1
|
Tan TY, Wee HN, Lee LS, Han HY, Ong CT, Neela M, Masilamani J, Phan TT, Ching J. Sensitive ex vivo human skin transdermal assay testing method with mass spectrometric analysis for cosmetics application. J Cosmet Dermatol 2022; 21:6124-6128. [PMID: 35678279 DOI: 10.1111/jocd.15154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/24/2022] [Accepted: 06/04/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cosmetics manufacturers are focused on cosmetic delivery systems into the skin, but the level of diffusion of the systems in the skin tissues is not well understood. The current methods, such as Franz diffusion, assess analyte diffusion in the whole skin or artificial membranes, which has limitations for understanding skin delivery systems. AIMS Our study aimed to create a transdermal delivery method which is based on dermal-epidermal separation of human skin, allowing us to assess each layer of skin separately for its efficacy. MATERIALS AND METHODS During the experiment, resveratrol was used as the target analyte by applying it to the skin and then separating it into dermis and epidermis. Each layer is treated individually and subjected to a high-resolution mass spectrometry analysis to detect resveratrol levels. As a result, the efficiency of resveratrol diffusion in the dermal and epidermal layers of the skin can be evaluated. RESULTS We found that resveratrol was detected in both the dermal and epidermal layers using our method. CONCLUSIONS Hence, we developed a sensitive method for transdermal delivery testing that can be used to evaluate skin delivery systems for cosmetic or pharmaceutical purposes.
Collapse
Affiliation(s)
- Tsze Yin Tan
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore City, Singapore
| | - Hai Ning Wee
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore City, Singapore
| | - Lye Siang Lee
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore City, Singapore
| | - Hong Yu Han
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore City, Singapore
| | - Chee Tian Ong
- CellResearch Corporation Group of Companies, Singapore City, Singapore
| | - M Neela
- CellResearch Corporation Group of Companies, Singapore City, Singapore
| | | | - Thang T Phan
- CellResearch Corporation Group of Companies, Singapore City, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, Singapore City, Singapore
| | - Jianhong Ching
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore City, Singapore.,KK Research Centre, KK Women's and Children's Hospital, Singapore City, Singapore
| |
Collapse
|
2
|
Sanabria-de la Torre R, Fernández-González A, Quiñones-Vico MI, Montero-Vilchez T, Arias-Santiago S. Bioengineered Skin Intended as In Vitro Model for Pharmacosmetics, Skin Disease Study and Environmental Skin Impact Analysis. Biomedicines 2020; 8:E464. [PMID: 33142704 PMCID: PMC7694072 DOI: 10.3390/biomedicines8110464] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
Abstract
This review aims to be an update of Bioengineered Artificial Skin Substitutes (BASS) applications. At the first moment, they were created as an attempt to replace native skin grafts transplantation. Nowadays, these in vitro models have been increasing and widening their application areas, becoming important tools for research. This study is focus on the ability to design in vitro BASS which have been demonstrated to be appropriate to develop new products in the cosmetic and pharmacology industry. Allowing to go deeper into the skin disease research, and to analyze the effects provoked by environmental stressful agents. The importance of BASS to replace animal experimentation is also highlighted. Furthermore, the BASS validation parameters approved by the OECD (Organisation for Economic Co-operation and Development) are also analyzed. This report presents an overview of the skin models applicable to skin research along with their design methods. Finally, the potential and limitations of the currently available BASS to supply the demands for disease modeling and pharmaceutical screening are discussed.
Collapse
Affiliation(s)
- Raquel Sanabria-de la Torre
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - María I. Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Trinidad Montero-Vilchez
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Dermatology Department, School of Medicine, Granada University, 18016 Granada, Spain
| |
Collapse
|
3
|
Nishikawa MU, Iwaki M, Tashiro K, Kurose K. Identification of gene expression markers and development of evaluation method using cell-based and RT-PCR-based assay for skin sensitising potential of chemicals. Xenobiotica 2020; 50:1359-1369. [PMID: 32394774 DOI: 10.1080/00498254.2020.1767320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recently, alternatives to animal testing have been used to evaluate skin sensitisers in cosmetic products. However, testing is still complicated and expensive. To develop a simpler, cost-effective and more accurate evaluation method for the skin sensitising chemicals, we employed cell-based and RT-PCR-based assay. Representative sensitiser specific gene expression in THP-1 cells was analysed by microarray. Gene ontology (GO) analysis revealed that 26 genes induced by the sensitisers were associated with immune function. First, seven of the 26 genes were chosen arbitrarily as candidate markers for our sensitisation assay. Then, THP-1 cells were exposed to 13 reference chemicals with known sensitising potential, and real-time RT-PCR assays targeting the candidate marker genes were performed. Among them, six markers were able to properly evaluate the sensitisation potential by classifying the gene induction rates with appropriate criteria. Especially, the results of the assay using TREM1 and TNFRSF12A gene markers showed 100% sensitivity and specificity. An existing test method, h-CLAT, requires a flow cytometer and is complicated to operate. In contrast, our method is relatively simpler and more cost-effective. Therefore, our method is a promising one to evaluate sensitising chemicals.
Collapse
Affiliation(s)
- Maho Ukaji Nishikawa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Megumi Iwaki
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kouichi Kurose
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
4
|
Dolbashid AS, Mokhtar MS, Muhamad F, Ibrahim F. Potential applications of human artificial skin and electronic skin (e-skin): a review. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2018. [DOI: 10.1680/jbibn.17.00002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Asdani Saifullah Dolbashid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Mas Sahidayana Mokhtar
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Clouet E, Kerdine-Römer S, Ferret PJ. Comparison and validation of an in vitro skin sensitization strategy using a data set of 33 chemical references. Toxicol In Vitro 2017; 45:374-385. [PMID: 28539215 DOI: 10.1016/j.tiv.2017.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 05/06/2017] [Accepted: 05/19/2017] [Indexed: 11/29/2022]
Abstract
Allergic contact dermatitis (ACD) is an adverse health effect that develops following repeated exposure to skin sensitizing chemicals. An animal testing ban has been applied in EU, leading to development of reliably predictive non-animal methods. Several in vitro methods have been developed as alternatives but one single non-animal test method is not been sufficient to fully address since the LLNA test ban. Here, we have selected an ITS (Integrated Testing Strategy) for skin sensitization which focuses on three in vitro methods that covered the first three steps of the AOP (DPRA, SENS-IS or h-CLAT). The aim of this study was to compare these three methods due to the WoE approach based on a 2-out-of-3-assessment. The results of 33 references were compared to in vivo data (especially human). We have shown that tested firstly DPRA and SENS-IS have permitted to conclude on 29 of 33 chemicals, whereas DPRA and h-CLAT on 25, and SENS-IS and h-CLAT on 23. With this sequence, DPRA and SENS-IS and then h-CLAT in case of equivocal results, we conclude more quickly by performing fewer tests. Thereby, we have shown that it is better to follow a preferential sequence than testing chemicals simultaneously with these three methods.
Collapse
Affiliation(s)
- Elodie Clouet
- Pierre Fabre Dermo-Cosmetics Research & Development, Toxicology Division, Safety Department, Toulouse, France; UMR996 - Inflammation, Chemokines and Immunopathology, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France.
| | - Saadia Kerdine-Römer
- UMR996 - Inflammation, Chemokines and Immunopathology, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Pierre-Jacques Ferret
- Pierre Fabre Dermo-Cosmetics Research & Development, Toxicology Division, Safety Department, Toulouse, France
| |
Collapse
|
6
|
Stiefel C, Schwack W. Photoprotection in changing times - UV filter efficacy and safety, sensitization processes and regulatory aspects. Int J Cosmet Sci 2014; 37:2-30. [DOI: 10.1111/ics.12165] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/20/2014] [Indexed: 12/14/2022]
Affiliation(s)
- C. Stiefel
- Institute of Food Chemistry; University of Hohenheim; Garbenstrasse 28 70599 Stuttgart Germany
| | - W. Schwack
- Institute of Food Chemistry; University of Hohenheim; Garbenstrasse 28 70599 Stuttgart Germany
| |
Collapse
|
7
|
Martin SF, Esser PR, Schmucker S, Dietz L, Naisbitt DJ, Park BK, Vocanson M, Nicolas JF, Keller M, Pichler WJ, Peiser M, Luch A, Wanner R, Maggi E, Cavani A, Rustemeyer T, Richter A, Thierse HJ, Sallusto F. T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays. Cell Mol Life Sci 2010; 67:4171-84. [PMID: 20717835 PMCID: PMC11115584 DOI: 10.1007/s00018-010-0495-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/23/2010] [Accepted: 07/30/2010] [Indexed: 01/11/2023]
Abstract
Chemicals can elicit T-cell-mediated diseases such as allergic contact dermatitis and adverse drug reactions. Therefore, testing of chemicals, drugs and protein allergens for hazard identification and risk assessment is essential in regulatory toxicology. The seventh amendment of the EU Cosmetics Directive now prohibits the testing of cosmetic ingredients in mice, guinea pigs and other animal species to assess their sensitizing potential. In addition, the EU Chemicals Directive REACh requires the retesting of more than 30,000 chemicals for different toxicological endpoints, including sensitization, requiring vast numbers of animals. Therefore, alternative methods are urgently needed to eventually replace animal testing. Here, we summarize the outcome of an expert meeting in Rome on 7 November 2009 on the development of T-cell-based in vitro assays as tools in immunotoxicology to identify hazardous chemicals and drugs. In addition, we provide an overview of the development of the field over the last two decades.
Collapse
Affiliation(s)
- Stefan F Martin
- Allergy Research Group, Department of Dermatology, University Medical Center Freiburg, Hauptstrasse 7, 79104, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|