyang Inorganic Molecule-Based Chemical , Shenyang University of Chemical Technology , Shenyang , China
| | - Ming-Chang Zhu
- a Department of Coordination Chemistry, International Key Laboratory of Shenyang Inorganic Molecule-Based Chemical , Shenyang University of Chemical Technology , Shenyang , China
| | - Wei Jiao
- a Department of Coordination Chemistry, International Key Laboratory of Shenyang Inorganic Molecule-Based Chemical , Shenyang University of Chemical Technology , Shenyang , China
| | - Ting-Li Liu
- a Department of Coordination Chemistry, International Key Laboratory of Shenyang Inorganic Molecule-Based Chemical , Shenyang University of Chemical Technology , Shenyang , China
| |
Collapse
|
6
|
Ioannidis N, Zahariou G, Petrouleas V. The EPR spectrum of tyrosine Z* and its decay kinetics in O2-evolving photosystem II preparations. Biochemistry 2008; 47:6292-300. [PMID: 18494501 DOI: 10.1021/bi800390r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The O2-evolving complex of photosystem II, Mn 4Ca, cycles through five oxidation states, S0,..., S4, during its catalytic function, which involves the gradual abstraction of four electrons and four protons from two bound water molecules. The direct oxidant of the complex is the tyrosine neutral radical, YZ(*), which is transiently produced by the highly oxidizing power of the photoexcited chlorophyll species P680. EPR characterization of YZ(*) has been limited, until recently, to inhibited (non-oxygen-evolving) preparations. A number of relatively recent papers have demonstrated the trapping of YZ(*) in O2-evolving preparations at liquid helium temperatures as an intermediate of the S0 to S1, S1 to S2, and S2 to S3 transitions. The respective EPR spectra are broadened and split at g approximately 2 by the magnetic interaction with the Mn cluster, but this interaction collapses at temperatures higher than about 100K [Zahariou et al. (2007) Biochemistry 46, 14335 -14341]. We have conducted a study of the Tyr Z(*) transient in the temperature range 77-240 K by employing rapid or slow EPR scans. The results reveal for the first time high-resolution X-band spectra of Tyr Z(*) in the functional system and at temperatures close to the onset of the S-state transitions. We have simulated the S 2Y Z(*) spectrum using the simulation algorithm of Svistunenko and Cooper [(2004) Biophys. J. 87, 582 -595]. The small g(x) = 2.00689 value inferred from the analysis suggests either a H-bonding of Tyr Z (*) (presumably with His190) that is stronger than what has been assumed from studies of Tyr D(*) or Tyr Z(*) in Mn-depleted preparations or a more electropositive environment around Tyr Z(*). The study has also yielded for the first time direct information on the temperature variation of the YZ(*)/QA(-) recombination reaction in the various S states. The reaction follows biphasic kinetics with the slow phase dominating at low temperatures and the fast phase dominating at high temperatures. It is tentatively proposed that the slow phase represents the action of the YZ(*)/YZ(-) redox couple while the fast phase represents that of the YZ(*)/YZH couple; it is inferred that Tyr Z at elevated temperatures is protonated at rest. It is also proposed that YZ(*)/YZH is the couple that oxidizes the Mn cluster during the S1-S2 and S2-S3 transitions. A simple mechanism ensuring a rapid (concerted) protonation of Tyr Z upon oxidation of the Mn cluster is discussed, and also, a structure-based molecular model suggesting the participation of His190 into two hydrogen bonds is proposed.
Collapse
Affiliation(s)
- Nikolaos Ioannidis
- Institute of Materials Science, NCSR Demokritos, 153 10 Aghia Paraskevi Attikis, Greece
| | | | | |
Collapse
|
7
|
Yano J, Yachandra VK. Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster from X-ray spectroscopy. Inorg Chem 2008; 47:1711-26. [PMID: 18330965 PMCID: PMC3947645 DOI: 10.1021/ic7016837] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Light-driven oxidation of water to dioxygen in plants, algae, and cyanobacteria is catalyzed within photosystem II (PS II) by a Mn 4Ca cluster. Although the cluster has been studied by many different methods, its structure and mechanism have remained elusive. X-ray absorption and emission spectroscopy and extended X-ray absorption fine structure studies have been particularly useful in probing the electronic and geometric structures and the mechanism of the water oxidation reaction. Recent progress, reviewed here, includes polarized X-ray absorption spectroscopy measurements of PS II single crystals. Analysis of those results has constrained the Mn 4Ca cluster geometry to a set of three similar high-resolution structures. The structure of the cluster from the present study is unlike either the 3.0- or 3.5-A-resolution X-ray structures or other previously proposed models. The differences between the models derived from X-ray spectroscopy and crystallography are predominantly because of damage to the Mn 4Ca cluster by X-rays under conditions used for the structure determination by X-ray crystallography. X-ray spectroscopy studies are also used for studying the changes in the structure of the Mn 4Ca catalytic center as it cycles through the five intermediate states known as the S i states ( i = 0-4). The electronic structure of the Mn 4Ca cluster has been studied more recently using resonant inelastic X-ray scattering spectroscopy (RIXS), in addition to the earlier X-ray absorption and emission spectroscopy methods. These studies are revealing that the assignment of formal oxidation states is overly simplistic. A more accurate description should consider the charge density on the Mn atoms, which includes the covalency of the bonds and delocalization of the charge over the cluster. The geometric and electronic structures of the Mn 4Ca cluster in the S states derived from X-ray spectroscopy are leading to a detailed understanding of the mechanism of O-O bond formation during the photosynthetic water-splitting process.
Collapse
Affiliation(s)
- Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Vittal K. Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
8
|
Zahariou G, Ioannidis N, Sioros G, Petrouleas V. The collapse of the tyrosine Z*-Mn spin-spin interaction above approximately 100 K reveals the spectrum of tyrosine Z*. An application of rapid-scan EPR to the study of intermediates of the water splitting mechanism of photosystem II. Biochemistry 2007; 46:14335-41. [PMID: 18020377 DOI: 10.1021/bi7018767] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tyr Z of photosystem II mediates electron transfer from the water splitting site, a Mn4Ca cluster, to the specialized chlorophyll assembly P680. Due to its proton-limited redox properties and the proximity to the Mn cluster, it is thought to play a critical role in the proton-coupled electron transfer reactions that constitute the four-step oxidation mechanism (so-called S-state transitions) of water to molecular oxygen. Spectroscopic evidence for the Tyr Z radical has been scarce in intact preparations (it is difficult to probe it optically, and too short-lived for EPR characterization) until recently. Advances in recent years have allowed the trapping at liquid helium temperatures and EPR characterization of metalloradical intermediates, attributed to tyrosyl Z* magnetically interacting with the Mn cluster. We have extended these studies and examined the evolution of the spectra of five intermediates: S0YZ*, S0YZ* (with 5% MeOH), S1YZ*, S2YZ*, and S2YZ* (with 5% MeOH) in the temperature range of 11-230 K. A rapid-scan EPR method has been applied at elevated temperatures. The tyrosyl radical decouples progressively from Mn, as the Mn relaxation rate increases with an increase in temperature. Above approximately 100 K, the spectra collapse to the unperturbed spectrum of Tyr Z*, which is found to be somewhat broader than that of the stable Tyr D* radical. This study provides a simple means for recording the spectrum of Tyr Z* and extends earlier observations that link the photochemistry at liquid helium temperatures to the photochemistry at temperatures that support S-state transitions.
Collapse
Affiliation(s)
- Georgia Zahariou
- Institute of Materials Science, NCSR Demokritos, 153 10 Aghia Paraskevi Attikis, Greece
| | | | | | | |
Collapse
|
9
|
Yano J, Yachandra VK. Oxidation state changes of the Mn4Ca cluster in photosystem II. PHOTOSYNTHESIS RESEARCH 2007; 92:289-303. [PMID: 17429751 PMCID: PMC3963819 DOI: 10.1007/s11120-007-9153-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 02/22/2007] [Indexed: 05/07/2023]
Abstract
A detailed electronic structure of the Mn4Ca cluster is required before two key questions for understanding the mechanism of photosynthetic water oxidation can be addressed. They are whether all four oxidizing equivalents necessary to oxidize water to O2 accumulate on the four Mn ions of the oxygen-evolving complex, or do some ligand-centered oxidations take place before the formation and release of O2 during the S3 --> [S4] --> S0 transition, and what are the oxidation state assignments for the Mn during S-state advancement. X-ray absorption and emission spectroscopy of Mn, including the newly introduced resonant inelastic X-ray scattering spectroscopy have been used to address these questions. The present state of understanding of the electronic structure and oxidation state changes of the Mn4Ca cluster in all the S-states, particularly in the S2 to S3 transition, derived from these techniques is described in this review.
Collapse
Affiliation(s)
- Junko Yano
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vittal K. Yachandra
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Ghosh K, Eroy-Reveles AA, Olmstead MM, Mascharak PK. Reductive nitrosylation and proton-assisted bridge splitting of a (mu-oxo)dimanganese(III) complex derived from a polypyridine ligand with one carboxamide group. Inorg Chem 2006; 44:8469-75. [PMID: 16270985 DOI: 10.1021/ic0503535] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aerobic oxidation of the Mn(II) complex [Mn(Papy3)(H2O)](ClO4) (1, PaPy3- is the anion of the designed ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide) in acetonitrile affords the (mu-oxo)dimanganese(III) complex [(Mn(PaPy3))2(mu-O)](ClO4)2 (3) in high yield. The unsupported single oxo bridge between the two high-spin Mn(III) centers in 3 is readily cleaved upon addition of proton sources such as phenol, acetic acid, and benzoic acid, and complexes of the type [Mn(PaPy3)(L)](ClO4) (5, L = PhO-; 6, L = AcO-; 7, L = BzO-) are formed. The basicity of the bridge is evident by the fact that simple addition of methanol to a solution of 3 in acetonitrile affords the methoxide complex [Mn(PaPy3)(OMe)](ClO4) (4). The structures of 3-5 and 7 have been determined. Passage of NO through a solution of 3 in acetonitrile produces the [Mn-NO]6 nitrosyl [Mn(PaPy3)(NO)](ClO4) (2) via reductive nitrosylation. Complexes 4-7 also afford the [Mn-NO]6 nitrosyl 2 upon reaction with NO. In the latter case, the anionic O-based ligands (such as MeO- and PhO-) act as built-in bases and promote reductive nitrosylation of the Mn(III) complexes.
Collapse
Affiliation(s)
- Kaushik Ghosh
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | | | |
Collapse
|
11
|
Teutloff C, Schäfer KO, Sinnecker S, Barynin V, Bittl R, Wieghardt K, Lendzian F, Lubitz W. High-field EPR investigations of Mn(III)Mn(IV) and Mn(II)Mn(III) states of dimanganese catalase and related model systems. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2005; 43 Spec no.:S51-64. [PMID: 16235205 DOI: 10.1002/mrc.1685] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Multi-frequency EPR experiments at 9, 34 and 94 GHz are reported on the antiferromagnetically coupled mixed valence Mn(II)Mn(III) complex of manganese catalase and on several dinuclear manganese model systems. They are compared with similar experiments obtained earlier for the Mn(III)Mn(IV) states. It is demonstrated how accurate information on the G- and 55Mn hyperfine tensors can be derived from this approach. Furthermore, the effect of oxidation state, planarity of the manganese-oxygen core and the type of ligands bridging the manganese ions on the magnetic resonance parameters and the related electronic structure is investigated. 'Broken-symmetry' density functional calculations on two Mn(III)Mn(IV) complexes, including the superoxidized state of the catalase, are presented. The agreement between calculated and experimental EPR parameters and complex geometries is remarkably good. Implications of these results for the structure and function of the dimanganese catalase are discussed.
Collapse
Affiliation(s)
- Christian Teutloff
- Max-Volmer-Laboratory, Institute for Chemistry, PC 14, Technical University Berlin, D-10623 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Koulougliotis D, Shen JR, Ioannidis N, Petrouleas V. Near-IR irradiation of the S2 state of the water oxidizing complex of photosystem II at liquid helium temperatures produces the metalloradical intermediate attributed to S1Y(Z*). Biochemistry 2003; 42:3045-53. [PMID: 12627971 DOI: 10.1021/bi027051o] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Near-IR (NIR) excitation at liquid He temperatures of photosystem II (PSII) membranes from the cyanobacterium Synechococcus vulcanus or from spinach poised in the S2 state results in the production of a g = 2.035 EPR resonance, reminiscent of metalloradical signals. The signal is smaller in the spinach preparations, but it is significantly enhanced by the addition of exogenous quinones. Ethanol (2-3%, v/v) eliminates the ability to trap the signal. The g = 2.035 signal is identical to the one recently obtained by Nugent et al. by visible-light illumination of the S1 state, and preferably assigned to S1Y(Z*) [Nugent, J. H. A., Muhiuddin, I. P., and Evans, M. C. W. (2002) Biochemistry 41, 4117-4126]. The production of the g = 2.035 signal by liquid He temperature NIR excitation of the S2 state is paralleled by a significant reduction (typically 40-45% in S. vulcanus) of the S2 state multiline signal. This is in part due to the conversion of the Mn cluster to higher spin states, an effect documented by Boussac et al. [Boussac, A., Un, S., Horner, O., and Rutherford, A. W. (1998) Biochemistry 37, 4001-4007], and in part due to the conversion to the g = 2.035 configuration. Following the decay of the g = 2.035 signal at liquid helium temperatures (decay halftimes in the time range of a few to tens of minutes depending on the preparation), annealing at elevated temperatures (-80 degrees C) results in only partial restoration of the S2 state multiline signal. The full size of the signal can be restored by visible-light illumination at -80 degrees C, implying that during the near-IR excitation and subsequent storage at liquid helium temperatures recombination with Q(A-) (and therefore decay of the S2 state to the S1 state) occurred in a fraction of centers. In support of this conclusion, the g = 2.035 signal remains stable for several hours (at 11 K) in centers poised in the S2...Q(A) configuration before the NIR excitation. The extended stability of the signal under these conditions has allowed the measurement of the microwave power saturation and the temperature dependence in the temperature range of 3.8-11 K. The signal intensity follows Curie law temperature dependence, which suggests that it arises from a ground spin state, or a very low-lying excited spin state. The P1/2 (microwave power at half-saturation) value is 1.7 mW at 3.8 K and increases to 96 mW at 11 K. The large width of the g = 2.035 signal and its relatively fast relaxation support the assignment to a radical species in the proximity of the Mn cluster. The whole phenomenology of the g = 2.035 signal production is analogous to the effects of NIR excitation on the S3 state [Ioannidis, N., Nugent, J. H. A., and Petrouleas, V. (2002) Biochemistry 41, 9589-9600] producing an S2'Y(Z*) intermediate. In the present case, the intermediate is assigned to S1Y(Z*). The NIR-induced increase in the oxidative capability of the Mn cluster is discussed in relation to the photochemical properties of a Mn(III) ion that exists in both S2 and S3 states. The EPR properties of the S1Y(Z*) intermediate cannot be reconciled easily with our current understanding of the magnetic properties of the S1 state. It is suggested that oxidation of tyr Z alters the magnetic properties of the Mn cluster via exchange of a proton.
Collapse
|
13
|
Sarrou J, Isgandarova S, Kern J, Zouni A, Renger G, Lubitz W, Messinger J. Nitric oxide-induced formation of the S-2 state in the oxygen-evolving complex of photosystem II from Synechococcus elongatus. Biochemistry 2003; 42:1016-23. [PMID: 12549922 DOI: 10.1021/bi026327p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In spinach photosystem II (PSII) membranes, the tetranuclear manganese cluster of the oxygen-evolving complex (OEC) can be reduced by incubation with nitric oxide at -30 degrees C to a state which is characterized by an Mn(2)(II, III) EPR multiline signal [Sarrou, J., Ioannidis, N., Deligiannakis, Y., and Petrouleas, V. (1998) Biochemistry 37, 3581-3587]. This state was recently assigned to the S(-)(2) state of the OEC [Schansker, G., Goussias, C., Petrouleas, V., and Rutherford, A. W. (2002) Biochemistry 41, 3057-3064]. On the basis of EPR spectroscopy and flash-induced oxygen evolution patterns, we show that a similar reduction process takes place in PSII samples of the thermophilic cyanobacterium Synechococcus elongatus at both -30 and 0 degrees C. An EPR multiline signal, very similar but not identical to that of the S(-)(2) state in spinach, was obtained with monomeric and dimeric PSII core complexes from S. elongatus only after incubation at -30 degrees C. The assignment of this EPR multiline signal to the S(-)(2) state is corroborated by measurements of flash-induced oxygen evolution patterns and detailed fits using extended Kok models. The small reproducible shifts of several low-field peak positions of the S(-)(2) EPR multiline signal in S. elongatus compared to spinach suggest that slight differences in the coordination geometry and/or the ligands of the manganese cluster exist between thermophilic cyanobacteria and higher plants.
Collapse
Affiliation(s)
- Josephine Sarrou
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Goussias C, Boussac A, Rutherford AW. Photosystem II and photosynthetic oxidation of water: an overview. Philos Trans R Soc Lond B Biol Sci 2002; 357:1369-81; discussion 1419-20. [PMID: 12437876 PMCID: PMC1693055 DOI: 10.1098/rstb.2002.1134] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Conceptually, photosystem II, the oxygen-evolving enzyme, can be divided into two parts: the photochemical part and the catalytic part. The photochemical part contains the ultra-fast and ultra-efficient light-induced charge separation and stabilization steps that occur when light is absorbed by chlorophyll. The catalytic part, where water is oxidized, involves a cluster of Mn ions close to a redox-active tyrosine residue. Our current understanding of the catalytic mechanism is mainly based on spectroscopic studies. Here, we present an overview of the current state of knowledge of photosystem II, attempting to delineate the open questions and the directions of current research.
Collapse
Affiliation(s)
- Charilaos Goussias
- Service de Bioénergétique, URA CNRS 2096, Bat 532, CEA Saclay, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
15
|
Ioannidis N, Nugent JHA, Petrouleas V. Intermediates of the S(3) state of the oxygen-evolving complex of photosystem II. Biochemistry 2002; 41:9589-600. [PMID: 12135381 DOI: 10.1021/bi0159940] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The S(3) state of the water-oxidizing complex (WOC) of photosystem II (PSII) is the last state that can be trapped before oxygen evolution occurs at the transient S(4) state. A number of EPR-detectable intermediates are associated with this critical state. The preceding paper examined mainly the decay of S(3) at cryogenic temperatures leading to the formation of a proton-deficient configuration of S(2) termed S(2)'. This second paper examines all intermediates formed by the near-IR light (NIR) excitation of the S(3) state and compares these with the light-excitation products of the S(2)' state. The rather complex set of observations is organized in a comprehensive flowchart, the central part of which is the S(3)...Q(A)(-) state. This state can be converted to various intermediates via two main pathways: (A) Excitation of S(3) by NIR light at temperatures below 77 K results presumably in the formation of an excited S(3) state, S(3), which decays via either of two pathways. Slowly at liquid helium temperatures but much faster at 77 K, S(3) decays to an EPR-silent state, denoted S(3)' ', which by raising the temperature to ca. 190 K converts to a spin configuration of the Mn cluster, characterized by g = 21, 3.7 in perpendicular and g = 23 in parallel mode EPR, denoted S(3)'. Upon further warming to 220 K, S(3)' relaxes to the untreated S(3) state. Below about 77 K and more favorably at liquid helium temperatures, an alternative pathway of S(3) decay via the metallo-radical intermediate S(2)'Z*...Q(A)(-) can be traced. This leads to the metastable state S(2)'Z...Q(A) via charge recombination. S(2)'Z* is characterized by a split-radical signal at g = 2, while all S(2)' transients are characterized by the same g = 5/2.9 (S = (7)/(2)) configuration of the Mn cluster with small modifications, reflecting an influence of the tyr Z oxidation state on the crystal-field symmetry at the Mn cluster. (B) S(2)'...Q(A) can be reached alternatively by the slow charge recombination of S(3) and Q(A)(-) at 77 K. White-light illumination of S(2)'.Q(A) below about 20 K results in charge separation, reforming the intermediate S(2)'Z*...Q(A)(-). Thermally activated branches to the main pathways are also described, e.g., at elevated temperatures tyr Z* reoxidizes S(2)' to the S(3) state. The above observations are discussed in terms of a molecular model of the S(3) state of the OEC. Main aspects of the model are the following. Intermediates, isoelectronic to S(3), are attributed to the NIR-induced translocation of the positive hole to different Mn ligands, or to tyr Z. On the basis of a comparison of the electron-donating efficiency of tyr Z and tyr D at cryogenic temperatures, it is inferred that the Mn cluster acts as the main proton acceptor from tyr Z. Water associated with the Mn cluster is assumed to be in hydrogen-bonding equilibrium with tyr Z, and an array comprising this water and adjacent water (or OH or O) ligands to Mn followed by a sequence of proton acceptors is proposed to act as an efficient proton translocation pathway. Oxidation of the tyrosine by P(680)(+) repels protons to and out from the Mn cluster. This proposed role of tyr Z in the water-splitting process is described as a proton repeller/electron abstractor.
Collapse
Affiliation(s)
- Nikolaos Ioannidis
- Institute of Materials Science, NCSR Demokritos, 15310 Aghia Paraskevi Attikis, Greece.
| | | | | |
Collapse
|
16
|
Schansker G, Goussias C, Petrouleas V, Rutherford AW. Reduction of the Mn cluster of the water-oxidizing enzyme by nitric oxide: formation of an S(-2) state. Biochemistry 2002; 41:3057-64. [PMID: 11863444 DOI: 10.1021/bi015903z] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The manganese cluster of the oxygen-evolving enzyme of photosystem II is chemically reduced upon interaction with nitric oxide at -30 degrees C. The state formed gives rise to an S = 1/2 multiline EPR signal [Goussias, Ch., Ioannidis, N., and Petrouleas, V. (1997) Biochemistry 36, 9261] that is attributed to a Mn(II)- Mn(III) dimer [Sarrou, J., Ioannidis, N., Deligiannakis, Y., and Petrouleas, V. (1998) Biochemistry 37, 3581]. In this work, we sought to establish whether the state could be assigned to a specific, reduced S state by using flash oxymetry, chlorophyll a fluorescence, and electron paramagnetic resonance spectroscopy. With the Joliot-type O(2) electrode, the first maximum of oxygen evolution was observed on the sixth or seventh flash. Three saturating pre-flashes were required to convert the flash pattern characteristic of NO-reduced samples to that of the untreated control (i.e., O(2) evolution maximum on the third flash). Measurements of the S state-dependent level of chlorophyll fluorescence in NO-treated PSII showed a three-flash downshift compared to untreated controls. In the EPR study, the maximum S(2) multi-line EPR signal was observed after the fourth flash. The results from all three methods are consistent with the Mn cluster being in a redox state corresponding to an S(-2) state in a majority of centers after treatment with NO. We were unable to generate the Mn(II)-Mn(III) multi-line signal using hydrazine as a reductant; it appears that the valence distribution and possibly the structure of the Mn cluster in the S(-2) state are dependent on the nature of the reductant that is used.
Collapse
Affiliation(s)
- Gert Schansker
- Institute of Materials Science, NCSR Demokritos, 15310 Aghia Paraskevi, Athens, Greece
| | | | | | | |
Collapse
|
17
|
Messinger J, Robblee JH, Bergmann U, Fernandez C, Glatzel P, Visser H, Cinco RM, McFarlane KL, Bellacchio E, Pizarro SA, Cramer SP, Sauer K, Klein MP, Yachandra VK. Absence of Mn-centered oxidation in the S(2) --> S(3) transition: implications for the mechanism of photosynthetic water oxidation. J Am Chem Soc 2001. [PMID: 11493054 DOI: 10.1021/ja004307] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A key question for the understanding of photosynthetic water oxidation is whether the four oxidizing equivalents necessary to oxidize water to dioxygen are accumulated on the four Mn ions of the oxygen-evolving complex (OEC), or whether some ligand-centered oxidations take place before the formation and release of dioxygen during the S(3) --> [S(4)] --> S(0) transition. Progress in instrumentation and flash sample preparation allowed us to apply Mn Kbeta X-ray emission spectroscopy (Kbeta XES) to this problem for the first time. The Kbeta XES results, in combination with Mn X-ray absorption near-edge structure (XANES) and electron paramagnetic resonance (EPR) data obtained from the same set of samples, show that the S(2) --> S(3) transition, in contrast to the S(0) --> S(1) and S(1) --> S(2) transitions, does not involve a Mn-centered oxidation. On the basis of new structural data from the S(3)-state, manganese mu-oxo bridge radical formation is proposed for the S(2) --> S(3) transition, and three possible mechanisms for the O-O bond formation are presented.
Collapse
Affiliation(s)
- J Messinger
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Messinger J, Robblee JH, Bergmann U, Fernandez C, Glatzel P, Visser H, Cinco RM, McFarlane KL, Bellacchio E, Pizarro SA, Cramer SP, Sauer K, Klein MP, Yachandra VK. Absence of Mn-centered oxidation in the S(2) --> S(3) transition: implications for the mechanism of photosynthetic water oxidation. J Am Chem Soc 2001; 123:7804-20. [PMID: 11493054 PMCID: PMC3965774 DOI: 10.1021/ja004307+] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A key question for the understanding of photosynthetic water oxidation is whether the four oxidizing equivalents necessary to oxidize water to dioxygen are accumulated on the four Mn ions of the oxygen-evolving complex (OEC), or whether some ligand-centered oxidations take place before the formation and release of dioxygen during the S(3) --> [S(4)] --> S(0) transition. Progress in instrumentation and flash sample preparation allowed us to apply Mn Kbeta X-ray emission spectroscopy (Kbeta XES) to this problem for the first time. The Kbeta XES results, in combination with Mn X-ray absorption near-edge structure (XANES) and electron paramagnetic resonance (EPR) data obtained from the same set of samples, show that the S(2) --> S(3) transition, in contrast to the S(0) --> S(1) and S(1) --> S(2) transitions, does not involve a Mn-centered oxidation. On the basis of new structural data from the S(3)-state, manganese mu-oxo bridge radical formation is proposed for the S(2) --> S(3) transition, and three possible mechanisms for the O-O bond formation are presented.
Collapse
Affiliation(s)
- Johannes Messinger
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - John H. Robblee
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Uwe Bergmann
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Carmen Fernandez
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Pieter Glatzel
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Applied Science, University of California, Davis, California 95616
| | - Hendrik Visser
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Roehl M. Cinco
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Karen L. McFarlane
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Emanuele Bellacchio
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Shelly A. Pizarro
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Stephen P. Cramer
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Applied Science, University of California, Davis, California 95616
| | - Kenneth Sauer
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Melvin P. Klein
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Vittal K. Yachandra
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|