1
|
Scull CE, Hu Y, Jennings S, Wang G. Normalization of Cystic Fibrosis Immune System Reverses Intestinal Neutrophilic Inflammation and Significantly Improves the Survival of Cystic Fibrosis Mice. Cell Mol Gastroenterol Hepatol 2024; 19:101424. [PMID: 39510500 PMCID: PMC11720009 DOI: 10.1016/j.jcmgh.2024.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND & AIMS Cystic fibrosis (CF) is an autosomal recessive genetic disorder, affecting multiple organ systems. CF intestinal disease develops early, manifesting as intestinal bacterial overgrowth/dysbiosis, neutrophilic inflammation, and obstruction. As unresolvable infection and inflammation reflect host immune deficiency, we sought to determine if the CF-affected immune system plays any significant role in CF intestinal disease pathogenesis. METHODS CF and sibling wild-type (WT) mice underwent reciprocal bone marrow transplantation. After immune reconstitution, their mortality, intestinal transit, fecal inflammatory markers, and mucosal immune cell composition were assessed. Moreover, reciprocal neutrophil transfusion was conducted to determine if neutrophil function affects intestinal movement. Furthermore, expression of induced nitric oxide synthase (iNOS) and production of nitric oxide (NO) in CF and WT neutrophils were compared. Lastly, specific iNOS inhibitor 1400W was tested to prevent CF intestinal obstruction. RESULTS Immune restoration in CF mice reversed the intestinal neutrophilic inflammation, improved the intestinal dysmotility, and rescued the mice from mortality. Transfusion of WT neutrophils into CF mice ameliorated the retarded bowel movement. CF neutrophils expressed significantly more iNOS and produced significantly more NO. Pharmaceutical blocking of iNOS significantly improved intestinal transit and survival of CF mice. CONCLUSIONS CF immune defect plays a critical role in CF intestinal disease development. Activation of iNOS in inflammatory cells produces excessive NO, slows the bowel movement, and facilitates intestinal paralysis and obstruction in CF. Thus, normalization of the CF immune system may offer a novel therapy to treat CF intestinal disease.
Collapse
Affiliation(s)
- Callie E Scull
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Yawen Hu
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Scott Jennings
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Guoshun Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
| |
Collapse
|
2
|
Turuvekere Vittala Murthy N, Vlasova K, Renner J, Jozic A, Sahay G. A new era of targeting cystic fibrosis with non-viral delivery of genomic medicines. Adv Drug Deliv Rev 2024; 209:115305. [PMID: 38626860 DOI: 10.1016/j.addr.2024.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Cystic fibrosis (CF) is a complex genetic respiratory disorder that necessitates innovative gene delivery strategies to address the mutations in the gene. This review delves into the promises and challenges of non-viral gene delivery for CF therapy and explores strategies to overcome these hurdles. Several emerging technologies and nucleic acid cargos for CF gene therapy are discussed. Novel formulation approaches including lipid and polymeric nanoparticles promise enhanced delivery through the CF mucus barrier, augmenting the potential of non-viral strategies. Additionally, safety considerations and regulatory perspectives play a crucial role in navigating the path toward clinical translation of gene therapy.
Collapse
Affiliation(s)
| | - Kseniia Vlasova
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Jonas Renner
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201, USA; Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
3
|
Sarkar S, Barnaby R, Nymon AB, Taatjes DJ, Kelley TJ, Stanton BA. Extracellular vesicles secreted by primary human bronchial epithelial cells reduce Pseudomonas aeruginosa burden and inflammation in cystic fibrosis mouse lung. Am J Physiol Lung Cell Mol Physiol 2024; 326:L164-L174. [PMID: 38084406 PMCID: PMC11279747 DOI: 10.1152/ajplung.00253.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
Cystic fibrosis (CF) results in a reduction in the volume of airway surface liquid, increased accumulation of viscous mucus, persistent antibiotic-resistant lung infections that cause chronic inflammation, and a decline in lung function. More than 50% of adults with CF are chronically colonized by Pseudomonas aeruginosa (P. aeruginosa), the primary reason for morbidity and mortality in people with CF (pwCF). Although highly effective modulator therapy (HEMT) is an important part of disease management in CF, HEMT does not eliminate P. aeruginosa or lung inflammation. Thus, new treatments are required to reduce lung infection and inflammation in CF. In a previous in vitro study, we demonstrated that primary human bronchial epithelial cells (HBECs) secrete extracellular vesicles (EVs) that block the ability of P. aeruginosa to form biofilms by reducing the abundance of several proteins necessary for biofilm formation as well as enhancing the sensitivity of P. aeruginosa to β-lactam antibiotics. In this study, using a CF mouse model of P. aeruginosa infection, we demonstrate that intratracheal administration of EVs secreted by HBEC reduced P. aeruginosa lung burden and several proinflammatory cytokines including IFN-γ, TNF-α, and MIP-1β in bronchoalveolar lavage fluid (BALF), even in the absence of antibiotics. Moreover, EVs decreased neutrophils in BALF. Thus, EVs secreted by HBEC reduce the lung burden of P. aeruginosa, decrease inflammation, and reduce neutrophils in a CF mouse model. These results suggest that HBEC via the secretion of EVs may play an important role in the immune response to P. aeruginosa lung infection.NEW & NOTEWORTHY Our findings show that extracellular vesicles secreted by primary human bronchial epithelial cells significantly reduce Pseudomonas aeruginosa burden, inflammation, and weight loss in a cystic fibrosis mouse model of infection.
Collapse
Affiliation(s)
- Sharanya Sarkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States
| | - Roxanna Barnaby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States
| | - Amanda B Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Center for Biomedical Shared Resources, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
| | - Thomas J Kelley
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States
| |
Collapse
|
4
|
Rano S, Bhaduri A, Singh M. Nanoparticle-based platforms for targeted drug delivery to the pulmonary system as therapeutics to curb cystic fibrosis: A review. J Microbiol Methods 2024; 217-218:106876. [PMID: 38135160 DOI: 10.1016/j.mimet.2023.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Cystic fibrosis (CF) is a genetic disorder of the respiratory system caused by mutation of the Cystic Fibrosis Trans-Membrane Conductance Regulator (CFTR) gene that affects a huge number of people worldwide. It results in difficulty breathing due to a large accumulation of mucus in the respiratory tract, resulting in serious bacterial infections, and subsequent death. Traditional drug-based treatments face hindered penetration at the site of action due to the thick mucus layer. Nanotechnology offers possibilities for developing advanced and effective treatment platforms by focusing on drugs that can penetrate the dense mucus layer, fighting against the underlying bacterial infections, and targeting the genetic cause of the disease. In this review, current nanoparticle-mediated drug delivery platforms for CF, challenges in therapeutics, and future prospects have been highlighted. The effectiveness of the different types of nano-based systems conjugated with various drugs to combat the symptoms and the challenges of treating CF are brought into focus. The toxic effects of these nano-medicines and the various factors that are responsible for their effectiveness are also highlighted.
Collapse
Affiliation(s)
- Sujoy Rano
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; In-vitro Biology, Aragen Life Sciences, Hyderabad 500076, Telangana, India
| | - Ahana Bhaduri
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; Department of Botany, Kabi Nazrul College, Murarai, Birbhum 731219 (West Bengal), India.
| |
Collapse
|
5
|
Syed A, Rawat A, Tariq UB, Haq I, Naz B, Hussain A, Maqsood M, Rasheed A. Insights Into Cystic Fibrosis Gene Mutation Frequency, Clinical Findings, and Complications Among Pakistani Patients. Cureus 2023; 15:e48564. [PMID: 38024076 PMCID: PMC10653747 DOI: 10.7759/cureus.48564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background Cystic fibrosis (CF) is a genetic disorder with diverse symptoms. Understanding its genetic basis and prevalence is crucial for effective management and treatment. Objective The study aimed to provide comprehensive insights into the frequency of CF gene mutations, clinical presentations, and complications among the Pakistani population. Methodology A cohort comprising 892 patients, ranging in age from 18 to more than 40 years, was selected on the basis of clinical and genetic criteria for the diagnosis of CF. Polymerase chain reaction (PCR) was used to look for 34 variants in the CFTR gene in blood samples. Statistical analysis, which included figuring out the number of mutations, the average age of diagnosis, and the genetic diversity of the samples, was performed to analyze the percentage of patients with specific mutations, offering insights into the genetic diversity. Results In our comprehensive analysis of 892 patient samples, 77.47% (n=691) displayed consanguinity, indicating a family history. The prevailing symptoms included chronic cough (88.67%; n=791), recurrent respiratory infections (76.68%; n=684), and fatigue (73.76%; n=658). The major complications comprised pulmonary infections (22%; n=197), cystic fibrosis-related diabetes (21%; n=187), and malabsorption (20%: n=178). A paired t-test revealed a mean difference of 5.750 with a standard deviation of 9.147, a 95% confidence interval from -0.061 to 11.561, a t-value of 2.178 with 11 degrees of freedom, and a two-tailed p-value of 0.052, suggesting a potential trend towards significance. Nevertheless, the asymptotic significance values of 1.000 and 0.998 for both groups indicate no significant difference. Furthermore, the study identified 12 cystic fibrosis gene mutations, with F508del and N1303K being the most prevalent. Conclusion This research revealed significant consanguinity, confirmed typical CF symptoms, and identified common complications and prevalent CFTR gene mutations (with F508del and N1303K being the most common), providing insights for genetic guidance and treatment in the Pakistani community.
Collapse
Affiliation(s)
- Asaf Syed
- Medicine and Surgery, Ayub Medical College, Abbottabad, PAK
| | - Anurag Rawat
- Interventional Cardiology, Himalayan Institute of Medical Sciences, Dehradun, IND
| | - Umer Bin Tariq
- Department of Medicine, Nawaz Sharif Medical College, University of Gujrat, Gujrat, PAK
| | - Ihteshamul Haq
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, PAK
| | - Beenish Naz
- Pharmacology and Therapeutics, Khyber Medical University, Peshawar, PAK
| | - Abrar Hussain
- Biological Sciences, International Islamic University, Islamabad, PAK
| | - Mehdi Maqsood
- Internal Medicine, Khyber Medical College, Peshawar, PAK
| | - Arsalan Rasheed
- Molecular Biology and Genetics, Abdul Wali Khan University Mardan, Mardan, PAK
| |
Collapse
|
6
|
Iazzi M, Sadeghi S, Gupta GD. A Proteomic Survey of the Cystic Fibrosis Transmembrane Conductance Regulator Surfaceome. Int J Mol Sci 2023; 24:11457. [PMID: 37511222 PMCID: PMC10380767 DOI: 10.3390/ijms241411457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this review article is to collate recent contributions of proteomic studies to cystic fibrosis transmembrane conductance regulator (CFTR) biology. We summarize advances from these studies and create an accessible resource for future CFTR proteomic efforts. We focus our attention on the CFTR interaction network at the cell surface, thus generating a CFTR 'surfaceome'. We review the main findings about CFTR interactions and highlight several functional categories amongst these that could lead to the discovery of potential biomarkers and drug targets for CF.
Collapse
Affiliation(s)
| | | | - Gagan D. Gupta
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
7
|
Schmidt H, Höpfer LM, Wohlgemuth L, Knapp CL, Mohamed AOK, Stukan L, Münnich F, Hüsken D, Koller AS, Stratmann AEP, Müller P, Braun CK, Fabricius D, Bode SFN, Huber-Lang M, Messerer DAC. Multimodal analysis of granulocytes, monocytes, and platelets in patients with cystic fibrosis before and after Elexacaftor-Tezacaftor-Ivacaftor treatment. Front Immunol 2023; 14:1180282. [PMID: 37457734 PMCID: PMC10347380 DOI: 10.3389/fimmu.2023.1180282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/15/2023] [Indexed: 07/18/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenetic disease caused by an impairment of the cystic fibrosis transmembrane conductance regulator (CFTR). CF affects multiple organs and is associated with acute and chronic inflammation. In 2020, Elexacaftor-Tezacaftor-Ivacaftor (ETI) was approved to enhance and restore the remaining CFTR functionality. This study investigates cellular innate immunity, with a focus on neutrophil activation and phenotype, comparing healthy volunteers with patients with CF before (T1, n = 13) and after six months (T2, n = 11) of ETI treatment. ETI treatment reduced sweat chloride (T1: 95 mmol/l (83|108) vs. T2: 32 mmol/l (25|62), p < 0.01, median, first|third quartile) and significantly improved pulmonal function (FEV1 T1: 2.66 l (1.92|3.04) vs. T2: 3.69 l (3.00|4.03), p < 0.01). Moreover, there was a significant decrease in the biomarker human epididymis protein 4 (T1: 6.2 ng/ml (4.6|6.3) vs. T2: 3.0 ng/ml (2.2|3.7), p < 0.01) and a small but significant decrease in matrix metallopeptidase 9 (T1: 45.5 ng/ml (32.5|140.1) vs. T2: 28.2 ng/ml (18.2|33.6), p < 0.05). Neutrophil phenotype (CD10, CD11b, CD62L, and CD66b) and function (radical oxygen species generation, chemotactic and phagocytic activity) remained largely unaffected by ETI treatment. Likewise, monocyte phenotype and markers of platelet activation were similar at T1 and T2. In summary, the present study confirmed a positive impact on patients with CF after ETI treatment. However, neither beneficial nor harmful effects of ETI treatment on cellular innate immunity could be detected, possibly due to the study population consisting of patients with well-controlled CF.
Collapse
Affiliation(s)
- Hanna Schmidt
- Department of Pediatric and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Larissa Melina Höpfer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Lisa Wohlgemuth
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Christiane Leonie Knapp
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | | | - Laura Stukan
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Frederik Münnich
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Dominik Hüsken
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | | | | | - Paul Müller
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Christian Karl Braun
- Department of Pediatric and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital Ulm, Ulm, Germany
| | - Dorit Fabricius
- Department of Pediatric and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | | | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - David Alexander Christian Messerer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
Stoner SN, Baty JJ, Novak L, Scoffield JA. Commensal colonization reduces Pseudomonas aeruginosa burden and subsequent airway damage. Front Cell Infect Microbiol 2023; 13:1144157. [PMID: 37305417 PMCID: PMC10248150 DOI: 10.3389/fcimb.2023.1144157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Pseudomonas aeruginosa dominates the complex polymicrobial cystic fibrosis (CF) airway and is a leading cause of death in persons with CF. Interestingly, oral streptococcal colonization has been associated with stable CF lung function. The most abundant streptococcal species found in stable patients, Streptococcus salivarius, has been shown to downregulate pro-inflammatory cytokines in multiple colonization models. However, no studies have demonstrated how S. salivarius potentially improves lung function. Our lab previously demonstrated that the P. aeruginosa exopolysaccharide Psl promotes S. salivarius biofilm formation in vitro, suggesting a possible mechanism by which S. salivarius is incorporated into the CF airway microbial community. In this study, we demonstrate that co-infection of rats leads to enhanced S. salivarius colonization and reduced P. aeruginosa colonization. Histological scores for tissue inflammation and damage are lower in dual-infected rats compared to P. aeruginosa infected rats. Additionally, pro-inflammatory cytokines IL-1β, IL-6, CXCL2, and TNF-α are downregulated during co-infection compared to P. aeruginosa single-infection. Lastly, RNA sequencing of cultures grown in synthetic CF sputum revealed that P. aeruginosa glucose metabolism genes are downregulated in the presence of S. salivarius, suggesting a potential alteration in P. aeruginosa fitness during co-culture. Overall, our data support a model in which S. salivarius colonization is promoted during co-infection with P. aeruginosa, whereas P. aeruginosa airway bacterial burden is reduced, leading to an attenuated host inflammatory response.
Collapse
Affiliation(s)
| | | | | | - Jessica A. Scoffield
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Abuzgaia AM, Elzagallaai AA, Mullowney T, Rieder MJ. Drug Hypersensitivity Reactions in Patients with Cystic Fibrosis: Potential Value of the Lymphocyte Toxicity Assay to Assess Risk. Mol Diagn Ther 2023; 27:395-403. [PMID: 36939981 DOI: 10.1007/s40291-023-00644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is a genetic disease characterized by multi-system dysfunction resulting in recurrent lung infections and progressive pulmonary disease. CF patients are at a higher risk for drug hypersensitivity reactions (DHRs) compared to the general population, which has been attributed to the recurrent need for antibiotics and the inflammation associated with CF disease. In vitro toxicity tests such as the lymphocyte toxicity assay (LTA) offer the potential for risk assessment for DHRs. In the current study, we investigated the utility of the LTA test for diagnosis of DHRs in a cohort of CF patients. METHOD Twenty CF patients with suspected DHRs to sulfamethoxazole, penicillins, cephalosporins, meropenem, vancomycin, rifampicin, and tobramycin were recruited to this study and tested using the LTA test along with 20 healthy control volunteers. Demographic data of the patients, including age, sex, and medical history, were obtained. Blood samples were withdrawn from patients and healthy volunteers, and the LTA test was performed on isolated peripheral blood monocytes (PBMCs) from those individuals. RESULTS Cells from CF patients with DHRs displayed a significant (p < 0.0001) concentration-dependent enhanced cell death upon incubation with the culprit drug compared to cells from healthy volunteers. The positivity rate of the LTA test was over 80% in patients with a medical history and clinical presentation consistent with DHRs. CONCLUSION This study is the first to evaluate the use of the LTA test for diagnosis of DHRs in CF patients. According to our results, the LTA test may be a useful tool for diagnosis and management of DHRs in CF patients. Identifying the culprit drug is essential for optimal healthcare for CF patients in the setting of a suspected DHR. The data also provide evidence that accumulation of toxic reactive metabolites could be an important component in the cascade of events leading to the development of DHRs in CF patients. A larger-scale study is needed to confirm the data.
Collapse
Affiliation(s)
- Awatif M Abuzgaia
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. North, London, ON, N6A 3M7, Canada
| | - Abdelbaset A Elzagallaai
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. North, London, ON, N6A 3M7, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Tara Mullowney
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. North, London, ON, N6A 3M7, Canada
| | - Michael J Rieder
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. North, London, ON, N6A 3M7, Canada.
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
10
|
Martin C, Dhôte T, Ladjemi MZ, Andrieu M, Many S, Karunanithy V, Pène F, Da Silva J, Burgel PR, Witko-Sarsat V. Specific circulating neutrophils subsets are present in clinically stable adults with cystic fibrosis and are further modulated by pulmonary exacerbations. Front Immunol 2022; 13:1012310. [PMID: 36248793 PMCID: PMC9560797 DOI: 10.3389/fimmu.2022.1012310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
The progressive lung destruction in cystic fibrosis (CF) is tightly associated with chronic bacterial infection and neutrophil-dominated airway inflammation. CF pulmonary disease is complicated by episodes of acute exacerbations, contributing to irreversible lung damage. We hypothesized that circulating subsets of neutrophils from clinically stable adults with CF present some phenotypic specificities that could amplify their activation during an infectious episode. The aim of the present study was to examine the different neutrophil subsets in whole blood and in the low density neutrophils (LDN) that co-purify with peripheral blood mononuclear cells (PBMC) in clinically stable adults with CF and in CF adults during pulmonary exacerbations compared to healthy donors. Blood samples were obtained from 22 adults with CF (16 in stable state and 6 during pulmonary exacerbations) and from 20 healthy donors. Flow cytometry analysis of 13 different markers related to lineage (CD45, CD15), maturity (CD16, CD10, and CD33), activation (CD62L, CD11b, CD66b, and CD114), metabolism (GLUT-1, LOX1) and immunosuppression (PD1, PD-L1) was carried out within whole blood and within the LDN fraction. Unsupervised analysis of flow cytometry data was performed using visual t-distributed stochastic neighbor embedding (vi-tSNE). A significant increase in the CD11b expression in neutrophils from CF patients during exacerbations was observed compared to neutrophils from stable CF patients or to healthy donors, indicative of a circulating activation state due to an infectious status. The percentage of LDN was not increased in stable CF patients but increased during exacerbations. Analysis of neutrophil subsets using the double CD16/CD62L labeling revealed a significant increase in the CD16high/CD62Llow subset in all CF patients compared to healthy donors. In contrast, an increase in the CD16low/CD62Lhigh subset was observed only in CF patients during exacerbations. Unsupervised analysis identified a PD-L1high/CD114high population that was present in stable CF patients and as well as in CF patients during exacerbations.
Collapse
Affiliation(s)
- Clémence Martin
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
- Service de Pneumologie & Centre de Référence Maladies Rares Mucoviscidose, site coordonnateur, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris-Centre & Université de Paris-Cité, Paris, France
| | - Théo Dhôte
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
- Service de Pneumologie & Centre de Référence Maladies Rares Mucoviscidose, site coordonnateur, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris-Centre & Université de Paris-Cité, Paris, France
| | - Maha Zohra Ladjemi
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
- Service de Médecine intensive & Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris-Centre & Université de Paris-Cité, Paris, France
| | - Muriel Andrieu
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
| | - Souganya Many
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
| | - Vaarany Karunanithy
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
| | - Frédéric Pène
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
- Service de Médecine intensive & Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris-Centre & Université de Paris-Cité, Paris, France
| | - Jennifer Da Silva
- Service de Pneumologie & Centre de Référence Maladies Rares Mucoviscidose, site coordonnateur, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris-Centre & Université de Paris-Cité, Paris, France
| | - Pierre-Régis Burgel
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
- Service de Pneumologie & Centre de Référence Maladies Rares Mucoviscidose, site coordonnateur, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris-Centre & Université de Paris-Cité, Paris, France
| | - Véronique Witko-Sarsat
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris-Cité, Paris, France
- *Correspondence: Véronique Witko-Sarsat,
| |
Collapse
|
11
|
Müller I, Alt P, Rajan S, Schaller L, Geiger F, Dietrich A. Transient Receptor Potential (TRP) Channels in Airway Toxicity and Disease: An Update. Cells 2022; 11:2907. [PMID: 36139480 PMCID: PMC9497104 DOI: 10.3390/cells11182907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Our respiratory system is exposed to toxicants and pathogens from both sides: the airways and the vasculature. While tracheal, bronchial and alveolar epithelial cells form a natural barrier in the airways, endothelial cells protect the lung from perfused toxic compounds, particulate matter and invading microorganism in the vascular system. Damages induce inflammation by our immune response and wound healing by (myo)fibroblast proliferation. Members of the transient receptor potential (TRP) superfamily of ion channel are expressed in many cells of the respiratory tract and serve multiple functions in physiology and pathophysiology. TRP expression patterns in non-neuronal cells with a focus on TRPA1, TRPC6, TRPM2, TRPM5, TRPM7, TRPV2, TRPV4 and TRPV6 channels are presented, and their roles in barrier function, immune regulation and phagocytosis are summarized. Moreover, TRP channels as future pharmacological targets in chronic obstructive pulmonary disease (COPD), asthma, cystic and pulmonary fibrosis as well as lung edema are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Nussbaumstr. 26, 80336 Munich, Germany
| |
Collapse
|
12
|
Kelk D, Logan J, Andersen I, Gutierrez Cardenas D, Bell SC, Wainwright CE, Sly PD, Fantino E. Neutrophil respiratory burst activity is not exaggerated in cystic fibrosis. J Cyst Fibros 2022; 21:707-712. [PMID: 34991978 DOI: 10.1016/j.jcf.2021.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/28/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Exaggerated neutrophil-dominated inflammation underlies progressive cystic fibrosis (CF) lung disease. Older studies reported a defective respiratory burst in CF, but more recent studies suggest neutrophil function is normal. METHODS We measured the amount and rate of reactive oxygen species (ROS) during PMA-stimulated respiratory burst activity in children [70 CF, 13 disease controls, 19 health controls] and adults [31 CF, 14 health controls] in neutrophils harvested from peripheral blood. Blood was collected from participants with CF when clinically stable (60 children, 9 adults) and on hospital admission (38 children, 24 adults) and discharge (18 children, 21 adults) for acute pulmonary exacerbations. RESULTS When clinically stable, children with CF had lower ROS production [median 318,633, 25% 136,810 - 75% 569,523 RLU] than disease controls [median 599,459, 25% 425,566 - 75% 730,527 RLU] and healthy controls [median 534,073, 25% 334,057 - 75% 738,593 RLU] (p = 0.008). The rate of ROS production was also lower (p = 0.029). In neither children nor adults with CF did ROS production increase on hospital admission for acute pulmonary exacerbation, nor fall prior to discharge. There were no associations between ROS production and high-sensitivity C-reactive protein (indicating systemic inflammation) in either children or adults with CF. CONCLUSIONS Our data do not support a role for exaggerated respiratory burst activity contributing to the exaggerated neutrophil-dominated inflammation seen with CF lung disease.
Collapse
Affiliation(s)
- Dean Kelk
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia
| | - Jayden Logan
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia; Child and Reproductive Health Research Group, Queensland University of Technology, South Brisbane, Qld Australia
| | - Isabella Andersen
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia
| | - Diana Gutierrez Cardenas
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia
| | - Scott C Bell
- Translational Research Institute, Brisbane, Qld, Australia; Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane
| | - Claire E Wainwright
- Department of Respiratory and Sleep Medicine, Children's Health Queensland, South Brisbane, Qld Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia; Department of Respiratory and Sleep Medicine, Children's Health Queensland, South Brisbane, Qld Australia.
| | - Emmanuelle Fantino
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld Australia
| |
Collapse
|
13
|
Hawkins P, McEnery T, Gabillard-Lefort C, Bergin DA, Alfawaz B, Shutchaidat V, Meleady P, Henry M, Coleman O, Murphy M, McElvaney NG, Reeves EP. In vitro and in vivo modulation of NADPH oxidase activity and reactive oxygen species production in human neutrophils by α 1-antitrypsin. ERJ Open Res 2021; 7:00234-2021. [PMID: 34881324 PMCID: PMC8645872 DOI: 10.1183/23120541.00234-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress from innate immune cells is a driving mechanism that underlies COPD pathogenesis. Individuals with α-1 antitrypsin (AAT) deficiency (AATD) have a dramatically increased risk of developing COPD. To understand this further, the aim of this study was to investigate whether AATD presents with altered neutrophil NADPH oxidase activation, due to the specific lack of plasma AAT. Experiments were performed using circulating neutrophils isolated from healthy controls and individuals with AATD. Superoxide anion (O2−) production was determined from the rate of reduction of cytochrome c. Quantification of membrane NADPH oxidase subunits was performed by mass spectrometry and Western blot analysis. The clinical significance of our in vitro findings was assessed in patients with AATD and severe COPD receiving intravenous AAT replacement therapy. In vitro, AAT significantly inhibited O2− production by stimulated neutrophils and suppressed receptor stimulation of cyclic adenosine monophosphate and extracellular signal-regulated kinase (ERK)1/2 phosphorylation. In addition, AAT reduced plasma membrane translocation of cytosolic phox components of the NADPH oxidase. Ex vivo, AATD neutrophils demonstrated increased plasma membrane-associated p67phox and p47phox and significantly increased O2− production. The described variance in phox protein membrane assembly was resolved post-AAT augmentation therapy in vivo, the effects of which significantly reduced AATD neutrophil O2− production to that of healthy control cells. These results expand our knowledge on the mechanism of neutrophil-driven airways disease associated with AATD. Therapeutic AAT augmentation modified neutrophil NADPH oxidase assembly and reactive oxygen species production, with implications for clinical use in conditions in which oxidative stress plays a pathogenic role. Circulating neutrophils in COPD due to α1-antitrypsin deficiency illustrate increased NADPH oxidase assembly and reactive oxygen species production, a defect corrected by α1-antitrypsin augmentation therapyhttps://bit.ly/38NNTzM
Collapse
Affiliation(s)
- Padraig Hawkins
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Thomas McEnery
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Claudie Gabillard-Lefort
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - David A Bergin
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Bader Alfawaz
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Vipatsorn Shutchaidat
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Paula Meleady
- National Institute for Cellular Biology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Michael Henry
- National Institute for Cellular Biology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Orla Coleman
- National Institute for Cellular Biology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Mark Murphy
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,These authors contributed equally
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,These authors contributed equally
| |
Collapse
|
14
|
Averna M, Melotti P, Sorio C. Revisiting the Role of Leukocytes in Cystic Fibrosis. Cells 2021; 10:cells10123380. [PMID: 34943888 PMCID: PMC8699441 DOI: 10.3390/cells10123380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Cystic fibrosis in characterized by pulmonary bacterial colonization and hyperinflammation. Lymphocytes, monocytes/macrophages, neutrophils, and dendritic cells of patients with CF express functional CFTR and are directly affected by altered CFTR expression/function, impairing their ability to resolve infections and inflammation. However, the mechanism behind and the contribution of leukocytes in the pathogenesis of CF are still poorly characterized. The recent clinical introduction of specific CFTR modulators added an important tool not only for the clinical management of the disease but also to the investigation of the pathophysiological mechanisms related to CFTR dysfunction and dysregulated immunity. These drugs treat the basic defect in cystic fibrosis (CF) by increasing CFTR function with improvement of lung function and quality of life, and may improve clinical outcomes also by correcting the dysregulated immune function that characterizes CF. Measure of CFTR function, protein expression profiling and several omics methods were used to identify molecular changes in freshly isolated leukocytes of CF patients, highlighting two roles of leukocytes in CF: one more generally related to the mechanism(s) causing immune dysregulation in CF and unresolved inflammation, and another more applicative role, which identifies in myeloid cells, an important tool predictive of the therapeutic response of CF patients. In this review we will summarize available data on CFTR expression and function in leukocyte populations and will discuss potential clinical applications based on available data.
Collapse
Affiliation(s)
- Monica Averna
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
| | - Paola Melotti
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy;
| | - Claudio Sorio
- Department of Medicine, General Pathology Division, University of Verona, 37134 Verona, Italy
- Correspondence: ; Tel.: +39-045-802-7688
| |
Collapse
|
15
|
Bertelsen A, Elborn JS, Schock BC. Microbial interaction: Prevotella spp. reduce P. aeruginosa induced inflammation in cystic fibrosis bronchial epithelial cells. J Cyst Fibros 2021; 20:682-691. [PMID: 34112603 DOI: 10.1016/j.jcf.2021.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND In Cystic Fibrosis (CF) airways, the dehydrated, thick mucus promotes the establishment of persistent polymicrobial infections and drives chronic airways inflammation. This also predisposes the airways to further infections, the vicious, self-perpetuating cycle causing lung damage and progressive lung function decline. The airways are a poly-microbial environment, containing both aerobic and anaerobic bacterial species. Pseudomonas aeruginosa (P. aeruginosa) infections contribute to the excessive inflammatory response in CF, but the role of anaerobic Prevotella spp., frequently found in CF airways, is not known. MATERIALS We assessed innate immune signalling in CF airway epithelial cells in response to clinical strains of P. histicola, P. nigresens and P. aeruginosa. CFBE41o- cells were infected with P. aeruginosa (MOI 100, 2h) followed by infection with P. histicola or P. nigrescens (MOI 100, 2h). Cells were incubated under anaerobic conditions for the duration of the experiments. RESULTS Our study shows that P. histicola and P. nigresens can reduce the growth of P. aeruginosa and dampen the inflammatory response in airway epithelial cells. We specifically illustrate that the presence of the investigated Prevotella spp. reduces Toll-like-receptor (TLR)-4, MAPK, NF-κB(p65) signalling and cytokine release (Interleukin (IL)-6, IL-8) in mixed infections. CONCLUSION Our work, for the first time, strongly indicates a relationship between P. aeruginosa and anaerobic Prevotella spp.. The observed modified NF-κB and MAPK signalling indicates some mechanisms underlying this interaction that could offer a novel therapeutic approach to combat chronic P. aeruginosa infection in people with CF.
Collapse
Affiliation(s)
- Anne Bertelsen
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Lisburn Road, Belfast, UK; Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, UK
| | - J Stuart Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Lisburn Road, Belfast, UK; Imperial College London, London, UK
| | - Bettina C Schock
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Lisburn Road, Belfast, UK.
| |
Collapse
|
16
|
Lopes-Pacheco M, Pedemonte N, Veit G. Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert Opin Drug Discov 2021; 16:897-913. [PMID: 33823716 DOI: 10.1080/17460441.2021.1912732] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-threatening inherited disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel expressed at the apical membrane of secretory epithelia. CF leads to multiorgan dysfunction with progressive deterioration of lung function being the major cause of untimely death. Conventional CF therapies target only symptoms and consequences downstream of the primary genetic defect and the current life expectancy and quality of life of these individuals are still very limited. AREA COVERED CFTR modulator drugs are novel-specialized therapies that enhance or even restore functional expression of CFTR mutants and have been approved for clinical use for individuals with specific CF genotypes. This review summarizes classical approaches used for the pre-clinical development of CFTR correctors and potentiators as well as emerging strategies aiming to accelerate modulator development and expand theratyping efforts. EXPERT OPINION Highly effective CFTR modulator drugs are expected to deeply modify the disease course for the majority of individuals with CF. A multitude of experimental approaches have been established to accelerate the development of novel modulators. CF patient-derived specimens are valuable cell models to predict therapeutic effectiveness of existing (and novel) modulators in a precision medicine approach.
Collapse
Affiliation(s)
| | | | - Guido Veit
- Department of Physiology, McGill University, Montréal, Canada
| |
Collapse
|
17
|
Vij N. Prognosis-Based Early Intervention Strategies to Resolve Exacerbation and Progressive Lung Function Decline in Cystic Fibrosis. J Pers Med 2021; 11:jpm11020096. [PMID: 33546140 PMCID: PMC7913194 DOI: 10.3390/jpm11020096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by a mutation(s) in the CF transmembrane regulator (CFTR), where progressive decline in lung function due to recurring exacerbations is a major cause of mortality. The initiation of chronic obstructive lung disease in CF involves inflammation and exacerbations, leading to mucus obstruction and lung function decline. Even though clinical management of CF lung disease has prolonged survival, exacerbation and age-related lung function decline remain a challenge for controlling the progressive lung disease. The key to the resolution of progressive lung disease is prognosis-based early therapeutic intervention; thus, the development of novel diagnostics and prognostic biomarkers for predicting exacerbation and lung function decline will allow optimal management of the lung disease. Hence, the development of real-time lung function diagnostics such as forced oscillation technique (FOT), impulse oscillometry system (IOS), and electrical impedance tomography (EIT), and novel prognosis-based intervention strategies for controlling the progression of chronic obstructive lung disease will fulfill a significant unmet need for CF patients. Early detection of CF lung inflammation and exacerbations with the timely resolution will not only prolong survival and reduce mortality but also improve quality of life while reducing significant health care costs due to recurring hospitalizations.
Collapse
Affiliation(s)
- Neeraj Vij
- Precision Theranostics Inc., Baltimore, MD 21202, USA; or or ; Tel.: +1-240-623-0757
- VIJ Biotech, Baltimore, MD 21202, USA
- Department of Pediatrics & Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
18
|
Renwick J, Reece E, Walsh J, Walsh R, Persaud T, O'Leary C, Donnelly SC, Greally P. Early Interleukin-22 and Neutrophil Proteins Are Correlated to Future Lung Damage in Children With Cystic Fibrosis. Front Pediatr 2021; 9:640184. [PMID: 33869115 PMCID: PMC8044422 DOI: 10.3389/fped.2021.640184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cystic Fibrosis (CF) lung damage begins early in life. Lung function decline is associated with pulmonary infections, neutrophil infiltration and inflammation. In CF, neutrophils have an altered phenotype. In this pilot study, we aimed to determine if signals of dysfunctional neutrophil responses were evident early in life and whether these signals may be associated with lung damage in later childhood. We examined the pulmonary protein profiles of 14 clinical stable infants and pre-school children with CF employing the aptamer-based affinity platform, SOMAscan®. High resolution computed tomography (HRCT) was performed on all children after age 6 years and Brody score calculated. A Spearman's rank order correlation analysis and Benjamini-Hochberg adjustment was used to correlate protein concentrations in early life to Brody scores in later childhood. Early life concentrations of azurocidin and myeloperoxidase, were positively correlated with Brody score after age 6 (p = 0.0041 and p = 0.0182, respectively). Four other neutrophil associated proteins; Complement C3 (p = 0.0026), X-ray repair CCP 6 (p = 0.0059), C3a anaphylatoxin des Arginine (p = 0.0129) and cytokine receptor common subunit gamma (p = 0.0214) were all negatively correlated with Brody scores. Interestingly, patients with more severe lung damage after age 6 had significantly lower levels of IL-22 in early years of life (p = 0.0243). IL-22 has scarcely been reported to have implications in CF. Identification of early biomarkers that may predict more severe disease progression is particularly important for the future development of early therapeutic interventions in CF disease. We recommend further corroboration of these findings in prospective validation studies.
Collapse
Affiliation(s)
- Julie Renwick
- Clinical Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Emma Reece
- Clinical Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Jamie Walsh
- Children's Health Ireland and Tallaght University Hospital, Dublin, Ireland
| | - Ross Walsh
- Children's Health Ireland and Tallaght University Hospital, Dublin, Ireland
| | - Thara Persaud
- Children's Health Ireland and Tallaght University Hospital, Dublin, Ireland
| | - Cathal O'Leary
- Children's Health Ireland and Tallaght University Hospital, Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital and Trinity College Dublin, Dublin, Ireland
| | - Peter Greally
- Children's Health Ireland and Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
19
|
Brinkert K, Hedtfeld S, Burhop A, Gastmeier R, Gad P, Wedekind D, Kloth C, Rothschuh J, Lachmann N, Hetzel M, Jirmo AC, Lopez-Rodriguez E, Brandenberger C, Hansen G, Schambach A, Ackermann M, Tümmler B, Munder A. Rescue from Pseudomonas aeruginosa Airway Infection via Stem Cell Transplantation. Mol Ther 2020; 29:1324-1334. [PMID: 33279724 DOI: 10.1016/j.ymthe.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/21/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to impaired ion transport in epithelial cells. Although lung failure due to chronic infection is the major comorbidity in individuals with cystic fibrosis, the role of CFTR in non-epithelial cells has not been definitively resolved. Given the important role of host defense cells, we evaluated the Cftr deficiency in pulmonary immune cells by hematopoietic stem cell transplantation in cystic fibrosis mice. We transplanted healthy bone marrow stem cells and could reveal a stable chimerism of wild-type cells in peripheral blood. The outcome of stem cell transplantation and the impact of healthy immune cells were evaluated in acute Pseudomonas aeruginosa airway infection. In this study, mice transplanted with wild-type cells displayed better survival, lower lung bacterial numbers, and a milder disease course. This improved physiology of infected mice correlated with successful intrapulmonary engraftment of graft-derived alveolar macrophages, as seen by immunofluorescence microscopy and flow cytometry of graft-specific leucocyte surface marker CD45 and macrophage marker CD68. Given the beneficial effect of hematopoietic stem cell transplantation and stable engraftment of monocyte-derived CD68-positive macrophages, we conclude that replacement of mutant Cftr macrophages attenuates airway infection in cystic fibrosis mice.
Collapse
Affiliation(s)
- Kerstin Brinkert
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Silke Hedtfeld
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Annina Burhop
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Rena Gastmeier
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Pauline Gad
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Wedekind
- Institute of Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Christina Kloth
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Justin Rothschuh
- Institute of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational and Regenerative Medicine, 30625 Hannover, Germany
| | - Miriam Hetzel
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational and Regenerative Medicine, 30625 Hannover, Germany
| | - Adan Chari Jirmo
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany; Institute of Functional Anatomy, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Christina Brandenberger
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany; Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
| | - Gesine Hansen
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational and Regenerative Medicine, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH Research Center for Translational and Regenerative Medicine, 30625 Hannover, Germany
| | - Burkhard Tümmler
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Antje Munder
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| |
Collapse
|
20
|
Nilsson R, Liu NA. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part II: Relation between ROS-induced DNA damages and human cancer. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
21
|
Li X, Xie M, Lu C, Mao J, Cao Y, Yang Y, Wei Y, Liu X, Cao S, Song Y, Peng J, Zhou Y, Jiang Q, Lin G, Qin S, Qi M, Hou M, Liu X, Zhou H, Yang G, Yang C. Design and synthesis of Leukotriene A4 hydrolase inhibitors to alleviate idiopathic pulmonary fibrosis and acute lung injury. Eur J Med Chem 2020; 203:112614. [PMID: 32679453 DOI: 10.1016/j.ejmech.2020.112614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 12/19/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) and acute lung injury (ALI) are considered two severe public health issues, attributed to malfunctions of neutrophils. They can cause chronic inflammation and have association with subsequent tissue damages. There have been rare drugs applying to the efficient treatment in clinical practice. Existing research revealed that Leukotriene B4 (LTB4) is the critical endogenous molecule to induce neutrophil inflammatory response. LTB4 blocking biosynthesis is the potential strategy treating IPF and ALI. In the present study, 45 hydroxamic acid derivatives were produced, and compound 26 was screened out as a highly selective Lead compound of Leukotriene A4 Hydrolase (LTA4H), i.e., an enzyme critical to the biosynthesis of LTB4. This compound is capable of relieving neutrophilic inflammation in an IPF mouse model at early stage, as well as mitigating LPS-induced acute lung injury via a mechanism of LTB4 blocking biosynthesis in vivo. Whether this compound acts as the potential lead compound for the treatment of IPF and ALI requires further verification.
Collapse
Affiliation(s)
- Xiaohe Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Maodun Xie
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Cheng Lu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China; Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jiahe Mao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yuting Cao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yuyu Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yujiao Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Xinhua Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Sheng Cao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yang Song
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Junya Peng
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yunyun Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Qiuyan Jiang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Gang Lin
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Shuanglin Qin
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Min Qi
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Min Hou
- School of Public Health, College of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Xiang Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China.
| | - Honggang Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China.
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China.
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China.
| |
Collapse
|
22
|
Pehote G, Vij N. Autophagy Augmentation to Alleviate Immune Response Dysfunction, and Resolve Respiratory and COVID-19 Exacerbations. Cells 2020; 9:cells9091952. [PMID: 32847034 PMCID: PMC7565665 DOI: 10.3390/cells9091952] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
The preservation of cellular homeostasis requires the synthesis of new proteins (proteostasis) and organelles, and the effective removal of misfolded or impaired proteins and cellular debris. This cellular homeostasis involves two key proteostasis mechanisms, the ubiquitin proteasome system and the autophagy–lysosome pathway. These catabolic pathways have been known to be involved in respiratory exacerbations and the pathogenesis of various lung diseases, such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and coronavirus disease-2019 (COVID-19). Briefly, proteostasis and autophagy processes are known to decline over time with age, cigarette or biomass smoke exposure, and/or influenced by underlying genetic factors, resulting in the accumulation of misfolded proteins and cellular debris, elevating apoptosis and cellular senescence, and initiating the pathogenesis of acute or chronic lung disease. Moreover, autophagic dysfunction results in an impaired microbial clearance, post-bacterial and/or viral infection(s) which contribute to the initiation of acute and recurrent respiratory exacerbations as well as the progression of chronic obstructive and restrictive lung diseases. In addition, the autophagic dysfunction-mediated cystic fibrosis transmembrane conductance regulator (CFTR) immune response impairment further exacerbates the lung disease. Recent studies demonstrate the therapeutic potential of novel autophagy augmentation strategies, in alleviating the pathogenesis of chronic obstructive or restrictive lung diseases and exacerbations such as those commonly seen in COPD, CF, ALI/ARDS and COVID-19.
Collapse
Affiliation(s)
- Garrett Pehote
- Michigan State University College of Osteopathic Medicine, East Lansing, MI 48823, USA;
| | - Neeraj Vij
- Department of Pediatrics and Pulmonary Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- PRECISION THERANOSTICS INC, Baltimore, MD 21202, USA
- VIJ BIOTECH, Baltimore, MD 21202, USA
- Correspondence: or ; Tel.: +1-240-623-0757
| |
Collapse
|
23
|
Cabrini G, Rimessi A, Borgatti M, Lampronti I, Finotti A, Pinton P, Gambari R. Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Front Immunol 2020; 11:1438. [PMID: 32849500 PMCID: PMC7427443 DOI: 10.3389/fimmu.2020.01438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cystic fibrosis (CF) chronic respiratory disease is an extensive neutrophil infiltrate in the mucosa filling the bronchial lumen, starting early in life for CF infants. The genetic defect of the CF Transmembrane conductance Regulator (CFTR) ion channel promotes dehydration of the airway surface liquid, alters mucus properties, and decreases mucociliary clearance, favoring the onset of recurrent and, ultimately, chronic bacterial infection. Neutrophil infiltrates are unable to clear bacterial infection and, as an adverse effect, contribute to mucosal tissue damage by releasing proteases and reactive oxygen species. Moreover, the rapid cellular turnover of lumenal neutrophils releases nucleic acids that further alter the mucus viscosity. A prominent role in the recruitment of neutrophil in bronchial mucosa is played by CF bronchial epithelial cells carrying the defective CFTR protein and are exposed to whole bacteria and bacterial products, making pharmacological approaches to regulate the exaggerated neutrophil chemotaxis in CF a relevant therapeutic target. Here we revise: (a) the major receptors, kinases, and transcription factors leading to the expression, and release of neutrophil chemokines in bronchial epithelial cells; (b) the role of intracellular calcium homeostasis and, in particular, the calcium crosstalk between endoplasmic reticulum and mitochondria; (c) the epigenetic regulation of the key chemokines; (d) the role of mutant CFTR protein as a co-regulator of chemokines together with the host-pathogen interactions; and (e) different pharmacological strategies to regulate the expression of chemokines in CF bronchial epithelial cells through novel drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Giulio Cabrini
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Alessandro Rimessi
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
24
|
Bréa D, Soler L, Fleurot I, Melo S, Chevaleyre C, Berri M, Labas V, Teixeira-Gomes AP, Pujo J, Cenac N, Bähr A, Klymiuk N, Guillon A, Si-Tahar M, Caballero I. Intrinsic alterations in peripheral neutrophils from cystic fibrosis newborn piglets. J Cyst Fibros 2020; 19:830-836. [PMID: 32165155 DOI: 10.1016/j.jcf.2020.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND The hallmark of the cystic fibrosis (CF) lung disease is a neutrophil dominated lung environment that is associated to chronic lung tissue destruction and ultimately the patient's death. It is unclear whether the exacerbated neutrophil response is primary related to a defective CFTR or rather secondary to chronic bacterial colonization and inflammation. Here, we hypothesized that CF peripheral blood neutrophils present intrinsic alteration at birth before the start of an inflammatory process. METHODS Peripheral blood neutrophils were isolated from newborn CFTR+/+ and CFTR-/- piglets. Neutrophils immunophenotype was evaluated by flow cytometry. Lipidomic and proteomic profile were characterized by liquid chromatography/tandem mass spectrometry (LC-MS/MS), intact cell matrix-assisted laser desorption/ionization mass spectrometry (ICM-MS) followed by top-down high-resolution mass spectrometry (HRMS), respectively. The ability of CF neutrophils to kill pseudomonas aeruginosa was also evaluated. RESULTS Polyunsaturated fatty acid metabolites analysis did not show any difference between CFTR+/+ and CFTR-/- neutrophils. On the other hand, a predictive mathematical model based on the ICM-MS proteomic profile was able to discriminate between both genotypes. Top-down proteomic analysis identified 19 m/z differentially abundant masses that corresponded mainly to proteins related to the antimicrobial response and the generation of reactive oxygen species (ROS). However, no alteration in the ability of CFTR-/- neutrophils to kill pseudomonas aeruginosa in vitro was observed. CONCLUSIONS ICM-MS demonstrated that CFTR-/- neutrophils present intrinsic alterations already at birth, before the presence of any infection or inflammation.
Collapse
Affiliation(s)
- Déborah Bréa
- INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours cedex, France; Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Laura Soler
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Isabelle Fleurot
- ISP, INRA, Université de Tours, UMR 1282, 37380, Nouzilly, France
| | - Sandrine Melo
- ISP, INRA, Université de Tours, UMR 1282, 37380, Nouzilly, France
| | | | - Mustapha Berri
- ISP, INRA, Université de Tours, UMR 1282, 37380, Nouzilly, France
| | - Valérie Labas
- INRA UMR85-CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; INRA, Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- ISP, INRA, Université de Tours, UMR 1282, 37380, Nouzilly, France; INRA, Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), Nouzilly, France
| | - Julien Pujo
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Nicolas Cenac
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Andrea Bähr
- Gene Center and Center for Innovative Medical Models (CiMM), LMU Munich, Germany
| | - Nikolai Klymiuk
- Gene Center and Center for Innovative Medical Models (CiMM), LMU Munich, Germany
| | - Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours cedex, France; Université de Tours, Faculté de Médecine de Tours, Tours, France; CHRU Tours, service de médecine intensive réanimation, Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, Tours cedex, France; Université de Tours, Faculté de Médecine de Tours, Tours, France
| | | |
Collapse
|
25
|
Lights and Shadows in the Use of Mesenchymal Stem Cells in Lung Inflammation, a Poorly Investigated Topic in Cystic Fibrosis. Cells 2019; 9:cells9010020. [PMID: 31861724 PMCID: PMC7016730 DOI: 10.3390/cells9010020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic stem cells residing in many tissues, including the lung. MSCs have long been regarded as a promising tool for cell-based therapy because of their ability to replace damaged tissue by differentiating into the resident cell and repopulating the injured area. Their ability to release soluble factors and extracellular vesicles has emerged as crucial in the resolution of inflammation and injury. There is a growing literature on the use of MSCs and MSC secretome to hamper inflammation in different lung pathologies, including: asthma, pneumonia, acute lung injury (ALI), pulmonary hypertension, and chronic obstructive pulmonary disease (COPD). However, their potential therapeutic role in the context of Cystic Fibrosis (CF) lung inflammation is still not fully characterized. CF morbidity and mortality are mainly due to progressive lung dysfunction. Lung inflammation is a chronic and unresolved condition that triggers progressive tissue damage. Thus, it becomes even more important to develop innovative immunomodulatory therapies aside from classic anti-inflammatory agents. Here, we address the main features of CF and the implications in lung inflammation. We then review how MSCs and MSC secretome participate in attenuating inflammation in pulmonary pathologies, emphasizing the significant potential of MSCs as new therapeutic approach in CF.
Collapse
|
26
|
Ramsey BW, Downey GP, Goss CH. Update in Cystic Fibrosis 2018. Am J Respir Crit Care Med 2019; 199:1188-1194. [PMID: 30917288 PMCID: PMC6519861 DOI: 10.1164/rccm.201902-0310up] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023] Open
Affiliation(s)
- Bonnie W. Ramsey
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
- Center for Clinical and Translational Research and
- Division of Pediatric Pulmonology, Department of Pediatrics, and
| | - Gregory P. Downey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Department of Pediatrics, and
- Department of Biomedical Research, National Jewish Health, Denver, Colorado; and
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
- Department of Microbiology and Immunology, University of Colorado, Aurora, Colorado
| | - Christopher H. Goss
- Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington
- Division of Pediatric Pulmonology, Department of Pediatrics, and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
27
|
Khan MA, Ali ZS, Sweezey N, Grasemann H, Palaniyar N. Progression of Cystic Fibrosis Lung Disease from Childhood to Adulthood: Neutrophils, Neutrophil Extracellular Trap (NET) Formation, and NET Degradation. Genes (Basel) 2019; 10:genes10030183. [PMID: 30813645 PMCID: PMC6471578 DOI: 10.3390/genes10030183] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic defects in cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene cause CF. Infants with CFTR mutations show a peribronchial neutrophil infiltration prior to the establishment of infection in their lung. The inflammatory response progressively increases in children that include both upper and lower airways. Infectious and inflammatory response leads to an increase in mucus viscosity and mucus plugging of small and medium-size bronchioles. Eventually, neutrophils chronically infiltrate the airways with biofilm or chronic bacterial infection. Perpetual infection and airway inflammation destroy the lungs, which leads to increased morbidity and eventual mortality in most of the patients with CF. Studies have now established that neutrophil cytotoxins, extracellular DNA, and neutrophil extracellular traps (NETs) are associated with increased mucus clogging and lung injury in CF. In addition to opportunistic pathogens, various aspects of the CF airway milieux (e.g., airway pH, salt concentration, and neutrophil phenotypes) influence the NETotic capacity of neutrophils. CF airway milieu may promote the survival of neutrophils and eventual pro-inflammatory aberrant NETosis, rather than the anti-inflammatory apoptotic death in these cells. Degrading NETs helps to manage CF airway disease; since DNAse treatment release cytotoxins from the NETs, further improvements are needed to degrade NETs with maximal positive effects. Neutrophil-T cell interactions may be important in regulating viral infection-mediated pulmonary exacerbations in patients with bacterial infections. Therefore, clarifying the role of neutrophils and NETs in CF lung disease and identifying therapies that preserve the positive effects of neutrophils, while reducing the detrimental effects of NETs and cytotoxic components, are essential in achieving innovative therapeutic advances.
Collapse
Affiliation(s)
- Meraj A Khan
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Zubair Sabz Ali
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Neil Sweezey
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Hartmut Grasemann
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
28
|
Modulators of Transient Receptor Potential (TRP) Channels as Therapeutic Options in Lung Disease. Pharmaceuticals (Basel) 2019; 12:ph12010023. [PMID: 30717260 PMCID: PMC6469169 DOI: 10.3390/ph12010023] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
The lungs are essential for gas exchange and serve as the gateways of our body to the external environment. They are easily accessible for drugs from both sides, the airways and the vasculature. Recent literature provides evidence for a role of Transient Receptor Potential (TRP) channels as chemosensors and essential members of signal transduction cascades in stress-induced cellular responses. This review will focus on TRP channels (TRPA1, TRPC6, TRPV1, and TRPV4), predominantly expressed in non-neuronal lung tissues and their involvement in pathways associated with diseases like asthma, cystic fibrosis, chronic obstructive pulmonary disease (COPD), lung fibrosis, and edema formation. Recently identified specific modulators of these channels and their potential as new therapeutic options as well as strategies for a causal treatment based on the mechanistic understanding of molecular events will also be evaluated.
Collapse
|
29
|
Coriati A, Massé C, Ménard A, Bouvet GF, Berthiaume Y. Neutrophils as a Potential Source of Chitinase-3-like Protein 1 in Cystic Fibrosis. Inflammation 2018; 41:1631-1639. [DOI: 10.1007/s10753-018-0806-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
White MM, Geraghty P, Hayes E, Cox S, Leitch W, Alfawaz B, Lavelle GM, McElvaney OJ, Flannery R, Keenan J, Meleady P, Henry M, Clynes M, Gunaratnam C, McElvaney NG, Reeves EP. Neutrophil Membrane Cholesterol Content is a Key Factor in Cystic Fibrosis Lung Disease. EBioMedicine 2017; 23:173-184. [PMID: 28835336 PMCID: PMC5605378 DOI: 10.1016/j.ebiom.2017.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 01/13/2023] Open
Abstract
Background Identification of mechanisms promoting neutrophil trafficking to the lungs of patients with cystic fibrosis (CF) is a challenge for next generation therapeutics. Cholesterol, a structural component of neutrophil plasma membranes influences cell adhesion, a key step in transmigration. The effect of chronic inflammation on neutrophil membrane cholesterol content in patients with CF (PWCF) remains unclear. To address this we examined neutrophils of PWCF to evaluate the cause and consequence of altered membrane cholesterol and identified the effects of lung transplantation and ion channel potentiator therapy on the cellular mechanisms responsible for perturbed membrane cholesterol and increased cell adhesion. Methodology PWCF homozygous for the ΔF508 mutation or heterozygous for the G551D mutation were recruited (n = 48). Membrane protein expression was investigated by mass spectrometry. The effect of lung transplantation or ivacaftor therapy was assessed by ELISAs, and calcium fluorometric and μ-calpain assays. Findings Membranes of CF neutrophils contain less cholesterol, yet increased integrin CD11b expression, and respond to inflammatory induced endoplasmic reticulum (ER) stress by activating μ-calpain. In vivo and in vitro, increased μ-calpain activity resulted in proteolysis of the membrane cholesterol trafficking protein caveolin-1. The critical role of caveolin-1 for adequate membrane cholesterol content was confirmed in caveolin-1 knock-out mice. Lung transplant therapy or treatment of PWCF with ivacaftor, reduced levels of circulating inflammatory mediators and actuated increased caveolin-1 and membrane cholesterol, with concurrent normalized neutrophil adhesion. Interpretation Results demonstrate an auxiliary benefit of lung transplant and potentiator therapy, evident by a reduction in circulating inflammation and controlled neutrophil adhesion. This study explored neutrophil adhesion in cystic fibrosis. Altered membrane cholesterol lead to increased adhesion. Circulating inflammatory mediators caused increased calpain activity and reduced membrane cholesterol content.
In patients with cystic fibrosis (CF), chronic inflammation in the circulation, in part originating from the pulmonary compartment, leads to decreased membrane cholesterol in circulating neutrophils, resulting in increased cell adhesion. The mechanism of action involves proteolytic down-regulation of the cholesterol trafficking protein caveolin-1. The overall effect of lung transplant therapy, or CFTR potentiator treatment, was to significantly diminish the circulating inflammatory burden thereby permitting caveolin-1 expression, with concomitant decreased CF cell adhesion and significant clinical improvement.
Collapse
Affiliation(s)
- Michelle M White
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Elaine Hayes
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Stephen Cox
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - William Leitch
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Bader Alfawaz
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Gillian M Lavelle
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Ryan Flannery
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; Coláiste Dhúlaigh College of Further Education, Dublin 17, Ireland
| | - Joanne Keenan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Cedric Gunaratnam
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
31
|
Marteyn BS, Burgel PR, Meijer L, Witko-Sarsat V. Harnessing Neutrophil Survival Mechanisms during Chronic Infection by Pseudomonas aeruginosa: Novel Therapeutic Targets to Dampen Inflammation in Cystic Fibrosis. Front Cell Infect Microbiol 2017; 7:243. [PMID: 28713772 PMCID: PMC5492487 DOI: 10.3389/fcimb.2017.00243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
More than two decades after cloning the cystic fibrosis transmembrane regulator (CFTR) gene, the defective gene in cystic fibrosis (CF), we still do not understand how dysfunction of this ion channel causes lung disease and the tremendous neutrophil burden which persists within the airways; nor why chronic colonization by Pseudomonas aeruginosa develops in CF patients who are thought to be immunocompetent. It appears that the microenvironment within the lung of CF patients provides favorable conditions for both P. aeruginosa colonization and neutrophil survival. In this context, the ability of bacteria to induce hypoxia, which in turn affects neutrophil survival is an additional level of complexity that needs to be accounted for when controlling neutrophil fate in CF. Recent studies have underscored the importance of neutrophils in innate immunity and their functions appear to extend far beyond their well-described role in antibacterial defense. Perhaps a disturbance in neutrophil reprogramming during the course of an infection severely modulates the inflammatory response in CF. Furthermore there is an emerging concept that the CFTR itself may be an immune modulator and stimulating CFTR function in CF patients could promote neutrophil and macrophages antimicrobial function. Fostering the resolution of inflammation by favoring neutrophil apoptosis could preserve their microbicidal activities but decrease their proinflammatory potential. In this context, triggering neutrophil apoptosis with roscovitine may be a potential therapeutic option and this is currently being evaluated in CF patients. In the present review we discuss how neutrophils functions are disturbed in CF and how this may relate to chronic infection with P. aeuginosa and we propose novel research directions aimed at modulating neutrophil survival, dampening lung inflammation and ultimately leading to an amelioration of the lung disease.
Collapse
Affiliation(s)
- Benoît S Marteyn
- Unité de Pathogénie Microbienne Moléculaire, Institut PasteurParis, France.,Institut National de la Santé et de la Recherche Médicale, U12021202Paris, France.,Institut Gustave RoussyVillejuif, France
| | - Pierre-Régis Burgel
- Université Paris Descartes, Sorbonne Paris CitéParis, France.,Pneumology Department, Hôpital CochinParis, France
| | | | - Véronique Witko-Sarsat
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut CochinParis, France.,Centre National de la Recherche Scientifique-UMR 8104Paris, France.,Center of Excellence, Labex InflamexParis, France
| |
Collapse
|
32
|
Martin C, Ohayon D, Alkan M, Mocek J, Pederzoli-Ribeil M, Candalh C, Thevenot G, Millet A, Tamassia N, Cassatella MA, Thieblemont N, Burgel PR, Witko-Sarsat V. Neutrophil-Expressed p21/waf1 Favors Inflammation Resolution in Pseudomonas aeruginosa Infection. Am J Respir Cell Mol Biol 2017; 54:740-50. [PMID: 26517580 DOI: 10.1165/rcmb.2015-0047oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neutrophil-associated inflammation during Pseudomonas aeruginosa lung infection is a determinant of morbidity in cystic fibrosis (CF). Neutrophil apoptosis is a key factor in inflammation resolution and is controlled by cytosolic proliferating cell nuclear antigen (PCNA). p21/Waf1, a cyclin-dependent kinase inhibitor, is a partner of PCNA, and its mRNA is up-regulated in human neutrophils during LPS challenge. We show here that, after 7 days of persistent infection with P. aeruginosa, neutrophilic inflammation was more prominent in p21(-/-) compared with wild-type (WT) mice. Notably, no intrinsic defect in the phagocytosis of apoptotic cells by macrophages was found in p21(-/-) compared with WT mice. Inflammatory cell analysis in peritoneal lavages after zymosan-induced peritonitis showed a significantly increased number of neutrophils at 48 hours in p21(-/-) compared with WT mice. In vitro analysis was consistent with delayed neutrophil apoptosis in p21(-/-) compared with WT mice. Ectopic expression of p21/waf1 in neutrophil-differentiated PLB985 cells potentiated apoptosis and reversed the prosurvival effect of PCNA. In human neutrophils, p21 messenger RNA was induced by TNF-α, granulocyte colony-stimulating factor, and LPS. Neutrophils isolated from patients with CF showed enhanced survival, which was reduced after treatment with a carboxy-peptide derived from the sequence of p21/waf1. Notably, p21/waf1 was detected by immunohistochemistry in neutrophils within lungs from patients with CF. Our data reveal a novel role for p21/waf1 in the resolution of inflammation via its ability to control neutrophil apoptosis. This mechanism may be relevant in the neutrophil-dominated inflammation observed in CF and other chronic inflammatory lung conditions.
Collapse
Affiliation(s)
- Clémence Martin
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,2 Department of Pneumology, Cochin Hospital, France
| | - Delphine Ohayon
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,3 Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,4 Centre National de la Recherche Scientifique UMR8104, Paris France.,5 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Paris, France; and
| | - Manal Alkan
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,3 Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,4 Centre National de la Recherche Scientifique UMR8104, Paris France.,5 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Paris, France; and
| | - Julie Mocek
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,3 Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,4 Centre National de la Recherche Scientifique UMR8104, Paris France.,5 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Paris, France; and
| | - Magali Pederzoli-Ribeil
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,3 Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,4 Centre National de la Recherche Scientifique UMR8104, Paris France.,5 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Paris, France; and
| | - Céline Candalh
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,3 Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,4 Centre National de la Recherche Scientifique UMR8104, Paris France.,5 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Paris, France; and
| | - Guiti Thevenot
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Arnaud Millet
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,3 Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,4 Centre National de la Recherche Scientifique UMR8104, Paris France.,5 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Paris, France; and
| | - Nicola Tamassia
- 6 Department of Medicine, Section of General Pathology, Verona, Italy
| | | | - Nathalie Thieblemont
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,3 Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,4 Centre National de la Recherche Scientifique UMR8104, Paris France.,5 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Paris, France; and
| | - Pierre-Régis Burgel
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,2 Department of Pneumology, Cochin Hospital, France
| | - Véronique Witko-Sarsat
- 1 Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,3 Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,4 Centre National de la Recherche Scientifique UMR8104, Paris France.,5 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Paris, France; and
| |
Collapse
|
33
|
Advanced Role of Neutrophils in Common Respiratory Diseases. J Immunol Res 2017; 2017:6710278. [PMID: 28589151 PMCID: PMC5447318 DOI: 10.1155/2017/6710278] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/22/2017] [Accepted: 04/16/2017] [Indexed: 12/18/2022] Open
Abstract
Respiratory diseases, always being a threat towards the health of people all over the world, are most tightly associated with immune system. Neutrophils serve as an important component of immune defense barrier linking innate and adaptive immunity. They participate in the clearance of exogenous pathogens and endogenous cell debris and play an essential role in the pathogenesis of many respiratory diseases. However, the pathological mechanism of neutrophils remains complex and obscure. The traditional roles of neutrophils in severe asthma, chronic obstructive pulmonary diseases (COPD), pneumonia, lung cancer, pulmonary fibrosis, bronchitis, and bronchiolitis had already been reviewed. With the development of scientific research, the involvement of neutrophils in respiratory diseases is being brought to light with emerging data on neutrophil subsets, trafficking, and cell death mechanism (e.g., NETosis, apoptosis) in diseases. We reviewed all these recent studies here to provide you with the latest advances about the role of neutrophils in respiratory diseases.
Collapse
|
34
|
Interactions between Neutrophils and Pseudomonas aeruginosa in Cystic Fibrosis. Pathogens 2017; 6:pathogens6010010. [PMID: 28282951 PMCID: PMC5371898 DOI: 10.3390/pathogens6010010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/03/2017] [Indexed: 12/23/2022] Open
Abstract
Cystic fibrosis (CF) affects 70,000 patients worldwide. Morbidity and mortality in CF is largely caused by lung complications due to the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Cystic fibrosis airway inflammation is mediated by robust infiltration of polymorphonuclear neutrophil granulocytes (PMNs, neutrophils). Neutrophils are not capable of clearing lung infections and contribute to tissue damage by releasing their dangerous cargo. Pseudomonas aeruginosa is an opportunistic pathogen causing infections in immunocompromised individuals. P. aeruginosa is a main respiratory pathogen in CF infecting most patients. Although PMNs are key to attack and clear P. aeruginosa in immunocompetent individuals, PMNs fail to do so in CF. Understanding why neutrophils cannot clear P. aeruginosa in CF is essential to design novel therapies. This review provides an overview of the antimicrobial mechanisms by which PMNs attack and eliminate P. aeruginosa. It also summarizes current advances in our understanding of why PMNs are incapable of clearing P. aeruginosa and how this bacterium adapts to and resists PMN-mediated killing in the airways of CF patients chronically infected with P. aeruginosa.
Collapse
|
35
|
Ng HP, Valentine VG, Wang G. CFTR targeting during activation of human neutrophils. J Leukoc Biol 2016; 100:1413-1424. [DOI: 10.1189/jlb.4a0316-130rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel, plays critical roles in phagocytic host defense. However, how activated neutrophils regulate CFTR channel distribution subcellularly is not well defined. To investigate, we tested multiple Abs against different CFTR domains, to examine CFTR expression in human peripheral blood neutrophils by flow cytometry. The data confirmed that resting neutrophils had pronounced CFTR expression. Activation of neutrophils with soluble or particulate agonists did not significantly increase CFTR expression level, but induced CFTR redistribution to cell surface. Such CFTR mobilization correlated with cell-surface recruitment of formyl-peptide receptor during secretory vesicle exocytosis. Intriguingly, neutrophils from patients with ΔF508-CF, despite expression of the mutant CFTR, showed little cell-surface mobilization upon stimulation. Although normal neutrophils effectively targeted CFTR to their phagosomes, ΔF508-CF neutrophils had impairment in that process, resulting in deficient hypochlorous acid production. Taken together, activated neutrophils regulate CFTR distribution by targeting this chloride channel to the subcellular sites of activation, and ΔF508-CF neutrophils fail to achieve such targeting, thus undermining their host defense function.
Collapse
Affiliation(s)
- Hang Pong Ng
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Vincent G Valentine
- Department of Medicine, University of Texas Medical Branch , Galveston, Texas
| | - Guoshun Wang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
- Department of Genetics, Louisiana State University Health Sciences Center , New Orleans, Louisiana
- Department of Medicine, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| |
Collapse
|
36
|
Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016; 2016:7596531. [PMID: 27382190 PMCID: PMC4921137 DOI: 10.1155/2016/7596531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases.
Collapse
|
37
|
Lavelle GM, White MM, Browne N, McElvaney NG, Reeves EP. Animal Models of Cystic Fibrosis Pathology: Phenotypic Parallels and Divergences. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5258727. [PMID: 27340661 PMCID: PMC4908263 DOI: 10.1155/2016/5258727] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/08/2016] [Indexed: 12/14/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The resultant characteristic ion transport defect results in decreased mucociliary clearance, bacterial colonisation, and chronic neutrophil-dominated inflammation. Much knowledge surrounding the pathophysiology of the disease has been gained through the generation of animal models, despite inherent limitations in each. The failure of certain mouse models to recapitulate the phenotypic manifestations of human disease has initiated the generation of larger animals in which to study CF, including the pig and the ferret. This review will summarise the basic phenotypes of three animal models and describe the contributions of such animal studies to our current understanding of CF.
Collapse
Affiliation(s)
- Gillian M. Lavelle
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Michelle M. White
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Niall Browne
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Noel G. McElvaney
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Emer P. Reeves
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
38
|
Abstract
Abstract
Cystic fibrosis (CF) lung disease is characterized by chronic infection and inflammation. Among inflammatory cells, neutrophils represent the major cell population accumulating in the airways of CF patients. While neutrophils provide the first defensive cellular shield against bacterial and fungal pathogens, in chronic disease conditions such as CF these short-lived immune cells release their toxic granule contents that cause tissue remodeling and irreversible structural damage to the host. A variety of human and murine studies have analyzed neutrophils and their products in the context of CF, yet their precise functional role and therapeutic potential remain controversial and incompletely understood. Here, we summarize the current evidence in this field to shed light on the complex and multi-faceted role of neutrophils in CF lung disease.
Collapse
|
39
|
Meijer L, Nelson DJ, Riazanski V, Gabdoulkhakova AG, Hery-Arnaud G, Le Berre R, Loaëc N, Oumata N, Galons H, Nowak E, Gueganton L, Dorothée G, Prochazkova M, Hall B, Kulkarni AB, Gray RD, Rossi AG, Witko-Sarsat V, Norez C, Becq F, Ravel D, Mottier D, Rault G. Modulating Innate and Adaptive Immunity by (R)-Roscovitine: Potential Therapeutic Opportunity in Cystic Fibrosis. J Innate Immun 2016; 8:330-49. [PMID: 26987072 PMCID: PMC4800827 DOI: 10.1159/000444256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
(R)-Roscovitine, a pharmacological inhibitor of kinases, is currently in phase II clinical trial as a drug candidate for the treatment of cancers, Cushing's disease and rheumatoid arthritis. We here review the data that support the investigation of (R)-roscovitine as a potential therapeutic agent for the treatment of cystic fibrosis (CF). (R)-Roscovitine displays four independent properties that may favorably combine against CF: (1) it partially protects F508del-CFTR from proteolytic degradation and favors its trafficking to the plasma membrane; (2) by increasing membrane targeting of the TRPC6 ion channel, it rescues acidification in phagolysosomes of CF alveolar macrophages (which show abnormally high pH) and consequently restores their bactericidal activity; (3) its effects on neutrophils (induction of apoptosis), eosinophils (inhibition of degranulation/induction of apoptosis) and lymphocytes (modification of the Th17/Treg balance in favor of the differentiation of anti-inflammatory lymphocytes and reduced production of various interleukins, notably IL-17A) contribute to the resolution of inflammation and restoration of innate immunity, and (4) roscovitine displays analgesic properties in animal pain models. The fact that (R)-roscovitine has undergone extensive preclinical safety/pharmacology studies, and phase I and II clinical trials in cancer patients, encourages its repurposing as a CF drug candidate.
Collapse
Affiliation(s)
- Laurent Meijer
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Deborah J. Nelson
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Vladimir Riazanski
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Aida G. Gabdoulkhakova
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Geneviève Hery-Arnaud
- Unité de Bactériologie, Hôpital de la Cavale Blanche, CHRU Brest, Brest, France
- EA3882-LUBEM, Université de Brest, UFR de Médecine et des Sciences de la Santé, Brest, France
| | - Rozenn Le Berre
- EA3882-LUBEM, Université de Brest, UFR de Médecine et des Sciences de la Santé, Brest, France
- Département de Médecine Interne et Pneumologie, CHRU Brest, Brest, France
| | - Nadège Loaëc
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Nassima Oumata
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Hervé Galons
- Unité de Technologies Chimiques et Biologiques pour la Santé, Université Paris Descartes UMR-S 1022 INSERM, Paris, France
| | - Emmanuel Nowak
- Hôpital de la Cavale Blanche, CHRU Brest, Centre d'Investigation Clinique, INSERM CIC 1412, Brest, France
| | | | - Guillaume Dorothée
- Immune System, Neuroinflammation and Neurodegenerative Diseases Laboratory, Inflammation-Immunopathology-Biotherapy Department (DHU i2B), CdR Saint-Antoine, INSERM, UMRS 938, Paris, France
- Hôpital Saint-Antoine, CdR Saint-Antoine, UMRS 938, UPMC University Paris 06, Sorbonne Universités, Paris, France
| | - Michaela Prochazkova
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Bradford Hall
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Ashok B. Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Robert D. Gray
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK
| | - Adriano G. Rossi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK
| | | | - Caroline Norez
- Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS, Université de Poitiers, Poitiers, France
| | | | - Dominique Mottier
- Hôpital de la Cavale Blanche, CHRU Brest, Centre d'Investigation Clinique, INSERM CIC 1412, Brest, France
| | | |
Collapse
|
40
|
Trimble AT, Donaldson SH. CFTR Modulator Therapies for Cystic Fibrosis. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2015; 28:230-236. [PMID: 35923001 DOI: 10.1089/ped.2015.0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cloning of cystic fibrosis transmembrane conductance regulator (CFTR) set into motion a cascade of discoveries that have helped to reveal the underlying pathophysiologic basis of cystic fibrosis (CF). This discovery and the knowledge that followed have also provided the opportunity to target this basic defect, with the hope of reversing or preventing the serious clinical consequences that result from absent CFTR function. With the recent approval of 2 therapies that directly modulate CFTR function in more than half of the CF population, we are now at the beginning of a pathway to providing increasingly effective therapies that have the potential to provide a fundamental change in the outcome of most patients with CF.
Collapse
Affiliation(s)
- Aaron T Trimble
- Division of Pulmonary and Critical Care Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott H Donaldson
- Division of Pulmonary and Critical Care Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
41
|
Abstract
Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis.
Collapse
Affiliation(s)
- Jonathan H Widdicombe
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J Wine
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
42
|
Diebold BA, Smith SM, Li Y, Lambeth JD. NOX2 As a Target for Drug Development: Indications, Possible Complications, and Progress. Antioxid Redox Signal 2015; 23:375-405. [PMID: 24512192 PMCID: PMC4545678 DOI: 10.1089/ars.2014.5862] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/08/2014] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE NOX2 is important for host defense, and yet is implicated in a large number of diseases in which inflammation plays a role in pathogenesis. These include acute and chronic lung inflammatory diseases, stroke, traumatic brain injury, and neurodegenerative diseases, including Alzheimer's and Parkinson's Diseases. RECENT ADVANCES Recent drug development programs have targeted several NOX isoforms that are implicated in a variety of diseases. The focus has been primarily on NOX4 and NOX1 rather than on NOX2, due, in part, to concerns about possible immunosuppressive side effects. Nevertheless, NOX2 clearly contributes to the pathogenesis of many inflammatory diseases, and its inhibition is predicted to provide a novel therapeutic approach. CRITICAL ISSUES Possible side effects that might arise from targeting NOX2 are discussed, including the possibility that such inhibition will contribute to increased infections and/or autoimmune disorders. The state of the field with regard to existing NOX2 inhibitors and targeted development of novel inhibitors is also summarized. FUTURE DIRECTIONS NOX2 inhibitors show particular promise for the treatment of inflammatory diseases, both acute and chronic. Theoretical side effects include pro-inflammatory and autoimmune complications and should be considered in any therapeutic program, but in our opinion, available data do not indicate that they are sufficiently likely to eliminate NOX2 as a drug target, particularly when weighed against the seriousness of many NOX2-related indications. Model studies demonstrating efficacy with minimal side effects are needed to encourage future development of NOX2 inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- Becky A. Diebold
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Susan M.E. Smith
- Department of Biology and Physics, Kennesaw State University, Kennesaw, Georgia
| | - Yang Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - J. David Lambeth
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
43
|
The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung. Mediators Inflamm 2015; 2015:293053. [PMID: 26185359 PMCID: PMC4491392 DOI: 10.1155/2015/293053] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/08/2015] [Indexed: 12/05/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is an inherited condition with an incidence rate of approximately 1 in 2500 new born babies. CF is characterized as chronic infection of the lung which leads to inflammation of the airway. Sputum from CF patients contains elevated levels of neutrophils and subsequently elevated levels of neutrophil serine proteases. In a healthy individual these proteases aid in the phagocytic process by degrading microbial peptides and are kept in homeostatic balance by cognate antiproteases. Due to the heavy neutrophil burden associated with CF the high concentration of neutrophil derived proteases overwhelms cognate antiproteases. The general effects of this protease/antiprotease imbalance are impaired mucus clearance, increased and self-perpetuating inflammation, and impaired immune responses and tissue. To restore this balance antiproteases have been suggested as potential therapeutics or therapeutic targets. As such a number of both endogenous and synthetic antiproteases have been trialed with mixed success as therapeutics for CF lung disease.
Collapse
|
44
|
Afonina I, Müller C, Martin S, Beyaert R. Proteolytic Processing of Interleukin-1 Family Cytokines: Variations on a Common Theme. Immunity 2015; 42:991-1004. [DOI: 10.1016/j.immuni.2015.06.003] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Indexed: 12/22/2022]
|
45
|
Werner JL, Steele C. Innate receptors and cellular defense against pulmonary infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3842-50. [PMID: 25281754 PMCID: PMC4185409 DOI: 10.4049/jimmunol.1400978] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the United States, lung infections consistently rank in the top 10 leading causes of death, accounting for >50,000 deaths annually. Moreover, >140,000 deaths occur annually as a result of chronic lung diseases, some of which may be complicated by an infectious process. The lung is constantly exposed to the environment and is susceptible to infectious complications caused by bacterial, viral, fungal, and parasitic pathogens. Indeed, we are continually faced with the threat of morbidity and mortality associated with annual influenza virus infections, new respiratory viruses (e.g., SARS-CoV), and lung infections caused by antibiotic-resistant "ESKAPE pathogens" (three of which target the lung). This review highlights innate immune receptors and cell types that function to protect against infectious challenges to the respiratory system yet also may be associated with exacerbations in chronic lung diseases.
Collapse
Affiliation(s)
- Jessica L Werner
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
| | - Chad Steele
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
46
|
Hurley K, Lacey N, O’Dwyer CA, Bergin DA, McElvaney OJ, O’Brien ME, McElvaney OF, Reeves EP, McElvaney NG. Alpha-1 Antitrypsin Augmentation Therapy Corrects Accelerated Neutrophil Apoptosis in Deficient Individuals. THE JOURNAL OF IMMUNOLOGY 2014; 193:3978-91. [DOI: 10.4049/jimmunol.1400132] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
47
|
Ng HP, Zhou Y, Song K, Hodges CA, Drumm ML, Wang G. Neutrophil-mediated phagocytic host defense defect in myeloid Cftr-inactivated mice. PLoS One 2014; 9:e106813. [PMID: 25184794 PMCID: PMC4153692 DOI: 10.1371/journal.pone.0106813] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/05/2014] [Indexed: 02/02/2023] Open
Abstract
Cystic fibrosis (CF) is a common and deadly inherited disease, caused by mutations in the CFTR gene that encodes a cAMP-activated chloride channel. One outstanding manifestation of the disease is the persistent bacterial infection and inflammation in the lung, which claims over 90% of CF mortality. It has been debated whether neutrophil-mediated phagocytic innate immunity has any intrinsic defect that contributes to the host lung defense failure. Here we compared phagosomal CFTR targeting, hypochlorous acid (HOCl) production, and microbial killing of the neutrophils from myeloid Cftr-inactivated (Myeloid-Cftr-/-) mice and the non-inactivated control (Cftrfl10) mice. We found that the mutant CFTR that lacked Exon-10 failed to target to the neutrophil phagosomes. This dysfunction resulted in impaired intraphagosomal HOCl production and neutrophil microbial killing. In vivo lung infection with a lethal dose of Pseudomonas aeruginosa caused significantly higher mortality in the myeloid CF mice than in the controls. The myeloid-Cftr-/- lungs were deficient in bacterial clearance, and had sustained neutrophilic inflammation and stalled transition from early to late immunity. These manifestations recapitulated the symptoms of human CF lungs. The data altogether suggest that myeloid CFTR expression is critical to normal host lung defense. CFTR dysfunction in neutrophils compromises the phagocytic innate immunity, which may predispose CF lungs to infection.
Collapse
Affiliation(s)
- Hang Pong Ng
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Yun Zhou
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Kejing Song
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Craig A. Hodges
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Mitchell L. Drumm
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Guoshun Wang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
48
|
Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol 2014; 15:602-11. [PMID: 24940954 DOI: 10.1038/ni.2921] [Citation(s) in RCA: 661] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022]
Abstract
In this Review we discuss data demonstrating recently recognized aspects of neutrophil homeostasis in the steady state, granulopoiesis in 'emergency' conditions and interactions of neutrophils with the adaptive immune system. We explore in vivo observations of the recruitment of neutrophils from blood to tissues in models of blood-borne infections versus bacterial invasion through epithelial linings. We examine data on novel aspects of the activation of NADPH oxidase and the heterogeneity of phagosomes and, finally, consider the importance of two neutrophil-derived biological agents: neutrophil extracellular traps and ectosomes.
Collapse
Affiliation(s)
- William M Nauseef
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Administration Medical Center, Iowa City, Iowa, USA
| | - Niels Borregaard
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Ziai S, Coriati A, Gauthier MS, Rabasa-Lhoret R, Richter MV. Could T cells be involved in lung deterioration and hyperglycemia in cystic fibrosis? Diabetes Res Clin Pract 2014; 105:22-9. [PMID: 24731255 DOI: 10.1016/j.diabres.2014.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/20/2014] [Accepted: 03/03/2014] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis-related diabetes (CFRD) is the most frequent complication of cystic fibrosis (CF) and associated with increased mortality. Why patients have an accelerated loss of lung function before the diagnosis of CFRD remains poorly understood. We reported that patients with or without CFRD had increased glucose excursions when compared to healthy peers. Studies have demonstrated that patients with CF have increased glucose fluctuations and hyperglycemia and that this may affect the clinical course of CF and lead to lymphocyte dysfunction. T-helper 17 (Th17) lymphocytes produce and secrete the pro-inflammatory cytokine IL-17. The Th17 pathway is involved in CF lung inflammation, β-cell destruction in type 1 diabetes (T1D) and Th17 cells of patients with type 2 diabetes have increased production of IL-17 when compared to healthy peers. Also, regulatory T-cells (Tregs) have been shown to be dysfunctional and produce IL-17 in T1D. Furthermore, vitamin D can affect inflammation in CF, diabetes and the differentiation of lymphocytes. In this review, we discuss the potential roles of hyperglycemia on Th17 cells, Tregs and IL-17 as a potential cause for accelerated lung function decline before CFRD and how this could be modulated by vitamin D or by directly intervening in the IL-17A pathway.
Collapse
Affiliation(s)
- S Ziai
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - A Coriati
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - M-S Gauthier
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - R Rabasa-Lhoret
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada; Montreal Diabetes Research Centre (MDRC), Montréal, Québec, Canada; Cystic Fibrosis Clinic, Centre Hospitalier de l'Université de Montréal (CHUM) & CHUM Research Center (CR-CHUM), Montréal, Québec, Canada
| | - M V Richter
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
50
|
Chuah C, Jones MK, Burke ML, McManus DP, Owen HC, Gobert GN. Defining a pro-inflammatory neutrophil phenotype in response to schistosome eggs. Cell Microbiol 2014; 16:1666-77. [PMID: 24898449 DOI: 10.1111/cmi.12316] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022]
Abstract
Neutrophils contribute to the pathological processes of a number of inflammatory disorders, including rheumatoid arthritis, sepsis and cystic fibrosis. Neutrophils also play prominent roles in schistosomiasis japonica liver fibrosis, being central mediators of inflammation following granuloma formation. In this study, we investigated the interaction between Schistosoma japonicum eggs and neutrophils, and the effect of eggs on the inflammatory phenotype of neutrophils. Our results showed significant upregulated expression of pro-inflammatory cytokines (IL-1α, IL-1β and IL-8) and chemokines (CCL3, CCL4 and CXCL2) in neutrophils after 4 h in vitro stimulation with S. japonicum eggs. Furthermore, mitochondrial DNA was released by stimulated neutrophils, and induced the production of matrix metalloproteinase 9 (MMP-9), a protease involved in inflammation and associated tissue destruction. We also found that intact live eggs and isolated soluble egg antigen (SEA) triggered the release of neutrophil extracellular traps (NETs), but, unlike those reported in bacterial or fungal infection, NETs did not kill schistosome eggs in vitro. Together these show that S. japonicum eggs can induce the inflammatory phenotype of neutrophils, and further our understanding of the host-parasite interplay that takes place within the in vivo microenvironment of schistosome-induced granuloma. These findings represent novel findings in a metazoan parasite, and confirm characteristics of NETs that have until now, only been observed in response to protozoan pathogens.
Collapse
Affiliation(s)
- Candy Chuah
- Parasite Cell Biology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4006, Australia; School of Veterinary Sciences, The University of Queensland, Gatton, Qld, 4343, Australia; School of Medical Sciences, Universiti Sains Malaysia, 16150, Kelantan, Malaysia
| | | | | | | | | | | |
Collapse
|