1
|
Zaher A, Duchman B, Ivanovic M, Spitz DR, Furqan M, Allen BG, Petronek MS. Exploratory Analysis of Image-Guided Ionizing Radiation Delivery to Induce Long-Term Iron Accumulation and Ferritin Expression in a Lung Injury Model: Preliminary Results. Bioengineering (Basel) 2024; 11:182. [PMID: 38391668 PMCID: PMC10886280 DOI: 10.3390/bioengineering11020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/03/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Radiation therapy (RT) is an integral and commonly used therapeutic modality for primary lung cancer. However, radiation-induced lung injury (RILI) limits the irradiation dose used in the lung and is a significant source of morbidity. Disruptions in iron metabolism have been linked to radiation injury, but the underlying mechanisms remain unclear. PURPOSE To utilize a targeted radiation delivery approach to induce RILI for the development of a model system to study the role of radiation-induced iron accumulation in RILI. METHODS This study utilizes a Small Animal Radiation Research Platform (SARRP) to target the right lung with a 20 Gy dose while minimizing the dose delivered to the left lung and adjacent heart. Long-term pulmonary function was performed using RespiRate-x64image analysis. Normal-appearing lung volumes were calculated using a cone beam CT (CBCT) image thresholding approach in 3D Slicer software. Quantification of iron accumulation was performed spectrophotometrically using a ferrozine-based assay as well as histologically using Prussian blue and via Western blotting for ferritin heavy chain expression. RESULTS Mild fibrosis was seen histologically in the irradiated lung using hematoxylin and eosin-stained fixed tissue at 9 months, as well as using a scoring system from CBCT images, the Szapiel scoring system, and the highest fibrotic area metric. In contrast, no changes in breathing rate were observed, and median survival was not achieved up to 36 weeks following irradiation, consistent with mild lung fibrosis when only one lung was targeted. Our study provided preliminary evidence on increased iron content and ferritin heavy chain expression in the irradiated lung, thus warranting further investigation. CONCLUSIONS A targeted lung irradiation model may be a useful approach for studying the long-term pathological effects associated with iron accumulation and RILI following ionizing radiation.
Collapse
Affiliation(s)
- Amira Zaher
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Bryce Duchman
- Division of Pulmonary, Critical Care, Sleep Medicine & Physiology, UC San Diego Health, San Diego, CA 92093, USA
| | - Marina Ivanovic
- Department of Pathology and Laboratory Medicine, Loyola University Health System, Loyola University, Chicago, IL 60660, USA
| | - Douglas R Spitz
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Muhammad Furqan
- Department of Internal Medicine Division of Hematology and Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Bryan G Allen
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Michael S Petronek
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Malaviya R, Laskin JD, Businaro R, Laskin DL. Targeting Tumor Necrosis Factor Alpha to Mitigate Lung Injury Induced by Mustard Vesicants and Radiation. Disaster Med Public Health Prep 2023; 17:e553. [PMID: 37848400 PMCID: PMC10841250 DOI: 10.1017/dmp.2023.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Pulmonary injury induced by mustard vesicants and radiation is characterized by DNA damage, oxidative stress, and inflammation. This is associated with increases in levels of inflammatory mediators, including tumor necrosis factor (TNF)α in the lung and upregulation of its receptor TNFR1. Dysregulated production of TNFα and TNFα signaling has been implicated in lung injury, oxidative and nitrosative stress, apoptosis, and necrosis, which contribute to tissue damage, chronic inflammation, airway hyperresponsiveness, and tissue remodeling. These findings suggest that targeting production of TNFα or TNFα activity may represent an efficacious approach to mitigating lung toxicity induced by both mustards and radiation. This review summarizes current knowledge on the role of TNFα in pathologies associated with exposure to mustard vesicants and radiation, with a focus on the therapeutic potential of TNFα-targeting agents in reducing acute injury and chronic disease pathogenesis.
Collapse
Affiliation(s)
- Rama Malaviya
- Departments of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Jeffrey D. Laskin
- Departments of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Debra L. Laskin
- Departments of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
3
|
Treating Pulmonary Fibrosis with Non-Viral Gene Therapy: From Bench to Bedside. Pharmaceutics 2022; 14:pharmaceutics14040813. [PMID: 35456646 PMCID: PMC9027953 DOI: 10.3390/pharmaceutics14040813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease characterized by irreversible lung scarring, which achieves almost 80% five-year mortality rate. Undeniably, commercially available pharmaceuticals, such as pirfenidone and nintedanib, exhibit certain effects on improving the well-being of IPF patients, but the stubbornly high mortality still indicates a great urgency of developing superior therapeutics against this devastating disease. As an emerging strategy, gene therapy brings hope for the treatment of IPF by precisely regulating the expression of specific genes. However, traditional administration approaches based on viruses severely restrict the clinical application of gene therapy. Nowadays, non-viral vectors are raised as potential strategies for in vivo gene delivery, attributed to their low immunogenicity and excellent biocompatibility. Herein, we highlight a variety of non-viral vectors, such as liposomes, polymers, and proteins/peptides, which are employed in the treatment of IPF. By respectively clarifying the strengths and weaknesses of the above candidates, we would like to summarize the requisite features of vectors for PF gene therapy and provide novel perspectives on design-decisions of the subsequent vectors, hoping to accelerate the bench-to-bedside pace of non-viral gene therapy for IPF in clinical setting.
Collapse
|
4
|
Guo K, Chen J, Chen Z, Luo G, Yang S, Zhang M, Hong J, Zhang L, Chen C. Triptolide alleviates radiation-induced pulmonary fibrosis via inhibiting IKKβ stimulated LOX production. Biochem Biophys Res Commun 2020; 527:283-288. [PMID: 32446381 DOI: 10.1016/j.bbrc.2020.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
Lysyl oxidase (LOX) is involved in fibrosis by catalyzing collagen cross-linking. Previous work observed that Triptolide (TPL) alleviated radiation-induced pulmonary fibrosis (RIPF), but it is unknown whether the anti-RIPF effect of TPL is related to LOX. In a mouse model of RIPF, we found that LOX persistently increased in RIPF which was significantly lowered by TPL. Excessive LOX aggravated fibrotic lesions in RIPF, while LOX inhibition mitigated RIPF. Irradiation enhanced the transcription and synthesis of LOX by lung fibroblasts through IKKβ/NFκB activation, and siRNA knockdown IKKβ largely abolished LOX production. By interfering radiation induced IKKβ activation, TPL prevented NFκB nuclear translocation and DNA binding, and potently decreased LOX synthesis. Our results demonstrate that the anti-RIPF effect of TPL is associated with reduction of LOX production which mediated by inhibition of IKKβ/NFκB pathway.
Collapse
Affiliation(s)
- Kaining Guo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinran Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhangjie Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Gelian Luo
- Fujian Vocational College of Bioengineering, Fuzhou, Fujian, China
| | - Shanmin Yang
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Mei Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Jinsheng Hong
- Department of Radiation Oncology, First Affiliated Hospital, Fujian Medical University, Fujian Key Laboratory of Individualized Active Immunotherapy, Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Lurong Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA; Department of Radiation Oncology, First Affiliated Hospital, Fujian Medical University, Fujian Key Laboratory of Individualized Active Immunotherapy, Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China; Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Chun Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian, China; Institute of Materia Medica, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Qian Q, Cao X, Wang B, Qu Y, Qian Q, Sun Z, Feng F. TNF-α-TNFR signal pathway inhibits autophagy and promotes apoptosis of alveolar macrophages in coal worker's pneumoconiosis. J Cell Physiol 2018; 234:5953-5963. [PMID: 30467847 DOI: 10.1002/jcp.27061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/26/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Exposure to coal dust causes the development of coal worker's pneumoconiosis (CWP), which is associated with accumulating macrophages in the lower respiratory tract. This study was performed to investigate the effect of tumor necrosis factor-α (TNF-α)-tumor necrosis factor receptor (TNFR) signal pathway on autophagy and apoptosis of alveolar macrophages (AMs) in CWP. METHODS AMs from controls exposed to coal dust and CWP patients were collected, in which expressions of TNF-α and TNFR1 were determined. Autophagy was observed by transmission electron microscopy, and apoptosis by light microscope and using terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. AMs in CWP patients were treated with TNF-α or anti-TNF-α antibody. Besides, expressions of autophagy marker proteins, apoptosis-related factors, FAS, caspase-8, and receptor-interacting serine-threonine-protein kinase 3 (RIPK3) were determined by western Blot. Activities of caspase-3 and caspase-8 were determined by a fluorescence kit. Flow cytometry was applied to measure the expression of TNFR1 on the surface of the AM. RESULTS TNF-α expression and TNFR1 expression on the surface of AM, as well as autophagy and apoptotic index were significantly increased in AMs of CWP patients. In response to the treatment of TNF-α, TNF-α expression and TNFR1 expression on the surface of AM as well as LC3I expression were increased, autophagy was decreased, and LC3, LC3II, Beclin1 and B-cell lymphoma 2 expressions decreased, whereas FAS expression and activity and expression of caspase-3 and caspase-8 increased, and apoptotic index increased. Moreover, the situations were reversed with the treatment of anti-TNF-α antibody. CONCLUSION TNF-α-TNFR signal pathway was involved in the occurrence and development of CWP by activating FAS-caspase-8 and thus inhibiting autophagy while promoting apoptosis of AM.
Collapse
Affiliation(s)
- Qingzeng Qian
- College of Public Health, North China University of Science and Technology, Tangshan, China.,Hebei Coal Mine Sanitation and Safety Laboratory, Tangshan, China
| | - Xiangke Cao
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Bin Wang
- Department of Pediatrics, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Yi Qu
- Hebei Medical Information Research Institute, Shijiazhuang, China
| | - Qingqiang Qian
- Department of Internal Medicine-Neurology, Tangshan Worker's Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Zhiqian Sun
- Occupational Health Technical Service Center, Beidaihe Occupational Disease Prevention and Treatment Hospital of The State Administration of Work Safety, Qinghuangdao, China
| | - Fumin Feng
- College of Public Health, North China University of Science and Technology, Tangshan, China.,Hebei Coal Mine Sanitation and Safety Laboratory, Tangshan, China
| |
Collapse
|
6
|
Nonviral Gene Therapy for Cancer: A Review. Diseases 2018; 6:diseases6030057. [PMID: 29970866 PMCID: PMC6164850 DOI: 10.3390/diseases6030057] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/29/2022] Open
Abstract
Although the development of effective viral vectors put gene therapy on the road to commercialization, nonviral vectors show promise for practical use because of their relative safety and lower cost. A significant barrier to the use of nonviral vectors, however, is that they have not yet proven effective. This apparent lack of interest can be attributed to the problem of the low gene transfer efficiency associated with nonviral vectors. The efficiency of gene transfer via nonviral vectors has been reported to be 1/10th to 1/1000th that of viral vectors. Despite the fact that new gene transfer methods and nonviral vectors have been developed, no significant improvements in gene transfer efficiency have been achieved. Nevertheless, some notable progress has been made. In this review, we discuss studies that report good results using nonviral vectors in vivo in animal models, with a particular focus on studies aimed at in vivo gene therapy to treat cancer, as this disease has attracted the interest of researchers developing nonviral vectors. We describe the conditions in which nonviral vectors work more efficiently for gene therapy and discuss how the goals might differ for nonviral versus viral vector development and use.
Collapse
|
7
|
Cirincione R, Di Maggio FM, Forte GI, Minafra L, Bravatà V, Castiglia L, Cavalieri V, Borasi G, Russo G, Lio D, Messa C, Gilardi MC, Cammarata FP. High-Intensity Focused Ultrasound- and Radiation Therapy-Induced Immuno-Modulation: Comparison and Potential Opportunities. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:398-411. [PMID: 27780661 DOI: 10.1016/j.ultrasmedbio.2016.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 05/12/2023]
Abstract
In recent years, high-intensity focused ultrasound (HIFU) has emerged as a new and promising non-invasive and non-ionizing ablative technique for the treatment of localized solid tumors. Extensive pre-clinical and clinical studies have evidenced that, in addition to direct destruction of the primary tumor, HIFU-thermoablation may elicit long-term systemic host anti-tumor immunity. In particular, an important consequence of HIFU treatment includes the release of tumor-associated antigens (TAAs), the secretion of immuno-suppressing factors by cancer cells and the induction of cytotoxic T lymphocyte (CTL) activity. Radiation therapy (RT) is the main treatment modality used for many types of tumors and about 50% of all cancer patients receive RT, often used in combination with surgery and chemotherapy. It is well known that RT can modulate anti-tumor immune responses, modifying micro-environment and stimulating inflammatory factors that can greatly affect cell invasion, bystander effects, radiation tissue complications (such as fibrosis), genomic instability and thus, intrinsic cellular radio-sensitivity. To date, various combined therapeutic strategies (such as immuno-therapy) have been performed in order to enhance RT success in treating locally advanced and recurrent tumors. Recent works suggested the combined use of HIFU and RT treatments to increase the tumor cell radio-sensitivity, in order to synergize the effects reaching the maximum results with minimal doses of ionizing radiation (IR). Here, we highlight the opposite immuno-modulation roles of RT and HIFU, providing scientific reasons to test, by experimental approaches, the use of HIFU immune-stimulatory capacity to improve tumor radio-sensitivity, to reduce the RT induced inflammatory response and to decrease the dose-correlated side effects in normal tissues.
Collapse
Affiliation(s)
| | - Federica Maria Di Maggio
- IBFM CNR, Cefalù, Palermo, Italy; Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | | | | | - Valentina Bravatà
- IBFM CNR, Cefalù, Palermo, Italy; Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | | | - Vincenzo Cavalieri
- Laboratory of Molecular Biology and Functional Genomics, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | | | | | - Domenico Lio
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Cristina Messa
- IBFM CNR, Cefalù, Palermo, Italy; Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy; Nuclear Medicine Center, San Gerardo Hospital, Monza, Italy
| | - Maria Carla Gilardi
- IBFM CNR, Cefalù, Palermo, Italy; Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy; Nuclear Medicine, San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
8
|
Fang XM, Hu CH, Hu XY, Yao XJ, Qian PY, Zhou JY, Guo J, Lerner A. An Appreciation for the Rabbit Ladderlike Modeling of Radiation-induced Lung Injury with High-energy X-Ray. Chin Med J (Engl) 2015; 128:1636-42. [PMID: 26063366 PMCID: PMC4733745 DOI: 10.4103/0366-6999.158323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND To evaluate the utility of rabbit ladderlike model of radiation-induced lung injury (RILI) for the future investigation of computed tomography perfusion. METHODS A total of 72 New Zealand rabbits were randomly divided into two groups: 36 rabbits in the test group were administered 25 Gy of single fractionated radiation to the whole lung of unilateral lung; 36 rabbits in the control group were sham-radiated. All rabbits were subsequently sacrificed at 1, 6, 12, 24, 48, 72 h, and 1, 2, 4, 8,1 6, 24 weeks after radiation, and then six specimens were extracted from the upper, middle and lower fields of the bilateral lungs. The pathological changes in these specimens were observed with light and electron microscopy; the expression of tumor necrosis factor-α (TNF-a) and transforming growth factor-β₁ (TGF-β₁) in local lung tissue was detected by immunohistochemistry. RESULTS (1) Radiation-induced lung injury occurred in all rabbits in the test group. (2) Expression of TNF-a and TGF-β₁ at 1 h and 48 h after radiation, demonstrated a statistically significant difference between the test and control groups (each P < 0.05). (3) Evaluation by light microscopy demonstrated statistically significant differences between the two groups in the following parameters (each P < 0.05): thickness of alveolar wall, density of pulmonary interstitium area (1 h after radiation), number of fibroblasts and fibrocytes in interstitium (24 h after radiation). The test group metrics also correlated well with the time of postradiation. (4) Evaluation by electron microscopy demonstrated statistically significant differences in the relative amounts of collagen fibers at various time points postradiation in the test group (P < 0.005), with no significant differences in the control group (P > 0.05). At greater than 48 h postradiation the relative amount of collagen fibers in the test groups significantly differ from the control groups (each P < 0.05), correlating well with the time postradiation (r = 0.99318). CONCLUSIONS A consistent and reliable rabbit model of RILI can be generated in gradient using 25 Gy of high-energy X-ray, which can simulate the development and evolution of RILI.
Collapse
Affiliation(s)
| | - Chun-Hong Hu
- Imaging Center, The First Affiliated Hospital of Soochow University, Jiangsu 215006; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Di Maggio FM, Minafra L, Forte GI, Cammarata FP, Lio D, Messa C, Gilardi MC, Bravatà V. Portrait of inflammatory response to ionizing radiation treatment. J Inflamm (Lond) 2015; 12:14. [PMID: 25705130 PMCID: PMC4336767 DOI: 10.1186/s12950-015-0058-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/29/2015] [Indexed: 01/05/2023] Open
Abstract
Ionizing radiation (IR) activates both pro-and anti-proliferative signal pathways producing an imbalance in cell fate decision. IR is able to regulate several genes and factors involved in cell-cycle progression, survival and/or cell death, DNA repair and inflammation modulating an intracellular radiation-dependent response. Radiation therapy can modulate anti-tumour immune responses, modifying tumour and its microenvironment. In this review, we report how IR could stimulate inflammatory factors to affect cell fate via multiple pathways, describing their roles on gene expression regulation, fibrosis and invasive processes. Understanding the complex relationship between IR, inflammation and immune responses in cancer, opens up new avenues for radiation research and therapy in order to optimize and personalize radiation therapy treatment for each patient.
Collapse
Affiliation(s)
- Federica Maria Di Maggio
- />Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| | - Luigi Minafra
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| | - Giusi Irma Forte
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| | | | - Domenico Lio
- />Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Cristina Messa
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
- />Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy
- />Nuclear Medicine Center, San Gerardo Hospital, Monza, Italy
| | - Maria Carla Gilardi
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
- />Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy
- />Nuclear Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Bravatà
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| |
Collapse
|
10
|
Hu XY, Fang XM, Chen HW, Yao XJ, Qian PY, Zhou JY, Guo J, Lerner A, Hu CH. Early detection of acute radiation-induced lung injury with multi-section CT perfusion imaging: An initial experience. Clin Radiol 2014; 69:853-60. [PMID: 24837694 DOI: 10.1016/j.crad.2014.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 02/12/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
AIM To explore the value of 64-section computed tomography (CT) perfusion imaging (CTPI) in the early diagnosis of acute radiation-induced lung injury (ARILI). MATERIALS AND METHODS Fifty-one patients with oesophageal cancers or malignant thymomas received postoperative radiation therapy with a 60-62 Gy dose and underwent CTPI at pre- and post-radiation therapy time points (week 0, week 4, week 8, and week 12 respectively). The CTPI values were prospectively compared and analysed in order to evaluate the diagnostic utility of CTPI in the early diagnosis of ARILI. RESULTS Eighteen cases (18/51) of ARILI were diagnosed. The mean values of relative regional blood flow (rrBF), relative regional volume (rrBV), and relative regional permeability surface (rrPS) in the ARILI group were correspondingly higher than those of the non-ARILI group. At week 4, rrBF, rrBV, and rrPS in the ARILI group were significantly higher than those at pre-radiation (each p < 0.05). In the non-ARILI group, rrBF and rrBV were higher than those at pre-radiation (each p < 0.05); however, rrPS was not statistically different from that of pre-irradiation. Applying the diagnostic threshold value of rrPS = 1.22, the sensitivity, specificity, and positive and negative predictive values of CTPI for early diagnosis of ARILI were better than those of CT. CONCLUSION CTPI metrics may reflect haemodynamic changes in the post-irradiation lung and can detect cases of early ARILI that appear normal at CT. CTPI is a promising technique for early diagnosis of ARILI.
Collapse
Affiliation(s)
- X-Y Hu
- Imaging Center, Wuxi People's Hospital, Nanjing Medical University, Jiangsu Province 214023, China
| | - X-M Fang
- Imaging Center, Wuxi People's Hospital, Nanjing Medical University, Jiangsu Province 214023, China.
| | - H-W Chen
- Imaging Center, Wuxi People's Hospital, Nanjing Medical University, Jiangsu Province 214023, China
| | - X-J Yao
- Imaging Center, Wuxi People's Hospital, Nanjing Medical University, Jiangsu Province 214023, China
| | - P-Y Qian
- Imaging Center, Wuxi People's Hospital, Nanjing Medical University, Jiangsu Province 214023, China
| | - J-Y Zhou
- Radiotherapy Center, The First Affiliated Hospital of Suzhou University, Jiangsu Province 226001, China
| | - J Guo
- Radiotherapy Center, The First Affiliated Hospital of Suzhou University, Jiangsu Province 226001, China
| | - A Lerner
- Department of Radiology, LAC+USC Medical Center, University of Southern California, 1200 N State St, Los Angeles, CA, United States of America
| | - C-H Hu
- Imaging Center, The First Affiliated Hospital of Suzhou University, Jiangsu Province 226001, China.
| |
Collapse
|
11
|
Ding NH, Li JJ, Sun LQ. Molecular mechanisms and treatment of radiation-induced lung fibrosis. Curr Drug Targets 2013; 14:1347-56. [PMID: 23909719 PMCID: PMC4156316 DOI: 10.2174/13894501113149990198] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 02/06/2023]
Abstract
Radiation-induced lung fibrosis (RILF) is a severe side effect of radiotherapy in lung cancer patients that presents as a progressive pulmonary injury combined with chronic inflammation and exaggerated organ repair. RILF is a major barrier to improving the cure rate and well-being of lung cancer patients because it limits the radiation dose that is required to effectively kill tumor cells and diminishes normal lung function. Although the exact mechanism is unclear, accumulating evidence suggests that various cells, cytokines and regulatory molecules are involved in the tissue reorganization and immune response modulation that occur in RILF. In this review, we will summarize the general symptoms, diagnostics, and current understanding of the cells and molecular factors that are linked to the signaling networks implicated in RILF. Potential approaches for the treatment of RILF will also be discussed. Elucidating the key molecular mediators that initiate and control the extent of RILF in response to therapeutic radiation may reveal additional targets for RILF treatment to significantly improve the efficacy of radiotherapy for lung cancer patients.
Collapse
Affiliation(s)
- Nian-Hua Ding
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Jian Jian Li
- Department of Radiation Oncology, NCI-Designated Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
12
|
Ma Z, Sun W. The effect of aerosol polyethylenimine/interferon-γ plasmid complexes on expression of inflammatory cytokines in mouse lung. J Aerosol Med Pulm Drug Deliv 2013; 27:117-24. [PMID: 23789706 DOI: 10.1089/jamp.2012.1003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The expression of inflammatory cytokines in lung tissue plays an important role in immune function of the lung. In this study, we tested whether aerosol delivery of the gene of interferon-γ (IFNγ) could affect inflammatory cytokine expression in mouse lung. METHODS Murine IFNγ-expressing plasmids (pcDNA-IFNγ) complexed with polyethylenimine (PEI) (PEI/pcDNA-IFNγ) were constructed, and their transfection efficiency was assessed in vivo using real-time quantitative RT-PCR and enzyme-linked immunosorbent assay. After aerosol administration of the plasmid complexes and confirmation of the IFNγ plasmid location in lung tissue, we measured mRNA levels of the inflammatory cytokines interleukin-1 (IL-1), IL-6, IL-10, tumor necrosis factor-α (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) on days 1 to 7 in mouse lung tissues using real-time RT-PCR. RESULTS IFNγ mRNA expression in mouse lung was significantly increased 24 hr after a single aerosol administration of PEI/pcDNA-IFNγ and gradually decreased over the next 5 days, whereas the mRNA expressions of IL-1, IL-6, and GM-CSF were markedly decreased, but not those of IL-10 and TNF-α. CONCLUSIONS PEI/IFNγ gene therapy delivered by aerosol has immune-regulating potential by suppressing lung cytokine mRNA expression, and therefore may alleviate lung disease.
Collapse
Affiliation(s)
- Zhuang Ma
- Department of Respiratory Medicine, General Hospital of Shenyang Military Area Command , Shenyang, 110016, China
| | | |
Collapse
|
13
|
Haase MG, Liepe K, Faulhaber D, Wunderlich G, Andreeff M, Jung R, Baretton GB, Fitze G, Kotzerke J. Dose-dependent histological alterations in the rat lung following intravenous application of Re-188-labeled microspheres. Int J Radiat Biol 2013; 89:863-9. [DOI: 10.3109/09553002.2013.794320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Wang J, Zhang C, Wei X, Blagosklonov O, Lv G, Lu X, Mantion G, Vuitton DA, Wen H, Lin R. TGF-β and TGF-β/Smad signaling in the interactions between Echinococcus multilocularis and its hosts. PLoS One 2013; 8:e55379. [PMID: 23405141 PMCID: PMC3566151 DOI: 10.1371/journal.pone.0055379] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/21/2012] [Indexed: 01/31/2023] Open
Abstract
Alveolar echinococcosis (AE) is characterized by the development of irreversible fibrosis and of immune tolerance towards Echinococcus multilocularis (E. multilocularis). Very little is known on the presence of transforming growth factor-β (TGF-β) and other components of TGF-β/Smad pathway in the liver, and on their possible influence on fibrosis, over the various stages of infection. Using Western Blot, qRT-PCR and immunohistochemistry, we measured the levels of TGF-β1, TGF-β receptors, and down-stream Smads activation, as well as fibrosis marker expression in both a murine AE model from day 2 to 360 post-infection (p.i.) and in AE patients. TGF-β1, its receptors, and down-stream Smads were markedly expressed in the periparasitic infiltrate and also in the hepatocytes, close to and distant from AE lesions. Fibrosis was significant at 180 days p.i. in the periparasitic infiltrate and was also present in the liver parenchyma, even distant from the lesions. Over the time course after infection TGF-β1 expression was correlated with CD4/CD8 T-cell ratio long described as a hallmark of AE severity. The time course of the various actors of the TGF-β/Smad system in the in vivo mouse model as well as down-regulation of Smad7 in liver areas close to the lesions in human cases highly suggest that TGF-β plays an important role in AE both in immune tolerance against the parasite and in liver fibrosis.
Collapse
Affiliation(s)
- Junhua Wang
- State Key Lab Incubation Base of Xinjiang Major Diseases Research (2010DS890294) and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Nuclear Medicine, University of Franche-Comté and Jean Minjoz University Hospital, Besançon, Franche-Comté, France
| | - Chuanshan Zhang
- State Key Lab Incubation Base of Xinjiang Major Diseases Research (2010DS890294) and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xufa Wei
- State Key Lab Incubation Base of Xinjiang Major Diseases Research (2010DS890294) and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Oleg Blagosklonov
- Department of Nuclear Medicine, University of Franche-Comté and Jean Minjoz University Hospital, Besançon, Franche-Comté, France
- WHO-Collaborating Centre for the Prevention and Treatment of Human Echinococcosis, University of Franche-Comté and University Hospital, Besançon, Franche-Comté, France
| | - Guodong Lv
- State Key Lab Incubation Base of Xinjiang Major Diseases Research (2010DS890294) and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaomei Lu
- State Key Lab Incubation Base of Xinjiang Major Diseases Research (2010DS890294) and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Georges Mantion
- WHO-Collaborating Centre for the Prevention and Treatment of Human Echinococcosis, University of Franche-Comté and University Hospital, Besançon, Franche-Comté, France
| | - Dominique A. Vuitton
- WHO-Collaborating Centre for the Prevention and Treatment of Human Echinococcosis, University of Franche-Comté and University Hospital, Besançon, Franche-Comté, France
| | - Hao Wen
- State Key Lab Incubation Base of Xinjiang Major Diseases Research (2010DS890294) and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- * E-mail: (RL); (HW)
| | - Renyong Lin
- State Key Lab Incubation Base of Xinjiang Major Diseases Research (2010DS890294) and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- * E-mail: (RL); (HW)
| |
Collapse
|
15
|
Kuffler DP. Hyperbaric oxygen therapy: can it prevent irradiation-induced necrosis? Exp Neurol 2012; 235:517-27. [PMID: 22465460 DOI: 10.1016/j.expneurol.2012.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/27/2012] [Accepted: 03/17/2012] [Indexed: 10/28/2022]
Abstract
Radiosurgery is an important non-invasive procedure for the treatment of tumors and vascular malformations. However, in addition to killing target tissues, cranial irradiation induces damage to adjacent healthy tissues leading to neurological deterioration in both pediatric and adult patients, which is poorly understood and insufficiently treatable. To minimize irradiation damage to healthy tissue, not the optimal therapeutic irradiation dose required to eliminate the target lesion is used but lower doses. Although the success rate of irradiation surgery is about 95%, 5% of patients suffer problems, most commonly neurological, that are thought to be a direct consequence of irradiation-induced inflammation. Although no direct correlation has been demonstrated, the appearance and disappearance of inflammation that develops following irradiation commonly parallel the appearance and disappearance of neurological side effects that are associated with the neurological function of the irradiated brain regions. These observations have led to the hypothesis that brain inflammation is causally related to the observed neurological side effects. Studies indicate that hyperbaric oxygen therapy (HBOT) applied after the appearance of irradiation-induced neurological side effects reduces the incidence and severity of those side effects. This may result from HBOT reducing inflammation, promoting angiogenesis, and influencing other cellular functions thereby suppressing events that cause the neurological side effects. However, it would be significantly better for the patient if rather than waiting for neurological side effects to become manifest they could be avoided. This review examines irradiation-induced neurological side effects, methods that minimize or resolve those side effects, and concludes with a discussion of whether HBOT applied following irradiation, but before manifestation of neurological side effects may prevent or reduce the appearance of irradiation-induced neurological side effects.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, Puerto Rico.
| |
Collapse
|
16
|
Martín MJ, Zapatero J, López M. Prevention of future incidents and investigational lines. Rep Pract Oncol Radiother 2011; 16:153-61. [PMID: 24376973 PMCID: PMC3863191 DOI: 10.1016/j.rpor.2011.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All radiation devices in use nowadays are subject to cause serious incidents and accidents, with potential risks in exposed population groups. These risks may have immediate or long term health implications. The detection of radioactive incidents is a procedure that should be systematized in economically developed societies. International organizations may provide support to other states in the event of a radioactive incident. Prevention, mitigation and treatment of the radiation effects are done by anticipating the moment of exposure and by establishing new efforts for investigation of radioprotective products. In this article we will analyze the causes of radiological incidents, the means to detect them, and the current preventive and therapeutic procedures available, with special emphasis on new biodosimetry methods for triage and investigational radioprotective drugs. Finally, we will explore the most efficient measures, for future prevention.
Collapse
Affiliation(s)
| | - José Zapatero
- Hospital Central de la Defensa Gómez Ulla, Madrid, Spain
| | - Mario López
- Hospital Universitario de la Princesa, Madrid, Spain
| |
Collapse
|