1
|
Goenka S. Comparative evaluation of six commercial adult toothpaste formulations reveals cytotoxicity and altered functions in a human oral melanocyte model: an in vitro study. Odontology 2025; 113:163-179. [PMID: 38822982 DOI: 10.1007/s10266-024-00957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
This study aims to compare six commercial adult toothpaste (labeled as A, B, C, D, E, and F) for cytotoxicity and melanocyte function alterations in vitro using primary human epidermal melanocytes from a Caucasian donor (HEMn-LP cells) as a model of oral melanocytes. Cells were incubated with toothpaste extracts (50% w/v) in culture media at dilutions (1:25, 1:50, 1:100, 1:200, 1:500, 1:800, and 1:1000) for 24 h. MTS and LDH assays were used to assess cytotoxicity. The effects of noncytotoxic toothpaste concentrations on melanocyte functional endpoints were then examined using spectrophotometric methods. All toothpaste showed concentration-dependent cytotoxicity that was heterogeneous across toothpaste containing SLS detergent. IC50 values of cytotoxicity followed the order: A = E > C > B > D > F. To compare toothpaste, they were tested at 1:800 and 1:1000 dilutions that were noncytotoxic after 24 h. None of the toothpaste affected cellular melanin production. However, toothpaste A, C, and D suppressed tyrosinase activity at both dilutions, while toothpaste B suppressed tyrosinase activity only at 1:800 dilution. Toothpaste A, C, E, and F elevated ROS production at 1:800 dilution, with no change at 1:1000 dilution. Toothpaste has a heterogeneous effect on melanocytes. Toothpaste B, E, and F at 1:1000 dilution were the safest as they did not alter melanocyte functions at this dilution, although toothpaste F is the least cytotoxic of these. Future studies are necessary to expand these results in a physiological environment of oral tissue. The findings of this study provide novel insight into the biocompatibility studies of toothpaste on oral melanocytes. They can aid dental practitioners and consumers in selecting noncytotoxic toothpaste that do not contribute to ROS generation by melanocytes in the oral cavity or lead to cytotoxicity and impaired cellular function.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5281, USA.
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
2
|
Malewicz-Oeck NM, Zhang Z, Shimada SG, LaMotte RH. Itch and Pain Behaviors in Irritant Contact Dermatitis Produced by Sodium Lauryl Sulfate in Mice. Int J Mol Sci 2024; 25:7718. [PMID: 39062959 PMCID: PMC11276812 DOI: 10.3390/ijms25147718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Irritant contact dermatitis (ICD) is a nonspecific skin inflammation caused by irritants, leading to itch and pain. We tested whether differential responses to histamine-dependent and -independent pruritogens can be evoked in ICD induced by sodium lauryl sulfate (SLS). An ICD mouse model was established with 5% SLS in acetone versus a vehicle topically applied for 24 h to the cheek. Site-directed itch- and pain-like behaviors, occurring spontaneously and in response to mechanical, thermal, and chemical stimuli (histamine, ß-alanine, BAM8-22, and bradykinin) applied to the cheek, were recorded before (day 0) and after irritant removal (days 1, 2, 3, and 4). Skin inflammation was assessed through visual scoring, ultrasound, and measurements of skin thickness. SLS-treated mice exhibited hyperalgesia-like behavior in response to mechanical and heat stimuli on day 1 compared to the controls. SLS mice exhibited more spontaneous wipes (pain) but not scratching bouts (itch) on day 1. Pruritogen injections caused more scratching but not wiping in SLS-treated mice compared to the controls. Only bradykinin increased wiping behavior compared to saline. SLS-treated mice developed noticeable erythema, scaling, and increased skin thickness on days 1 and 2. SLS induced cutaneous inflammation and behavioral signs of spontaneous pain and itching, hyperalgesia to mechanical and heat stimuli and a chemical algogen, and enhanced itch response to pruritogens. These sensory reactions preceded the inflammation peak and lasted up to two days.
Collapse
Affiliation(s)
- Nathalie M. Malewicz-Oeck
- Clinics for Anesthesiology, Intensive Care and Pain Medicine, University Hospital of Ruhr University Bergmannsheil Bochum, 44789 Bochum, Germany
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06510, USA
| | - Zhe Zhang
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06510, USA
| | - Steven G. Shimada
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06510, USA
| | - Robert H. LaMotte
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06510, USA
| |
Collapse
|
3
|
Fan Y, Gu R, Zhang R, Wang M, Xu H, Wang M, Long C. Protective effects of extracts from Acer truncatum leaves on SLS-induced HaCaT cells. Front Pharmacol 2023; 14:1068849. [PMID: 37007019 PMCID: PMC10050454 DOI: 10.3389/fphar.2023.1068849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Introduction:A. truncatum Bunge (Sapindaceae or formerly Aceraceae) is a tall deciduous tree native to China. Traditionally, the leaves of A. truncatum are decocted and used by Chinese Mongolians, Koreans, and Tibetans to treat skin itching, dry cracks, and other skin ailments, which indicates A. truncatum leaves may have a potential inhibitory effect on various skin inflammations.Methods: To examine the protective effect against skin inflammations of A. truncatum leaf extract (ATLE), an in vitro dermatitis model was established using sodium dodecyl sulfate (SLS)-induced HaCaT cells. The anti-inflammatory effect of ATLE was evaluated by analyzing cell viability, apoptosis, reactive oxygen species (ROS), interleukin 6 (IL-6), and prostaglandin E2 (PGE2) levels.Results: Orthogonal experiments showed that the pretreatment with ATLE can reduce the IL-6 levels, PGE2 levels, and apoptosis increased in SLS-stimulated HaCaT cells, which indicates that ATLE has positive efficacy for dermatitis. Furthermore, three flavonoid compounds kaempferol-3-O-α-L-rhamnoside, quercetin-3-O-α-L-rhamnopyranoside, kaempferol-3,7-di-O-α-L-rhamnoside, and 1,2,3,4,6-Penta-O-galloyl-β-D-glucopyranose (PGG) were isolated and identified. Among them, kaempferol-3,7-di-O-α-L-rhamnoside was isolated from this plant for the first time. These compounds have been proven to have an anti-inflammatory effect. They may contribute to the efficacy of A. truncatumin treating skin inflammation.Discussion: The results revealed that ATLE has the potential to be used as an additive in various skin care products to prevent skin inflammations and may be incorporated in formulations for topical application as a therapeutic approach against dermatitis.
Collapse
|
4
|
Berger A. Delta-5 ® oil, containing the anti-inflammatory fatty acid sciadonic acid, improves skin barrier function in a skin irritation model in healthy female subjects. Lipids Health Dis 2022; 21:40. [PMID: 35443694 PMCID: PMC9019283 DOI: 10.1186/s12944-022-01643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sciadonic acid (SA) is an anti-inflammatory fatty acid displacing arachidonic acid (ARA) from specific phospholipid pools, thus modulating downstream pro-inflammatory lipid mediators. Its novel anti-inflammatory actions have been studied in vitro, in pre-clinical models, and stemming from testimonials, after topical- and oral application. It has not been tested in a formal clinical study for topical benefits previously. Skin barrier layer was our focus as it has a critically important role in maintaining skin moisture balance. Methods Herein, forearm skin was left undamaged; or barrier layer was chemically-damaged with 2% sodium lauryl sulfate (SLS) for 24 h. SLS-damaged skin was left untreated or treated with Delta-5® oil containing 24% SA twice daily for 27 days. Barrier function was assessed by open chamber transepidermal water loss (TEWL) and skin surface impedance on days 0 (clear skin), -1 (1-day post-SLS), -2 (2-days post-SLS, 1-day post-Delta-5), -3, -7, and − 28. Results Relative to day 1, Delta-5 oil statistically significantly decreased TEWL vs. untreated damaged sites, on days 3 (125% more reduced), -7 (74% more reduced), and − 28 (69% more reduced). Decreases in TEWL following chemical damage indicates improved skin barrier repair and healing. Similar patterns were quantified for skin impedance. There was also reduced redness observed on days 3 and − 7 with Delta-5 oil vs. untreated SLS-damaged skin. Conclusions Delta-5 oil thus has anti-inflammatory potential in human skin, under controlled clinical conditions, to accelerate irritant-induced healing, and improve skin barrier function. Improvement in barrier function would benefit dermatitis, acne, eczema, and skin scarring. In normal skin, Delta-5 oil has potential to promote healthy, moisturized skin; and improve skin structure, elasticity, and firmness.
Collapse
Affiliation(s)
- Alvin Berger
- SciaEssentials, LLC and Sciadonics, Inc, 1161 Wayzata Blvd E Unit 30, MN, 55391, Wayzata, United States.
| |
Collapse
|
5
|
Springborg AD, Wessel CR, Andersen LPK, Werner MU. Methodology and applicability of the human contact burn injury model: A systematic review. PLoS One 2021; 16:e0254790. [PMID: 34329326 PMCID: PMC8323928 DOI: 10.1371/journal.pone.0254790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/06/2021] [Indexed: 11/24/2022] Open
Abstract
The contact burn injury model is an experimental contact thermode-based physiological pain model primarily applied in research of drug efficacy in humans. The employment of the contact burn injury model across studies has been inconsistent regarding essential methodological variables, challenging the validity of the model. This systematic review analyzes methodologies, outcomes, and research applications of the contact burn injury model. Based on these results, we propose an improved contact burn injury testing paradigm. A literature search was conducted (15-JUL-2020) using PubMed, EMBASE, Web of Science, and Google Scholar. Sixty-four studies were included. The contact burn injury model induced consistent levels of primary and secondary hyperalgesia. However, the analyses revealed variations in the methodology of the contact burn injury heating paradigm and the post-burn application of test stimuli. The contact burn injury model had limited testing sensitivity in demonstrating analgesic efficacy. There was a weak correlation between experimental and clinical pain intensity variables. The data analysis was limited by the methodological heterogenicity of the different studies and a high risk of bias across the studies. In conclusion, although the contact burn injury model provides robust hyperalgesia, it has limited efficacy in testing analgesic drug response. Recommendations for future use of the model are being provided, but further research is needed to improve the sensitivity of the contact burn injury method. The protocol for this review has been published in PROSPERO (ID: CRD42019133734).
Collapse
Affiliation(s)
- Anders Deichmann Springborg
- Department of Anesthesia, Multidisciplinary Pain Center, Pain and Respiratory Support, Neuroscience Center, Copenhagen University Hospital, Copenhagen, Denmark
- * E-mail:
| | - Caitlin Rae Wessel
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Lars Peter Kloster Andersen
- Department of Anaesthesia and Intensive Care, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mads Utke Werner
- Department of Anesthesia, Multidisciplinary Pain Center, Pain and Respiratory Support, Neuroscience Center, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Yeon H, Lee H, Kim Y, Lee D, Lee Y, Lee JS, Shin J, Choi C, Kang JH, Suh JM, Kim H, Kum HS, Lee J, Kim D, Ko K, Ma BS, Lin P, Han S, Kim S, Bae SH, Kim TS, Park MC, Joo YC, Kim E, Han J, Kim J. Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. SCIENCE ADVANCES 2021; 7:eabg8459. [PMID: 34193431 PMCID: PMC8245037 DOI: 10.1126/sciadv.abg8459] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/17/2021] [Indexed: 05/18/2023]
Abstract
Electronic skins (e-skins)-electronic sensors mechanically compliant to human skin-have long been developed as an ideal electronic platform for noninvasive human health monitoring. For reliable physical health monitoring, the interface between the e-skin and human skin must be conformal and intact consistently. However, conventional e-skins cannot perfectly permeate sweat in normal day-to-day activities, resulting in degradation of the intimate interface over time and impeding stable physical sensing. Here, we present a sweat pore-inspired perforated e-skin that can effectively suppress sweat accumulation and allow inorganic sensors to obtain physical health information without malfunctioning. The auxetic dumbbell through-hole patterns in perforated e-skins lead to synergistic effects on physical properties including mechanical reliability, conformability, areal mass density, and adhesion to the skin. The perforated e-skin allows one to laminate onto the skin with consistent homeostasis, enabling multiple inorganic sensors on the skin to reliably monitor the wearer's health over a period of weeks.
Collapse
Affiliation(s)
- Hanwool Yeon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Haneol Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, South Korea
| | - Yeongin Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Doyoon Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Youngjoo Lee
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jong-Sung Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea
| | - Jiho Shin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chanyeol Choi
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ji-Hoon Kang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jun Min Suh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea
| | - Hyunseok Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hyun S Kum
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jaeyong Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daeyeon Kim
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, Seoul, South Korea
| | - Kyul Ko
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, Seoul, South Korea
| | - Boo Soo Ma
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, Seoul, South Korea
| | - Peng Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- College of Computer Science, Zhejiang University, Hangzhou, China
| | - Sangwook Han
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea
| | - Sungkyu Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- HMC, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, South Korea
| | - Sang-Hoon Bae
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Min-Chul Park
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, Seoul, South Korea
| | - Young-Chang Joo
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea
| | - Eunjoo Kim
- Skincare Division, Amorepacific R&D Center, Yongin, South Korea
| | - Jiyeon Han
- Department of Dermatology, Chung Ang University College of Medicine, Seoul, South Korea.
- Clinical Research Lab, Skincare Division, Amorepacific R&D Center, Yongin, South Korea
| | - Jeehwan Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Quesada C, Kostenko A, Ho I, Leone C, Nochi Z, Stouffs A, Wittayer M, Caspani O, Brix Finnerup N, Mouraux A, Pickering G, Tracey I, Truini A, Treede RD, Garcia-Larrea L. Human surrogate models of central sensitization: A critical review and practical guide. Eur J Pain 2021; 25:1389-1428. [PMID: 33759294 PMCID: PMC8360051 DOI: 10.1002/ejp.1768] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022]
Abstract
Background As in other fields of medicine, development of new medications for management of neuropathic pain has been difficult since preclinical rodent models do not necessarily translate to the clinics. Aside from ongoing pain with burning or shock‐like qualities, neuropathic pain is often characterized by pain hypersensitivity (hyperalgesia and allodynia), most often towards mechanical stimuli, reflecting sensitization of neural transmission. Data treatment We therefore performed a systematic literature review (PubMed‐Medline, Cochrane, WoS, ClinicalTrials) and semi‐quantitative meta‐analysis of human pain models that aim to induce central sensitization, and generate hyperalgesia surrounding a real or simulated injury. Results From an initial set of 1569 reports, we identified and analysed 269 studies using more than a dozen human models of sensitization. Five of these models (intradermal or topical capsaicin, low‐ or high‐frequency electrical stimulation, thermode‐induced heat‐injury) were found to reliably induce secondary hyperalgesia to pinprick and have been implemented in multiple laboratories. The ability of these models to induce dynamic mechanical allodynia was however substantially lower. The proportion of subjects who developed hypersensitivity was rarely provided, giving rise to significant reporting bias. In four of these models pharmacological profiles allowed to verify similarity to some clinical conditions, and therefore may inform basic research for new drug development. Conclusions While there is no single “optimal” model of central sensitization, the range of validated and easy‐to‐use procedures in humans should be able to inform preclinical researchers on helpful potential biomarkers, thereby narrowing the translation gap between basic and clinical data. Significance Being able to mimic aspects of pathological pain directly in humans has a huge potential to understand pathophysiology and provide animal research with translatable biomarkers for drug development. One group of human surrogate models has proven to have excellent predictive validity: they respond to clinically active medications and do not respond to clinically inactive medications, including some that worked in animals but failed in the clinics. They should therefore inform basic research for new drug development.
Collapse
Affiliation(s)
- Charles Quesada
- NeuroPain lab, Lyon Centre for Neuroscience Inserm U1028, Lyon, France.,Pain Center Neurological Hospital (CETD), Hospices Civils de Lyon, Lyon, France
| | - Anna Kostenko
- Department of Neurophysiology, Mannheim center for Translational Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Idy Ho
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Caterina Leone
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Zahra Nochi
- Danish Pain Research Center, Dept of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Alexandre Stouffs
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Ottignies-Louvain-la-Neuve, Belgium
| | - Matthias Wittayer
- Department of Neurophysiology, Mannheim center for Translational Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Ombretta Caspani
- Department of Neurophysiology, Mannheim center for Translational Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Nanna Brix Finnerup
- Danish Pain Research Center, Dept of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - André Mouraux
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Ottignies-Louvain-la-Neuve, Belgium
| | | | - Irene Tracey
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim center for Translational Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Luis Garcia-Larrea
- NeuroPain lab, Lyon Centre for Neuroscience Inserm U1028, Lyon, France.,Pain Center Neurological Hospital (CETD), Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
8
|
Differences in itch and pain behaviors accompanying the irritant and allergic contact dermatitis produced by a contact allergen in mice. Pain Rep 2019; 4:e781. [PMID: 31875186 PMCID: PMC6882579 DOI: 10.1097/pr9.0000000000000781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Introduction: Irritant contact dermatitis (ICD) and allergic contact dermatitis (ACD) are inflammatory skin diseases accompanied by itch and pain. Irritant contact dermatitis is caused by chemical irritants eliciting an innate immune response, whereas ACD is induced by haptens additionally activating an adaptive immune response: After initial exposure (sensitization) to the hapten, a subsequent challenge can lead to a delayed-type hypersensitivity reaction. But, the sensory and inflammatory effects of sensitization (ICD) vs challenge of ACD are insufficiently studied. Therefore, we compared itch- and pain-like behaviors and inflammatory reactions evoked in mice during the sensitization (ICD) vs challenge phase (ACD) of application of the hapten, squaric acid dibutylester (SADBE). Objectives: Our aim was to compare itch- and pain-like behaviors and inflammatory reactions evoked in mice during the sensitization (ICD) vs challenge phase (ACD) of application of the hapten, squaric acid dibutylester (SADBE). Methods: Mice were sensitized on the abdomen with 1% SADBE (ACD) or vehicle treated (ICD, control). Spontaneous and stimulus-evoked itch- and pain-like behaviors were recorded in mice before and after 3 daily challenges of the cheek with 1% SADBE (ACD, ICD). Cutaneous inflammation was evaluated with clinical scoring, ultrasound imaging, skin thickness, histology, and analyses of selected biomarkers for contact dermatitis, IL-1β, TNF-α, CXCL10, and CXCR3. Results: Allergic contact dermatitis vs ICD mice exhibited more spontaneous site-directed scratching (itch) and wiping (pain). Allergic contact dermatitis—but not ICD—mice exhibited allodynia and hyperalgesia to mechanical and heat stimuli. Inflammatory mediators IL-1β and TNF-α were upregulated in both groups as well as the chemokine receptor, CXCR3. CXCL10, a CXCR3 ligand, was upregulated only for ACD. Inflammatory responses were more pronounced in ACD than ICD. Conclusion: These findings provide new information for differentiating the behavioral and inflammatory reactions to hapten-induced ICD and ACD.
Collapse
|
9
|
Psychophysical and vasomotor evidence for interdependency of TRPA1 and TRPV1-evoked nociceptive responses in human skin: an experimental study. Pain 2019; 159:1989-2001. [PMID: 29847470 DOI: 10.1097/j.pain.0000000000001298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The TRPA1 and TRPV1 receptors are important pharmaceutical targets for antipruritic and analgesic therapy. Obtaining further knowledge on their roles and interrelationship in humans is therefore crucial. Preclinical results are contradictory concerning coexpression and functional interdependency of TRPV1 and TRPA1, but no human evidence exists. This human experimental study investigated whether functional responses from the subpopulation of TRPA1 nociceptors could be evoked after defunctionalization of TRPV1 nociceptors by cutaneous application of high-concentration capsaicin. Two quadratic areas on each forearm were randomized to pretreatment with an 8% topical capsaicin patch or vehicle for 24 hours. Subsequently, areas were provoked by transdermal 1% topical capsaicin (TRPV1 agonist) or 10% topical allyl isothiocyanate ("AITC," a TRPA1 agonist), delivered by 12 mm Finn chambers. Evoked pain intensities were recorded during pretreatments and chemical provocations. Quantitative sensory tests were performed before and after provocations to assess changes of heat pain sensitivity. Imaging of vasomotor responses was used to assess neurogenic inflammation after the chemical provocations. In the capsaicin-pretreated areas, both the subsequent 1% capsaicin- and 10% AITC-provoked pain was inhibited by 92.9 ± 2.5% and 86.9 ± 5.0% (both: P < 0.001), respectively. The capsaicin-ablated skin areas showed significant heat hypoalgesia at baseline (P < 0.001) as well as heat antihyperalgesia, and inhibition of neurogenic inflammation evoked by both 1% capsaicin and 10% AITC provocations (both: P < 0.001). Ablation of cutaneous capsaicin-sensitive afferents caused consistent and equal inhibition of both TRPV1- and TRPA1-provoked responses assessed psychophysically and by imaging of vasomotor responses. This study suggests that TRPA1 nociceptive responses in human skin strongly depend on intact capsaicin-sensitive, TRPV1 fibers.
Collapse
|
10
|
Chen YC, Wang PR, Lai TJ, Lu LH, Dai LW, Wang CH. Using therapeutic ultrasound to promote irritated skin recovery after surfactant-induced barrier disruption. ULTRASONICS 2019; 91:206-212. [PMID: 30122437 DOI: 10.1016/j.ultras.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 07/10/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Surfactant-induced skin barrier disruption can enhance blood flow and water content in the superficial skin. The effect of therapeutic ultrasound on accelerating the recovery of superficial skin after skin barrier disruption has seldom been studied. OBJECTIVE To understand the effects of therapeutic ultrasound on barrier recovery, we used the sodium lauryl sulfate irritation model and treatment with ultrasound intervention. METHODS The study allocated 30 healthy subjects into an ultrasound group (n = 15) and a control group (n = 15), each divided into three subgroups (sodium lauryl sulfate at concentrations of 1.0%, 0.5%, and 0%). Pulsed ultrasound (1 MHz, 0.3 W/cm2SATA) was applied to ultrasound subgroups. The treatment effect was evaluated by the recovery rate of enhanced blood flow and water content. RESULTS The results indicated a surfactant dose-dependent effect on blood flow, but not on water content. The recovery rates of enhanced blood flow were higher in the 0.5% and 1.0% ultrasound subgroups than in the control subgroups throughout the experiment. However, recovery rates of water content were higher in the ultrasound subgroups than in the control subgroups only on Day2. CONCLUSIONS Pulsed ultrasound accelerated the barrier recovery by reducing the enhanced blood flow and water content after skin barrier disruption.
Collapse
Affiliation(s)
- Yueh-Chi Chen
- Institute of Medicine, Chung Shan Medical University, and Physical Therapy Room, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Peir-Renn Wang
- Department of Physical Medicine and Rehabilitation, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Te-Jen Lai
- Institute of Medicine, Chung Shan Medical University, and Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Li-Hua Lu
- Physical Therapy Room, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Long-Wei Dai
- Department of Physical Medicine and Rehabilitation, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Hou Wang
- Department of Physical Therapy, Chung Shan Medical University, and Physical Therapy Room, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
11
|
Andersen HH, Lo Vecchio S, Elberling J, Yosipovitch G, Arendt-Nielsen L. UVB- and NGF-induced cutaneous sensitization in humans selectively augments cowhage- and histamine-induced pain and evokes mechanical hyperknesis. Exp Dermatol 2018; 27:258-267. [DOI: 10.1111/exd.13508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Hjalte H. Andersen
- Laboratory for Experimental Cutaneous Pain and Itch Research, SMI; Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg Denmark
| | - Silvia Lo Vecchio
- Laboratory for Experimental Cutaneous Pain and Itch Research, SMI; Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg Denmark
| | - Jesper Elberling
- The Allergy Clinic, Department of Dermato-Allergology; Copenhagen University Hospital; Gentofte, Copenhagen Denmark
| | - Gil Yosipovitch
- Department of Dermatology and Itch Center; University of Miami School of Medicine, Florida; Miami FL USA
| | - Lars Arendt-Nielsen
- Laboratory for Experimental Cutaneous Pain and Itch Research, SMI; Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg Denmark
| |
Collapse
|
12
|
Kendall AC, Pilkington SM, Sassano G, Rhodes LE, Nicolaou A. N-Acyl ethanolamide and eicosanoid involvement in irritant dermatitis. Br J Dermatol 2016; 175:163-71. [PMID: 26947140 DOI: 10.1111/bjd.14521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Sodium lauryl sulfate (SLS) and ultraviolet radiation (UVR) are two commonly encountered cutaneous inflammatory stimuli. Differing histopathological and clinical features implicate involvement of alternative inflammatory pathways; bioactive lipid mediators (eicosanoids, endocannabinoids and sphingolipids) are likely candidates for regulation of the divergent inflammatory responses. OBJECTIVES To assess comprehensively bioactive lipid involvement in SLS- and UVR-induced inflammatory responses, to provide a better understanding of bioactive lipid mediator pathways in irritant inflammation. METHODS Buttock skin from 10 healthy volunteers was treated with two minimal erythema doses of UVR (275-380 nm, peak 305 nm) or an SLS dose optimized for each individual, to produce a comparable, moderate erythema. Punch biopsies were taken 24 h postchallenge and from untreated skin, and separated into dermis and epidermis. Lipids [including 15 prostanoids, 15 hydroxy fatty acids (HFAs), nine endocannabinoids and related N-acyl ethanolamides (NAE), and 21 sphingolipids] were extracted and quantified using liquid chromatography-tandem mass spectrometry. RESULTS Increased epidermal NAE and HFA expression was observed in response to SLS but not UVR-induced low-level inflammation. Significant changes following SLS treatment included augmented levels of NAE, possessing proinflammatory and some reported anti-inflammatory properties, with 3·7-fold (P = 0·02) and threefold (P = 0·01) increased expression of palmitoyl and stearoyl ethanolamides, respectively, in addition to 1·9-fold (P = 0·02) increased expression of 12-hydroxyeicosatetraenoic acid. CONCLUSIONS The differential bioactive lipid upregulation implicates their involvement in skin irritant responses, potentially reflecting roles in inflammatory cell recruitment and subsequent resolution of inflammation, giving scope for new treatment approaches to irritant dermatitis.
Collapse
Affiliation(s)
- A C Kendall
- Manchester Pharmacy School, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, U.K
| | - S M Pilkington
- Dermatology Centre, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, U.K.,Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K
| | - G Sassano
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, MK44 1LQ, U.K
| | - L E Rhodes
- Dermatology Centre, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, U.K.,Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K
| | - A Nicolaou
- Manchester Pharmacy School, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, U.K
| |
Collapse
|
13
|
Cold and L-menthol-induced sensitization in healthy volunteers--a cold hypersensitivity analogue to the heat/capsaicin model. Pain 2016; 156:880-889. [PMID: 25719613 DOI: 10.1097/j.pain.0000000000000123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Topical high-concentration L-menthol is the only established human experimental pain model to study mechanisms underlying cold hyperalgesia. We aimed at investigating the combinatorial effect of cold stimuli and topical L-menthol on cold pain and secondary mechanical hyperalgesia. Analogue to the heat-capsaicin model on skin sensitization, we proposed that cold/menthol enhances or prolong L-menthol-evoked sensitization. Topical 40% L-menthol or vehicle was applied (20 minutes) on the volar forearms of 20 healthy females and males (age, 28.7 ± 0.6 years). Cold stimulation of 5°C for 5 minutes was then applied to the treated area 3 times with 40-minute intervals. Cold detection threshold and pain, mechanical hyperalgesia (pinprick), static and dynamic mechanical allodynia (von Frey and brush), skin blood flow (laser speckle), and temperature (thermocamera) were assessed. Cold detection threshold and cold pain threshold (CPT) increased after L-menthol and remained high after the cold rekindling cycles (P < 0.001). L-menthol evoked secondary hyperalgesia to pinprick (P < 0.001) particularly in females (P < 0.05) and also induced secondary allodynia to von Frey and brush (P < 0.001). Application of cold stimuli kept these areas enlarged with a higher response in females to brush after the third cold cycle (P < 0.05). Skin blood flow increased after L-menthol (P < 0.001) and stayed stable after cold cycles. Repeated application of cold on skin treated by L-menthol facilitated and prolonged L-menthol-induced cold pain and hyperalgesia. This model may prove beneficial for testing analgesic compounds when a sufficient duration of time is needed to see drug effects on CPT or mechanical hypersensitivity.
Collapse
|
14
|
Bandier J, Carlsen B, Rasmussen M, Petersen L, Johansen J. Skin reaction and regeneration after single sodium lauryl sulfate exposure stratified by filaggrin genotype and atopic dermatitis phenotype. Br J Dermatol 2015; 172:1519-1529. [DOI: 10.1111/bjd.13651] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 12/27/2022]
Affiliation(s)
- J. Bandier
- National Allergy Research Centre; Department of Dermato-Allergology; Copenhagen University Hospital Gentofte; Kildegårdsvej 28 2900 Hellerup Denmark
| | - B.C. Carlsen
- National Allergy Research Centre; Department of Dermato-Allergology; Copenhagen University Hospital Gentofte; Kildegårdsvej 28 2900 Hellerup Denmark
| | - M.A. Rasmussen
- Faculty of Science; University of Copenhagen; Frederiksberg Denmark
| | - L.J. Petersen
- Department of Nuclear Medicine; Aalborg University Hospital; Aalborg Denmark
- Department of Clinical Medicine; Aalborg University Hospital; Aalborg Denmark
| | - J.D. Johansen
- National Allergy Research Centre; Department of Dermato-Allergology; Copenhagen University Hospital Gentofte; Kildegårdsvej 28 2900 Hellerup Denmark
| |
Collapse
|
15
|
Di Giminiani P, Petersen LJ, Herskin MS. Capsaicin-induced neurogenic inflammation in pig skin: a behavioural study. Res Vet Sci 2014; 96:447-53. [PMID: 24746289 DOI: 10.1016/j.rvsc.2014.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/06/2014] [Accepted: 03/30/2014] [Indexed: 02/03/2023]
Abstract
Topical capsaicin is a well-established model of experimental hyperalgesia. Its application to the study of animals has been limited to few species. The effect of topical capsaicin on hyperalgesia in porcine skin was evaluated as part of a study of inflammatory pain in the pig. Two experiments were carried out on pigs of 27 ± 5 kg (n = 8) and 57 ± 3 kg (n = 16). Thermal and mechanical noxious stimuli were provided (CO2 laser and Pressure Application Measurement device) to assess avoidance behaviours. Capsaicin induced significant thermal hyperalgesia in the smaller pigs (P < 0.05), while no mechanical hyperalgesia was observed in either animal group. The present model of topical capsaicin application may be useful to investigate the mechanisms of primary hyperalgesia in this species, although some experimental conditions, such as the administration route and cutaneous morphology, need to be evaluated.
Collapse
Affiliation(s)
- Pierpaolo Di Giminiani
- Department of Animal Science, Aarhus University, AU-FOULUM, Blichers Allé, DK-8830 Tjele, Denmark.
| | - Lars J Petersen
- Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 11, DK-9000 Aalborg, Denmark; Department of Nuclear Medicine, Aalborg University Hospital, Hobrovej 18-22, DK-9000 Aalborg, Denmark
| | - Mette S Herskin
- Department of Animal Science, Aarhus University, AU-FOULUM, Blichers Allé, DK-8830 Tjele, Denmark
| |
Collapse
|
16
|
Petersen LJ. Direct comparison of laser Doppler flowmetry and laser Doppler imaging for assessment of experimentally-induced inflammation in human skin. Inflamm Res 2013; 62:1073-8. [DOI: 10.1007/s00011-013-0668-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 09/17/2013] [Indexed: 11/29/2022] Open
|
17
|
Di Giminiani P, Petersen LJ, Herskin MS. Nociceptive responses to thermal and mechanical stimulations in awake pigs. Eur J Pain 2012; 17:638-48. [PMID: 23042703 DOI: 10.1002/j.1532-2149.2012.00228.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2012] [Indexed: 11/06/2022]
Abstract
BACKGROUND Porcine skin exhibits a high degree of homology to human skin, and the pig has recently been used as a cutaneous pain model. However, before the full potential of this novel in vivo cutaneous pain model can be achieved, several methodological aspects related to the management of awake animal studies in a large species require further examination. This manuscript describes the initial development of a porcine model of cutaneous nociception and focuses on interactions between the sensory modality, body size and the anatomical location of the stimulation site. METHODS Pigs of different body sizes (30 and 60 kg) were exposed to thermal (CO2 laser) and mechanical (pressure application measurement device) stimulations to the flank and the hind legs in a balanced order. The median response latency and the type of behavioural response were recorded. RESULTS Small pigs exhibited significantly lower pain thresholds (shorter latency to response) than large pigs to thermal and mechanical stimulations. Stimulations at the two anatomical locations elicited very distinct sets of behavioural responses, with different levels of sensitivity between the flank and the hind legs. Furthermore, small animals exhibited lower levels of individual variability between single stimulations. CONCLUSIONS Our data indicate that this experimental approach may be valuable for use in studies that focus on porcine cutaneous nociception.
Collapse
Affiliation(s)
- P Di Giminiani
- Department of Animal Science, Aarhus University, Tjele, Denmark.
| | | | | |
Collapse
|
18
|
Olesen AE, Andresen T, Staahl C, Drewes AM. Human experimental pain models for assessing the therapeutic efficacy of analgesic drugs. Pharmacol Rev 2012; 64:722-79. [PMID: 22722894 DOI: 10.1124/pr.111.005447] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pain models in animals have shown low predictivity for analgesic efficacy in humans, and clinical studies are often very confounded, blurring the evaluation. Human experimental pain models may therefore help to evaluate mechanisms and effect of analgesics and bridge findings from basic studies to the clinic. The present review outlines the concept and limitations of human experimental pain models and addresses analgesic efficacy in healthy volunteers and patients. Experimental models to evoke pain and hyperalgesia are available for most tissues. In healthy volunteers, the effect of acetaminophen is difficult to detect unless neurophysiological methods are used, whereas the effect of nonsteroidal anti-inflammatory drugs could be detected in most models. Anticonvulsants and antidepressants are sensitive in several models, particularly in models inducing hyperalgesia. For opioids, tonic pain with high intensity is attenuated more than short-lasting pain and nonpainful sensations. Fewer studies were performed in patients. In general, the sensitivity to analgesics is better in patients than in healthy volunteers, but the lower number of studies may bias the results. Experimental models have variable reliability, and validity shall be interpreted with caution. Models including deep, tonic pain and hyperalgesia are better to predict the effects of analgesics. Assessment with neurophysiologic methods and imaging is valuable as a supplement to psychophysical methods and can increase sensitivity. The models need to be designed with careful consideration of pharmacological mechanisms and pharmacokinetics of analgesics. Knowledge obtained from this review can help design experimental pain studies for new compounds entering phase I and II clinical trials.
Collapse
Affiliation(s)
- Anne Estrup Olesen
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark.
| | | | | | | |
Collapse
|
19
|
Arendt-Nielsen L, Hoeck HC. Optimizing the early phase development of new analgesics by human pain biomarkers. Expert Rev Neurother 2011; 11:1631-1651. [DOI: 10.1586/ern.11.147] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|